Math 350 Assignment 7, Spring 2017

Due in class on Monday, March 13

Part 1. From the textbook A friendly introduction to number theory.

- Problem 29.1 (a), (c) of the 4th edition (= Problem 22.1 (a), (c) of the 3rd edition)
- Problem 29.3 (b) of the 4th edition (= Probme 22.3 (b) of the third edition)
- Problem 29.4 (a), (b), (c) of the 4th edition (= Problem 22.4 (a), (b), (c) of the third edition)

Part 2. Extra credit problems
A. Problem 29.3 (c) of the 4th edition (= Probme 22.3 (c) of the third edition)
B. Define a function $\lambda: \mathbb{N}_{>0} \rightarrow\{1,-1\}$ as follows: if $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ is the factorization of n into a product of prime numbers, then $\lambda(n)=(-1)^{e_{1}+\cdots+e_{r}}$. Notice that $\lambda(1)=1$, corresponding to the case when $r=1$. Prove the following statements.
(a) $\lambda(m n)=\lambda(m) \cdot \lambda(n)$ for all positive integers m, n.
(b) $\sum_{d \mid n} \lambda(d)= \begin{cases}1 & \text { if } n \text { is a square, i.e. } n=m^{2} \text { for an integer } m \\ 0 & \text { if } n \text { is not a square }\end{cases}$
(c) $\sum_{n=1}^{m} \lambda(n)\lfloor m / n\rfloor=\lfloor\sqrt{m}\rfloor$ for every positive integer m.
[Hint: Write the sum in question as a double sum, interchange the order of summation and use (b).]
(d) $\left|\sum_{n=1}^{m} \frac{\lambda(n)}{n}\right| \leq 2$ for every positive integer m.
[Hint: Use (c).]

