## Math 350 Assignment 5, Spring 2017

Due in class on Monday, February 20
Part 1. From the textbook A friendly introduction to number theory.

- Exercise 21.1 (a), (c) 4th edition (= Exercise 24.1 (a), (c) 3rd edition)


## Part 2.

1. Find the number of solutions of the congruences
(a) $x^{2} \equiv 5(\bmod 73)$
(b) $x^{2} \equiv 3(\bmod 73)$
(c) $x^{2} \equiv 2(\bmod 110)$
(d) $21 x^{2} \equiv 6(\bmod 51)$

Part 3. Extra credit problems.
A. (a) Show that for every positive integer $n$ prime to 10 , the decimal expansion the fraction $\frac{1}{n}$ is purely cyclic whose period is equal to the order of $10 \bmod n$ in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(b) Try to extend the statement (a) above to general fraction, i.e. determine the general form of the decimal expansion of a rational number.
B. Let $p$ be an odd prime number.
(a) Show that $x^{p-1}-1 \equiv(x-1)(x-2)(x-3) \cdots(x-p+1)(\bmod p)$.
(b) Determine the element

$$
\prod_{1 \leq i \leq p-1} i \bmod p
$$

of $\mathbb{Z} / p \mathbb{Z}$.
(c) Determine the element

$$
\prod_{1 \leq i<j \leq p-1} i \cdot j \bmod p
$$

of $\mathbb{Z} / p \mathbb{Z}$.

