Math 350 Assignment 6, Spring 2017

Due in class on Monday, February 27
Part 1.

1. Find all solutions to the congruence equation

$$
36 x+91 \equiv 31 \quad(\bmod 78)
$$

2. Determine the number of solutions of the congruence equation

$$
x^{2}+x+1 \equiv 0 \quad(\bmod 101)
$$

3. Determine the number of solutions of the congruence equation

$$
2 x^{2}+1 \equiv 0 \quad(\bmod 1729)
$$

4. Determine the number of solutions of the congruence equation

$$
3 x^{2}+1 \equiv 8 \quad(\bmod 56)
$$

5. Determine the number of cubic roots of 1 in $\mathbb{Z} / 9700 Z$.

Part 2. (extra credit)

A. Let n be a positive integer whose primary factorization is $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where p_{1}, \ldots, p_{r} are distinct prime numbers, and e_{1}, \ldots, e_{r} are positive integers. What is the highest order of elements of $(\mathbb{Z} / n \mathbb{Z})^{\times}$?
(Recall that the order of an element $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$is the smallest positive integer $d \geq 1$ such that $a^{d}=1 \bmod n$.)
B. (a sufficient criterion for primality, related to Fermat's theorem) Let p be an odd prime number, and let h be a natural number with $0<h<p$. Let $n=h p+1$. Suppose that

$$
2^{h} \not \equiv 1 \quad(\bmod n) \quad \text { and } \quad 2^{n-1} \equiv 1 \quad(\bmod n),
$$

then n is a prime number.
Below are some more practice problems. Note that the Jacobi symbol is not officially included in the in-class exam, but you can use it in the exam.
P1. Suppose that a is an element of $\mathbb{Z} / 101 \mathbb{Z}$ such that $a^{513}=1$. Is it possible that a is a primitive 100 -th root of 1 in $\mathbb{Z} / 101 \mathbb{Z}$? Either give an example of a primitive element whose 513 rd power is 1 , or prove that there does not exist such an element.

P2. Determine whether the following statements are true or false.
(a) For prime numbers p, the Legendre symbol $\left(\frac{5}{p}\right)$ depends only on the congruence class of p modulo 5.
(b) For prime numbers p, the Legendre symbol $\left(\frac{11}{p}\right)$ depends only on the congruence class of p modulo 11 .
(c) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of a modulo b.
(d) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of b modulo $4 a$.

P3. Let p, q be prime numbers, $p \neq q$. Find a natural number n with $0 \neq n<p q$ such that $p^{2 q-1}+$ $q^{2 p-1} \equiv n(\bmod p q)$. (The number n should be given in terms of p and q.)

P4. Suppose that d is a positive odd integer such that the Jacobi symbol $\left(\frac{-1}{d}\right)=1$. Is -1 necessarily a square in $\mathbb{Z} / d \mathbb{Z}$? Either give a proof, or provide a counter-example.

P5. Prove or disprove the following statement: For every positive integer $n \geq 2$ there exists an element $(a \in \mathbb{Z} / n \mathbb{Z})^{\times}$such that every element of $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a power of a ?

