§1. Some facts about $\mathbb{Z}/n\mathbb{Z}$

(1.1) Let $n \geq 2$ be a positive integer, and let

$$n = p_1^{e_1} \cdots p_a^{e_a}$$

be the primary factorization of n, where p_1, \ldots, p_r are distinct prime numbers, and $e_1, \ldots, e_r \geq 1$ are positive integers. The Chinese Remainder Theorem asserts that the canonical map

$$\mathbb{Z}/n\mathbb{Z} \rightarrow (\mathbb{Z}/p_1^{e_1}) \times \cdots \times (\mathbb{Z}/p_r^{e_r})$$

is an isomorphism. Therefore we get a canonical isomorphism

$$(\mathbb{Z}/n\mathbb{Z})^\times \xrightarrow{\sim} (\mathbb{Z}/p_1^{e_1})^\times \times \cdots \times (\mathbb{Z}/p_r^{e_r})^\times$$

on the group of units.

(1.2) By definition, the Euler’s function ϕ has value $\phi(n) := \text{Card}((\mathbb{Z}/n\mathbb{Z})^\times)$ for every positive integer n. The Chinese remainder theorem tells us that ϕ is a multiplicative function: if $(m, n) = 1$, then $\phi(mn) = \phi(m) \phi(n)$. Consequently if $n = p_1^{e_1} \cdots p_a^{e_a}$ is the primary factorization of n, then

$$\phi(n) = (p_1 - 1) \cdots (p_a - 1) p_1^{e_1 - 1} \cdots p_a^{e_a - 1}.$$

(1.3) Lemma (Fermat’s little theorem) Let p be a prime number. Then $a^p \equiv a \pmod{p}$ for every integer a. Equivalently, $a^{p-1} \equiv 1 \pmod{p}$ for every integer a with $(a, p) = 1$.

Proof. The group of units \mathbb{F}_p^\times in \mathbb{F}_p is a group with $p - 1$ elements. □

Fermat’s little theorem, although fairly easy from the point of view of group theory, is useful in elementary primality test: Given a natural number n, select a a relatively small number of natural numbers a_i such that $a_i < n$ for each i, and test whether $a_i^{n-1} \equiv 1 \pmod{n}$. If $a_i^{n-1} \not\equiv 1 \pmod{n}$ for some i, then n is not a prime number. On the other hand, if $a_i^{n-1} \equiv 1 \pmod{n}$ for each i, then one knows the chance for n to be a prime number is quite good. Since computing a_i^{n-1} modulo n can be done quickly, this method provides a fast albeit unsophisticated probabilistic test for primality.
(1.4) For any prime number \(p > 0 \), the group \((\mathbb{Z}/p\mathbb{Z})^\times\) is a cyclic group of order \(p - 1 \). Actually this statement holds for all finite fields: The group of units for any finite field \(\mathbb{F}_q^\times \) is cyclic. The standard proof uses the fact that over any field \(k \), every polynomial of degree \(d > 0 \) with coefficients in \(k \) has at most \(d \) distinct roots in \(k \). Most “elementary” proofs uses this method in some disguise.

Let \(p \) be a prime number, \(e \geq 1 \). Consider the group \((\mathbb{Z}/p^e\mathbb{Z})^\times\) and its subgroup \((\mathbb{Z}/p^e\mathbb{Z})_1^\times\) of principal units, consisting of all elements of \(x \in (\mathbb{Z}/p^e\mathbb{Z})^\times \) with \(x \equiv 1 \pmod{p} \).

(1.5) Proposition

(i) Let \(p \) be an odd prime number. Then \((\mathbb{Z}/p^e\mathbb{Z})_1^\times\) is a cyclic group of order \(p^{e-1} \), generated by the element represented by \(1 + p \).

(ii) For an odd prime number \(p \), the group \((\mathbb{Z}/p^e\mathbb{Z})^\times\) is cyclic of order \((p - 1)p^{e-1}\).

(iii) For the case \(p = 2 \), assume that \(e \geq 2 \). Then the subgroup \((\mathbb{Z}/2^e\mathbb{Z})_2^\times\) of \((\mathbb{Z}/2^e\mathbb{Z})^\times\) consisting of all elements \(x \in (\mathbb{Z}/2^e\mathbb{Z})^\times \) with \(x \equiv 1 \pmod{4} \) is cyclic order \(2^{e-2} \). The element 5 is a generator of \((\mathbb{Z}/2^e\mathbb{Z})_2^\times\). The group \((\mathbb{Z}/2^e\mathbb{Z})_1^\times = (\mathbb{Z}/2^e\mathbb{Z})^\times\) is the direct product of \((\mathbb{Z}/2^e\mathbb{Z})_2^\times\) with \(\{\pm 1\} \).

When \(p \) is odd, the elements of \((\mathbb{Z}/p^e\mathbb{Z})^\times\) whose order divides \(p - 1 \) is the product of all Sylow-\(\ell \)-subgroups of \((\mathbb{Z}/p^e\mathbb{Z})^\times\), where \(\ell \) runs over all primes divisors of \(p - 1 \). It is a cyclic group of order \(p - 1 \) by Proposition 1.4.

§2. Sum of squares

(2.1) The equation \(x^2 + y^2 = z^2 \) is familiar from Pythagoras’s theorem. The identity \((a^2 - b^2)^2 + (2ab)^2 = (a^2 + b^2)^2\) produces lots of integer solutions of the above equation, and all non-trivial integer solutions can be obtained this way.

(2.2) One question that traces back to the ancient time is: Which whole numbers are sum of two squares? In other words, given a positive number \(n \), we would like to know whether there exist integers \(x, y \) such that \(n = x^2 + y^2 \).

(2.3) Proposition

(i) Let \(p \) be an odd prime number. Then \(p \) is a sum of two squares if and only if \(p \equiv 1 \pmod{4} \).

(ii) Let \(n \) be a positive integer and let \(n = p_1^{e_1} \cdots p_a^{e_a} \) be its primary factorization. Then \(n \) is a sum of two squares if and only if \(e_i \equiv 0 \pmod{2} \) for each \(i \) with \(p_i \equiv 3 \pmod{4} \).
§3. The Legendre symbol

(3.1) Definition Let \(p \) be an odd prime number. For every \(a \in \mathbb{Z} \), define

\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } \bar{a} \in (\mathbb{F}_p^\times)^2 \\
-1 & \text{if } \bar{a} \in (\mathbb{F}_p^\times \smallsetminus \mathbb{F}_p^\times)^2 \\
0 & \text{if } a \equiv 0 \pmod{p}
\end{cases}
\]

The function \(\left(\frac{\cdot}{p} \right) \) is called the Legendre symbol for the prime number \(p \).

(3.2) Lemma Let \(p \) be an odd prime number.

(i) If \(a \in \mathbb{Z} \) and \((a,p) = 1 \), then \(\left(\frac{a}{p} \right) = 1 \) if and only if

\[a^{\frac{p-1}{2}} \equiv 1 \pmod{p}. \]

(ii) If \(a,b \in \mathbb{Z} \) and \((ab,p) = 1 \), then

\[\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right). \]

PROOF. The group \(\mathbb{F}_p^\times \) is a cyclic group of order \(p - 1 \).

The values of \(\left(\frac{-1}{p} \right) \) and \(\left(\frac{2}{p} \right) \) are given below.

(3.3) Corollary Let \(p \) be an odd prime number. Then

\[\left(\frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}}. \]

In other words, \(\left(\frac{-1}{p} \right) = 1 \) if and only if \(a^{\frac{p-1}{2}} \equiv 0 \pmod{p} \).

(3.4) Proposition Let \(p \) be an odd prime number. Then

\[\left(\frac{2}{p} \right) = (-1)^{\frac{p^2 - 1}{2}}. \]

In other words, \(\left(\frac{2}{p} \right) = 1 \) if and only if \(p \equiv \pm 1 \pmod{p} \).

Gauss’s famous quadratic reciprocity theorem gives an effective way to compute the Legendre symbol. He gave four different proof of it.

(3.5) Theorem (Quadratic reciprocity) Let \(\ell \) and \(p \) be two distinct odd prime numbers. Then

\[\left(\frac{\ell}{p} \right) = \left(\frac{p}{\ell} \right) (-1)^{\frac{(\ell-1)(p-1)}{4}}. \]
(3.6) Example Both 257 and 101 are prime numbers. We have

\[
\left(\frac{101}{257} \right) = \left(\frac{55}{101} \right) = \left(\frac{5}{101} \right) \left(\frac{11}{101} \right) = \left(\frac{1}{5} \right) \left(\frac{2}{11} \right) = -1.
\]

(3.7) Remark Most books on elementary number theory covers the above material, and more. A succinct eight-page treatment can be found in the book “A Course in Arithmetic” by J.-P. Serre.