Math 350 Assignment 4, Spring 2017

Due in class on Monday, February 13

Part 1. From the textbook A friendly introduction to number theory.

- Exercise 12.5 (a)-(f).
- Exercise 28.14 (a), (b), 4th edition (= Exercise 21.14 (a), (b), 3rd edition)
- Exercise 28.5 (a), (b), (c), 4th edition) (= Exercise 21.6 (a), (b), (c), 3rd edition)

Part 2.
A. The Möbius function $\mu(n)$ is the function from $\mathbb{N}_{\geq 1}$ to $\{1,-1\}$, defined as follows. Suppose that

$$
n=p_{1}^{e_{1}} \cdots p_{f}^{e_{f}}, f \in \mathbb{N}, e_{1}, \ldots, e_{f} \in \mathbb{N}_{\geq 1}
$$

is the factorization of n, where p_{1}, \ldots, p_{f} are mutually distinct prime numbers. Then

$$
\mu(n)= \begin{cases}0 & \text { if } e_{i} \geq 2 \text { for some } i=1, \ldots, f \\ (-1)^{f} & \text { if } e_{i}=1 \text { for all } i=1, \ldots, f .\end{cases}
$$

Prove that

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n \geq 2\end{cases}
$$

B. Let $f(n)$ be the maximum of the order of elements in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(a) Determine the value of $f(n)$ for $n=40,200,207,425$.
(b) Formulate a conjecture/reasonable guess for the value of $f(n)$ for general n 's.

Part 3. Extra credit problems.
C. Exercise 28.14 (c), 4th edition (= Exercise 21.14 (c), 3rd edition)
D. Prove the conjecture you formulated in part (b) of problem B above.
E. Let $n \geq 2$ be a positive integer. Let a be a non-zero integer with $\operatorname{gcd}(a, n)=1$. Show that

$$
\sum_{1 \leq k \leq n-1, \operatorname{gcd}(k, n)=1}\left\langle\frac{a k}{n}\right\rangle=\phi(n) / 2,
$$

where $\left\langle\frac{a k}{n}\right\rangle=\frac{a k}{n}-\left\lfloor\frac{a k}{n}\right\rfloor$ is the fractional part of $\frac{a k}{n}$ defined in assignment 3 .
F. Let $n \geq 2$ be a positive integer. Prove that

$$
\sum_{1 \leq k \leq n-1, \operatorname{gcd}(k, n)=1} e^{2 \pi \sqrt{-1} k / n}=\mu(n)
$$

where $\mu(n)$ is the Möbius function of n.

