1. Let V, W be vector spaces over a field F. Prove that there exists a unique isomorphism $s: V \otimes_F W \rightarrow W \otimes_F V$ such that $s(v \otimes w) = w \otimes v$ for all $v \in V$ and all $w \in W$.

2. Let F be a field and let U, V, W be F-vector spaces.

 (a) Let $\beta: U \times V \times W \rightarrow U \otimes_F (V \otimes_F W)$ be the map given by $\beta(u, v, w) = u \otimes (v \otimes w)$.
 Show that β is F-trilinear, i.e. it is F-linear in U, V, and W separately.

 (b) Let X be an F-vector space and let $T: U \times V \times W \rightarrow X$ be an F-trilinear map. Prove that there exists a unique F-linear map $f: U \otimes_F (V \otimes_F W) \rightarrow X$ such that $T = f \circ \beta$, where β is the map defined in (a).

 (c) (extra credit) Prove that there exists a unique F-linear isomorphism $\alpha: U \otimes_F (V \otimes_F W) \rightarrow (U \otimes_F V) \otimes_F W$ such that $\alpha(u \otimes (v \otimes w)) = (u \otimes v) \otimes w$ for all $u \in U$, all $v \in V$ and all $w \in W$.
 [Hint: One way is to use the universal property of β proved in (b) and a similar property for $(U \otimes_F V) \otimes_F W$.]

3. Let (ρ, V) be a two-dimensional irreducible \mathbb{C}-linear representation of the symmetric group S_3.

 (a) Compute explicitly the character of the tensor product representation $(\rho \otimes \rho, V \otimes V)$ of S_3.

 (b) Decompose explicitly the character of $\rho \otimes \rho$ into a sum of irreducible characters (with multiplicity).

4. Let V be a vector space over a field F. Let $S^2(V)$ be the quotient of $V \otimes_F V$ by the F-linear span U of all elements in $V \otimes_F V$ of the form $v_1 \otimes v_2 - v_2 \otimes v_1$, $v_1, v_2 \in V$.
 (This vector space $S^2(V) = V \otimes_F V/U$ is called the second symmetric product of V.)
(a) Suppose that $\dim_{F}(V) = 2$. Prove that $\dim_{F}(S^{2}(V)) = 3$.

(b) (extra credit) Find a general formula for the dimension of $S^{2}(V)$ in terms of the dimension of V.

5. (extra credit)

(a) Suppose that (ρ, V) is a \mathbb{C}-linear representation of a finite group G. Show that the \mathbb{C}-linear subspace U of $V \otimes V$ generated by all elements of the form $v_{1} \otimes v_{2} - v_{2} \otimes v_{1}$ with $v_{1}, v_{2} \in V$ is stable under the action of G, so that we get a natural linear representation of G on the quotient $S^{2}(V) = V \otimes V / U$, called the second symmetric product of (ρ, V).

(b) Compute the character of the second symmetric product of the 2-dimensional irreducible representation of the quaternion group Q.