
Notes on quadratic reciprocity

1. Let p ≥ 3 be an odd prime number. Let Sp := {1,2,3, . . . ,(p−1)2}. For every integer a such that
gcd(a, p) = 1, define

T (a, p) := {i ∈ Sp | ri := ai−bai/pc ≥ (p+1)/2},

T ′(a, p) := {i ∈ Sp | ri := ai−bai/pc ≤ (pq1)/2}.

Let µ(a, p) := #T (a, p). It is easily verified that

S(p) = {ri | i ∈ T ′(a, p)}∪{p− ri | i ∈ T (a, p)},

a key observation. Hence

a(p−1)/2 · ∏
1≤i≤(p−1)/2

i = ∏
1≤i≤(p−1)/2

(ai)≡ (−1)µ(a,p) · ∏
1≤i≤(p−1)/2

i (mod p).

Therefore
(

a
p

)
≡ a(p−1)/2 ≡ (−1)µ(a,p) (mod p), and we conclude that(

a
p

)
= (−1)µ(a,p) (1)

for every integer a which is prime to p. The last displayed equality is called “Gauss’s criterion”
(Theorem 23.1 in the 4th edition). In the case a = 2, formula (1) gives(

2
p

)
= (−1)(p2−1)/2 =

{
1 if p≡±1 (mod 8)
−1 if p≡±3 (mod 8)

(2)

2. For each i ∈ S(p), if remainder ri ≤ (p− 1)/2 then b2ric = 0, while b2ric = 1 if ri ≥ (p+ 1)/2.
Since 2ai = 2bai

p cp+2ri, we have
⌊

2ai
p

⌋
= 2

⌊
ai
p

⌋
+
⌊

2ri
p

⌋
, we have

i ∈ T (a, p) if and only if
⌊

2ai
p

⌋
≡ 1 (mod 2),

which implies that
µ(a, p)≡ ∑

1≤i≤(p−1)/2

⌊
2ai
p

⌋
(mod 2).

Therefore Gauss’s criterion can be restated as(
a
p

)
= (−1)∑1≤i≤(p−1)/2

⌊2ai
p

⌋
(3)

3. We can get rid of the “2” in the exponent “
⌊

2ai
p

⌋
” appearing in formula (3) above. The discussion

depends on the parity of the integer a.

Suppose first that a = 2b is even. We get from the multiplicativity of the Legendre symbol that(
a
p

)
=

(
2b
p

)
=

(
2
p

)
·
(

b
p

)
=

(
2
p

)
· (−1)∑1≤i≤(p−1)/2

⌊2ai
p

⌋
=

(
2
p

)
· (−1)∑1≤i≤(p−1)/2

⌊ai
p

⌋
(4)

for every even integer a prime to p.
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Suppose next that a is odd. Then a+ p is even, and
(

a
p

)
=
(

a+p
p

)
. So we can apply formula (4)(

a
p

)
=

(
a+ p

p

)
=

(
2
p

)
· (−1)

∑1≤i≤(p−1)/2

⌊
(a+p)i

p

⌋
.

In the above formula, we have
⌊
(a+p)i

p

⌋
=
⌊

ai
p + i

⌋
for every i, therefore

∑
1≤i≤(p−1)/2

⌊
(a+p)i

p

⌋
= ∑

1≤i≤(p−1)/2

⌊
ai
p

⌋
+ ∑

1≤i≤(p−1)/2
= ∑

1≤i≤(p−1)/2

⌊
ai
p

⌋
+

p2−1
8

.

We conclude that (
a
p

)
= (−1)∑1≤i≤(p−1)/2

⌊ai
p

⌋
· (−1)(p2−1)/8 ·

(
2
p

)
(5)

for every odd integer a prime to p.

Setting a to 1 in (5), we recover the formula (2) for the Legendre symbol
(

2
p

)
. We simplify

formulas (4) and (5) using (2) as(
a
p

)
=

 (−1)∑1≤i≤(p−1)/2

⌊ai
p

⌋
if a is odd

(−1)∑1≤i≤(p−1)/2

⌊ai
p

⌋
· (−1)

(p2−1)
8 if a is even

(6)

for every integer a with gcd(a, p) = 1. Note that the sum ∑1≤i≤(p−1)/2

⌊
ai
p

⌋
is equal to the number of

all pairs (i, j) of integer i, j with 1≤ i < p/2 and j ≤ ai/p, or equivalently p j ≤ ai:

∑
1≤i≤(p−1)/2

⌊
ai
p

⌋
= #{(i, j) | 1≤ i≤ p/2, 1≤ j ≤ a/2, p j < ai} (7)

4. Suppose that q is an odd prime number, q 6= p. From (7) we have

∑
1≤i≤(p−1)/2

⌊
qi
p

⌋
= #{(i, j) | 1≤ i≤ p/2, 1≤ j ≤ q/2, p j < qi} (8)

and

∑
1≤ j≤(q−1)/2

⌊
p j
q

⌋
= #{( j, i) | 1≤ j ≤ q/2, 1≤ i≤ p/2, qi < p j} (9)

Clearly

#{( j, i) | 1≤ j ≤ q/2, 1≤ i≤ p/2, qi < p j}= #{(i, j) | 1≤ j ≤ q/2, 1≤ i≤ p/2, qi < p j}, (10)

Consider set U consisting of all pair (i, j) of integers with 0 < i < p/2 and 0 < j < q/2. Clearly every
element (i, j) ∈ U satisfies either p j < qi or qi < p j: if p j = qi, then p|i and q| j, which is absurd
because 0 < i < p/2 and 0 < j < q/2. Therefore

∑
1≤i≤(p−1)/2

⌊
qi
p

⌋
+ ∑

1≤ j≤(q−1)/2

⌊
p j
q

⌋
= #U = p−1

2 ·
q−1

2 (11)

From (6) and (11) we conclude that (
p
q

)
·
(

q
p

)
= (−1)

p−1
2 ·q−1

2 (12)

for any two odd prime numbers p 6= q. We have proved the quadratic reciprocity law.
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