1. (a) Let K/F be a finite Galois extension. Let V be a finite dimensional K-vector space. Suppose we are given a \mathbb{Z}-linear action of $\Gamma := \text{Gal}(K/F)$ on V such that

$$\sigma(x \cdot v) = \sigma(x) \cdot \sigma(v) \quad \forall x \in K, \forall v \in V.$$

Let $W := V^G = \{v \in V \mid \sigma(v) = v \ \forall \sigma \in \Gamma\}$. Show that the natural map from $K \otimes_F W$ to V is a K-linear isomorphism.

(b) Show that the assumption that $\dim_K(V) < \infty$ in (a) can be eliminated.

(c) Let K/F be a finite Galois extension as in (a). Let R be a K-algebra (not necessarily commutative) with an action by Γ such that every element Γ operates as a ring automorphism of R and

$$\sigma(x \cdot r) = \sigma(x) \cdot \sigma(r) \quad \forall x \in K, \forall r \in R.$$

Show that there exists an F-algebra S and a Γ-equivariant isomorphism

$$\phi : K \otimes_F S \xrightarrow{\sim} R,$$

where Γ acts on the tensor product $K \otimes_F S$ through its action on K. Prove also that the pair (S, ϕ) is determined up to unique isomorphism.

2. Let G be a finite group and let p be a prime number which divides $\text{Card}(G)$. Let k be a field of characteristic p. Prove that the group ring $k[G]$ is not semisimple.

3. Give an example of a central division algebra D over a field K such that $\dim_K(D) = \infty$.

4. Let R be a ring. The radical N of R is by definition the intersection of all maximal left ideals of R.

(a) Show that $N \cdot S$ for every simple left R-module S.

(b) Suppose that I is a left ideal of R such that $I \cdot S$ for every simple R-module S. Prove that $S \subseteq N$.

(c) Let x be an element of the radical N. Show that $R \cdot (1+x) = R$. Let y be an element of R such that $-x = y \cdot (1+x)$. Prove that $y \in R$ and $1+y$ is the inverse of $1+x$.

(d) Prove that N is contained in every maximal right ideal of R. Conclude that N is equal to the intersection of all maximal right ideals of R.

(e) Prove the following non-commutative analogue of Nakayama’s lemma. Let M be a finitely generated R module. If $R \cdot M \subseteq N \cdot M$, then $M = (0)$.

5. Let D be a division ring. Let R be the set of all matrices whose rows and columns are indexed both indexed by \mathbb{N} and every column has only finitely many non-zero entries. Clearly R is stable under matrix addition and multiplication, therefore R has a natural ring structure.

(a) Determine the radical of this ring R.

(b) Find a simple left R-module M.

(c) Show that every R-module is a direct sum of copies of M.