1. Prove that the quotient ring \(S := \mathbb{Q}[x, y]/(x^2 - y^2 - 1) \) of the polynomial ring \(\mathbb{Q}[x, y] \) is an integral domain.
 (Please write a complete proof.)

2. (a) Factor the polynomial \(x^4 - y^4 \) into a product of irreducible elements in \(\mathbb{Q}[x, y] \) and in \(\mathbb{C}[x, y] \).
 (You need show that factors you claim to be irreducible are indeed so.)

 (b) (extra credit) Factor the polynomial \(x^3 + y^3 + z^3 - 3xyz \) into a product of irreducible elements in \(\mathbb{C}[x, y, z] \).

3. Is the group ring \(\mathbb{Q}[\mathbb{Z}/5\mathbb{Z}] \) of the cyclic group \(\mathbb{Z}/5\mathbb{Z} \) an integral domain?
 (Please write a complete proof.)

4. Let \(R := \mathbb{Q}[u, u^{-1}] \) be the subring of of the fraction field \(\mathbb{Q}(u) \) of the polynomial ring \(\mathbb{Q}[u] \), consisting of all elements in \(\mathbb{Q}(u) \) of the form
 \[
 \frac{f(u)}{u^n}, \quad f(u) \in \mathbb{Q}[u], \ n \in \mathbb{N}.
 \]
 Prove that \(R \) is a principal ideal domain.
 (Prove that if \(I \) is an ideal of \(R \) and \(g(u) \) is a generator of the ideal \(I \cap \mathbb{Q}[u] \) of \(\mathbb{Q}[u] \), then \(g(u) \) generates the ideal \(I \) in \(R \).)

5. (Extra Credit)

 (a) Let \(S \) be the ring in problem 1 above. Let \(\bar{x}, \bar{y} \) be the image of \(x \) and \(y \) in the quotient ring \(S \) of \(\mathbb{Q}[x, y] \). Show that the ideal \((\bar{x} - 1, \bar{y}) \) in \(S \) is a principal ideal, and find a generator of this ideal.

 (b) Prove that the ring \(S \) in problem 1 is isomorphic to the ring \(R \) in problem 4. Conclude that \(S \) is a principal ideal domain.