Notes on quadratic reciprocity

1. Let $p \geq 3$ be an odd prime number. Let $S_{p}:=\{1,2,3, \ldots,(p-1) 2\}$. For every integer a such that $\operatorname{gcd}(a, p)=1$, define

$$
\begin{aligned}
T(a, p) & :=\left\{i \in S_{p} \mid r_{i}:=a i-\lfloor a i / p\rfloor \geq(p+1) / 2\right\}, \\
T^{\prime}(a, p) & :=\left\{i \in S_{p} \mid r_{i}:=a i-\lfloor a i / p\rfloor \leq(p q 1) / 2\right\} .
\end{aligned}
$$

Let $\mu(a, p):=\# T(a, p)$. It is easily verified that

$$
S(p)=\left\{r_{i} \mid i \in T^{\prime}(a, p)\right\} \cup\left\{p-r_{i} \mid i \in T(a, p)\right\},
$$

a key observation. Hence

$$
a^{(p-1) / 2} \cdot \prod_{1 \leq i \leq(p-1) / 2} i=\prod_{1 \leq i \leq(p-1) / 2}(a i) \equiv(-1)^{\mu(a, p)} . \prod_{1 \leq i \leq(p-1) / 2} i(\bmod p) .
$$

Therefore $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \equiv(-1)^{\mu(a, p)}(\bmod p)$, and we conclude that

$$
\begin{equation*}
\left(\frac{a}{p}\right)=(-1)^{\mu(a, p)} \tag{1}
\end{equation*}
$$

for every integer a which is prime to p. The last displayed equality is called "Gauss's criterion" (Theorem 23.1 in the 4th edition). In the case $a=2$, formula (1) gives

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 2}=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 & (\bmod 8) \tag{2}\\
-1 & \text { if } p \equiv \pm 3 & (\bmod 8)
\end{array}\right.
$$

2. For each $i \in S(p)$, if remainder $r_{i} \leq(p-1) / 2$ then $\left\lfloor 2 r_{i}\right\rfloor=0$, while $\left\lfloor 2 r_{i}\right\rfloor=1$ if $r_{i} \geq(p+1) / 2$. Since $2 a i=2\left\lfloor\frac{a i}{p}\right\rfloor p+2 r_{i}$, we have $\left\lfloor\frac{2 a i}{p}\right\rfloor=2\left\lfloor\frac{a i}{p}\right\rfloor+\left\lfloor\frac{2 r_{i}}{p}\right\rfloor$, we have

$$
i \in T(a, p) \text { if and only if }\left\lfloor\frac{2 a i}{p}\right\rfloor \equiv 1 \quad(\bmod 2),
$$

which implies that

$$
\mu(a, p) \equiv \sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{2 a i}{p}\right\rfloor \quad(\bmod 2) .
$$

Therefore Gauss's criterion can be restated as

$$
\begin{equation*}
\left(\frac{a}{p}\right)=(-1)^{\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{2 a i}{p}\right\rfloor} \tag{3}
\end{equation*}
$$

3. We can get rid of the " 2 " in the exponent " $\left\lfloor\frac{2 a i}{p}\right\rfloor$ " appearing in formula (3) above. The discussion depends on the parity of the integer a.

Suppose first that $a=2 b$ is even. We get from the multiplicativity of the Legendre symbol that

$$
\begin{equation*}
\left(\frac{a}{p}\right)=\left(\frac{2 b}{p}\right)=\left(\frac{2}{p}\right) \cdot\left(\frac{b}{p}\right)=\left(\frac{2}{p}\right) \cdot(-1)^{\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{2 a i}{p}\right\rfloor}=\left(\frac{2}{p}\right) \cdot(-1)^{\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{a i}{p}\right\rfloor} \tag{4}
\end{equation*}
$$

for every even integer a prime to p.

Suppose next that a is odd. Then $a+p$ is even, and $\left(\frac{a}{p}\right)=\left(\frac{a+p}{p}\right)$. So we can apply formula (4)

$$
\left(\frac{a}{p}\right)=\left(\frac{a+p}{p}\right)=\left(\frac{2}{p}\right) \cdot(-1)^{\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{(a+p) i}{p}\right\rfloor} .
$$

In the above formula, we have $\left\lfloor\frac{(a+p) i}{p}\right\rfloor=\left\lfloor\frac{a i}{p}+i\right\rfloor$ for every i, therefore

$$
\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{(a+p) i}{p}\right\rfloor=\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{a i}{p}\right\rfloor+\sum_{1 \leq i \leq(p-1) / 2}=\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{a i}{p}\right\rfloor+\frac{p^{2}-1}{8} .
$$

We conclude that

$$
\begin{equation*}
\left(\frac{a}{p}\right)=(-1)^{\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{a i}{p}\right\rfloor} \cdot(-1)^{\left(p^{2}-1\right) / 8} \cdot\left(\frac{2}{p}\right) \tag{5}
\end{equation*}
$$

for every odd integer a prime to p.
Setting a to 1 in (5), we recover the formula (2) for the Legendre symbol $\left(\frac{2}{p}\right)$. We simplify formulas (4) and (5) using (2) as

$$
\left(\frac{a}{p}\right)= \begin{cases}(-1)^{\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{a i}{p}\right\rfloor} & \text { if } a \text { is odd } \tag{6}\\ (-1)^{\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{a i}{p}\right\rfloor} \cdot(-1)^{\frac{\left(p^{2}-1\right)}{8}} & \text { if } a \text { is even }\end{cases}
$$

for every integer a with $\operatorname{gcd}(a, p)=1$. Note that the sum $\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{a i}{p}\right\rfloor$ is equal to the number of all pairs (i, j) of integer i, j with $1 \leq i<p / 2$ and $j \leq a i / p$, or equivalently $p j \leq a i$:

$$
\begin{equation*}
\left.\sum_{1 \leq i \leq(p-1) / 2} \left\lvert\, \frac{a i}{p}\right.\right\rfloor=\#\{(i, j) \mid 1 \leq i \leq p / 2,1 \leq j \leq a / 2, p j<a i\} \tag{7}
\end{equation*}
$$

4. Suppose that q is an odd prime number, $q \neq p$. From (7) we have

$$
\begin{equation*}
\left.\sum_{1 \leq i \leq(p-1) / 2} \left\lvert\, \frac{q i}{p}\right.\right\rfloor=\#\{(i, j) \mid 1 \leq i \leq p / 2,1 \leq j \leq q / 2, p j<q i\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1 \leq j \leq(q-1) / 2}\left\lfloor\frac{p j}{q}\right\rfloor=\#\{(j, i) \mid 1 \leq j \leq q / 2,1 \leq i \leq p / 2, q i<p j\} \tag{9}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\#\{(j, i) \mid 1 \leq j \leq q / 2,1 \leq i \leq p / 2, q i<p j\}=\#\{(i, j) \mid 1 \leq j \leq q / 2,1 \leq i \leq p / 2, q i<p j\} \tag{10}
\end{equation*}
$$

Consider set U consisting of all pair (i, j) of integers with $0<i<p / 2$ and $0<j<q / 2$. Clearly every element $(i, j) \in U$ satisfies either $p j<q i$ or $q i<p j$: if $p j=q i$, then $p \mid i$ and $q \mid j$, which is absurd because $0<i<p / 2$ and $0<j<q / 2$. Therefore

$$
\begin{equation*}
\sum_{1 \leq i \leq(p-1) / 2}\left\lfloor\frac{q i}{p}\right\rfloor+\sum_{1 \leq j \leq(q-1) / 2}\left\lfloor\frac{p j}{q}\right\rfloor=\# U=\frac{p-1}{2} \cdot \frac{q-1}{2} \tag{11}
\end{equation*}
$$

From (6) and (11) we conclude that

$$
\begin{equation*}
\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \tag{12}
\end{equation*}
$$

for any two odd prime numbers $p \neq q$. We have proved the quadratic reciprocity law.

