The goal of this set of problems (including the extra credit ones) is to compute the character table of the symmetric group S_5 “by hand”, and construct some irreducible representations of S_5 to the point that we can figure out the whole character table. Many things we have learned before will come handy, including:

- canonical forms, especially diagonalizable linear operators,
- the permutation representation attached to the action of a finite group on a finite set,
- the second symmetric product of a representation

We will also discuss the second exterior product of a vector space; it is useful for constructing a 6-dimensional irreducible representation of S_5.

The group S_5 has 120 elements, and 7 conjugacy classes. A set of representatives of these seven conjugacy classes are: e, (12), $(12)(34)$, (123), $(123)(45)$, (1234), (12345); the cardinality of the respective conjugacy classes are 1, 10, 15, 20, 20, 30 and 24.

We have a natural action of S_5 on the set $S = \{1, 2, 3, 4, 5\}$ of 5 letters. This action is **doubly transitive**. Let W be the \mathbb{C}-vector space of all \mathbb{C}-valued functions on S. The natural action of S_5 on W via linear permutation representations decomposes into the direct sum of the trivial representation 1 and a complement U of 1 in W consisting of all functions f on S such that $\sum_{x \in S} f(x) = 0$. We know from HW 9, problem 1 that U is an irreducible representation of S_5; denote this representation by ρ_3. Let $\chi_2 : S_5 \to \mathbb{C}^\times$ be the sign character of S_5. Recall that for every linear representation ρ of S_5, $\chi_2 \cdot \rho$ is another linear representation of S_5, irreducible if ρ is.

1. (This is a continuation of problem 4 of HW 10.) Let V be a vector space over a field F. The **second exterior product** $\Lambda^2_F(V)$ of V is by definition the quotient of $V \otimes_F V$ by the subspace of $V \otimes_F V$ spanned by all elements of the form

$$v_1 \otimes v_2 + v_2 \otimes v_1,$$

$v_1, v_2 \in V$.

The image of $v_1 \otimes v_2$ in the quotient F-vector space $\Lambda^2(V)$ is denoted $v_1 \land v_2$, for all $v_1, v_2 \in V$.

(a) Suppose that v_1, \ldots, v_d is an F-basis of V. Show that

$$\{v_i \land v_j \mid 1 \leq i < j \leq d\}$$

form an F-basis of $\Lambda^2_F(V)$. Conclude that $\dim_F(\Lambda^2_F(V)) = d(d-1)/2$.
Recall from problem 1 of HW 10 that there exists a unique linear operator \(s \in \text{End}_F(V \otimes V) \) such that
\[
s(v_1 \otimes v_2) = v_2 \otimes v_1 \quad \text{for all } v_1, v_2 \in V.
\]

(b) Assume that \(2 \in F^\times \), i.e., the characteristic of the field \(F \) is not 2. Assume moreover that \(\dim_F(V) \geq 2 \), for otherwise \(\Lambda^2(V) = (0) \). Prove that \(s \) is diagonalizable and has 1 and \(-1\) as its eigenvalues.

(c) Let \(\text{Sym}(V \otimes V) = \text{Ker}(s - 1_{V \otimes V}) \) and let \(\text{Alt}(V \otimes V) = \text{Ker}(s + 1_{V \otimes V}) \). Prove that the projection from \(V \otimes V \) to \(S^2(V) \) induces an \(F \)-linear isomorphism \(\text{Sym}(V \otimes V) \sim \rightarrow S^2(V) \), and that the projection from \(V \otimes V \) to \(\Lambda^2(V) \) induces an \(F \)-linear isomorphism \(\text{Alt}(V \otimes V) \sim \rightarrow \Lambda^2(V) \).

Note that if a group \(G \) operates \(F \)-linearly on \(V \), then we have an induced action of \(G \) on \(S^2(V) \) and on \(\Lambda^2(V) \), called the second symmetric product and the second exterior product of the representation of \(G \) on \(V \).

2. Let \(T \in \text{End}_C(V) \) be a linear operator on a finite dimensional \(C \)-vector space \(V \). Assume that \(T^a = \text{Id}_V \) for some positive integer \(a \geq 1 \).
 (a) Prove that \(T \) is diagonalizable.
 (b) Suppose that \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(T \) listed with multiplicity. Show that
 \[
 \text{Tr}(S^2(T)|_{S^2(V)}) = \sum_{1 \leq i \leq j \leq n} \lambda_i \cdot \lambda_j
 \]
 and
 \[
 \text{Tr}(\Lambda^2(T)|_{\Lambda^2(V)}) = \sum_{1 \leq i < j \leq n} \lambda_i \cdot \lambda_j.
 \]
 This formula will be convenient for computing the character of the second symmetric product (resp. the second exterior product) of a given representation.

3. Let \(U \) be the irreducible four-dimensional representation of \(S_5 \), defined to be the complement of the trivial representation in the standard permutation representation of \(S_5 \).
 (a) Compute explicitly the character the action of \(S_5 \) of \(S^2(U) \).
 (b) Prove that the trivial representation \(1 \) and \(U \) both appears in \(S^2(U) \) with multiplicity 1, so we have a \(S_5 \)-linear isomorphism
 \[
 S^2(U) \cong C \oplus U \oplus W,
 \]
 where \(W \) is a 5-dimensional-linear representation of \(S_5 \). Let \(\chi_5 \) be the character of the \(S_5 \)-action on \(W \).
 (c) Compute the character of \(\chi_5 \) and show that \(S_5 \) operates irreducibly on \(W \).
4. (extra credit) So far we have four irreducible representations: \(\chi_1 = 1 \), \(\chi_2 = \text{sgn} \), the four dimensional character \(\chi_3 \) and the 5-dimensional character \(\chi_5 \).

(a) Show that \(\chi_4 := \text{sgn} \cdot \chi_3 \) and \(\chi_6 := \text{sgn} \cdot \chi_5 \) are irreducible characters of \(S_4 \), different from the above four characters.

(b) Compute the seventh irreducible character \(\chi_7 \) of \(S_5 \) and complete the character table of \(S_5 \).

5. (extra credit) Compute the character of the representation of \(S_5 \) on \(\Lambda^2(\mathbb{U}) \) and show that it is an irreducible character. (So we have found the irreducible representation of \(S_5 \) with character \(\chi_7 \).)