1. Give an example of two finite group \(G_1, G_2 \) and irreducible linear representations \((\rho_i, V_i) \) over \(\mathbb{Q} \) of \(G_i \) for \(i = 1, 2 \) such that the external tensor product representation \(\rho_1 \boxtimes \rho_2 \) of \(G_1 \times G_2 \) on \(V_1 \otimes_{\mathbb{Q}} V_2 \) is not irreducible over \(\mathbb{Q} \).

2. Recall that for every finite set \(S \) with a left action by a finite group \(G \), we have a natural representation \(\rho_{(G,S)} \) on the set \(C(S; \mathbb{C}) \) of all \(\mathbb{C} \)-valued functions on \(S \). The action is

\[
(\rho_{(G,S)}(g)(f))(s) = f(g^{-1} \cdot s) \quad \forall g \in G, \forall f \in C(S; \mathbb{C}), \forall f \in C(S; \mathbb{C}).
\]

(a) Show that \(\langle \chi_{\rho_{(G,S)}} \rangle|_1 = \text{Card}(G \setminus S) \). Here \(1 \) stands for the trivial character of \(G \).

(b) Let \(U := \{ f \in C(S; \mathbb{C}) \mid \sum_{s \in S} f(s) = 0 \} \), a \(G \)-subrepresentation of \(C(S; \mathbb{C}) \). Assume that \(\text{Card}(S) \geq 2 \), so \(U \) is non-trivial, and \(G \) operates transitively on \(S \). Prove that \(U \) is an irreducible representation if and only if \(G \) operates doubly transitively on \(S \). (Recall that \(G \) operates doubly transitively on \(S \) if for any two pairs \((s, t) \) and \((s', t') \) with \(s, t, s', t' \in S \), \(s \neq t \) and \(s' \neq t' \), there exists an element \(g \in G \) such that \((g \cdot s, g \cdot t) = (s', t') \).

[Hint: Use (a).]

3. Let \(G \) be a finite group. Let \(n \geq 2 \) be a positive integer, let \(m \) be an integer prime to \(n \), and let \(x \in G \) be an element such that \(x^n = e \). Let \(\chi \) be the character of a finite dimensional \(\mathbb{C} \)-representation of \(G \)

(a) Show that \(\chi(x) \in \mathbb{Q}(\mu_n) \), the cyclotomic field generated by all \(n \)-th roots of 1.

(b) Let \(\sigma_m \in \text{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}) \) be the automorphism of \(\mathbb{Q}(\mu_n) \) such that \(\sigma_m(\zeta) = \zeta^m \) for all \(z \in \mu_n \). Show that \(\chi(x^m) = \sigma_m(\chi(x)) \). (This is another constraint on the character table. In the case \(m = -1 \) this is a constraint we discussed in class, that \(\chi(x^{-1}) \) is the complex conjugate of \(\chi \).

4. The goal of this problems is to compute the character table of the symmetric group \(S_5 \) “by hand”, and construct some irreducible representations of \(S_5 \) to the point that we can figure out the whole character table. The group \(S_5 \) has 120 elements, and 7 conjugacy classes. A set of representatives of these seven conjugacy classes are: \(e \), \((12) \), \((12)(34) \), \((123) \), \((123)(45) \), \((1234) \), \((12345) \); the cardinality of the respective conjugacy classes are 1, 10, 15, 20, 20, 30 and 24.

We have a natural action of \(S_5 \) on the set \(S = \{1, 2, 3, 4, 5\} \) of 5 letters. Let \(W = C(S; \mathbb{C}) \) be the \(\mathbb{C} \)-vector space of all \(\mathbb{C} \)-valued functions on \(S \), with natural action of \(S_5 \) on \(W \) via linear permutation representations; \(W \) decomposes into the direct sum of the trivial representation \(1 \) and a complement \(U \) as in problem 2 above. We know from problem 2 that \(U \) is an irreducible representation of \(S_5 \); denote this representation by \(\rho_3 \). Let \(\chi_2 : S_5 \to \mathbb{C}^\times \) be the sign character of \(S_5 \). Note that for every linear representation \(\rho \) of \(S_5 \), \(\chi_2 \cdot \rho \) is another linear representation of \(S_5 \), irreducible if \(\rho \) is. (Prove it!)

We will use the following general construction. For any linear representation \(V \) of a group \(G \), tensor constructions in \(V \) are again representations of \(G \). They include the symmetric powers \(S^n(V) \) and exterior powers \(\wedge^n(V) \).
(a) Compute explicitly the character the action of S_5 of $S^2(U)$.

(b) Prove that the trivial representation $\mathbf{1}$ and U both appears in $S^2(U)$ with multiplicity 1, so we have a S_5-linear isomorphism

$$S^2(U) \cong \mathbb{C} \oplus U \oplus W,$$

where W is a 5-dimensional-linear representation of S_5. Let χ_5 be the character of the S_5-action on W.

(c) Compute the character of χ_5 and show that S_5 operates irreducibly on W. So far we have four irreducible representations: $\chi_1 = 1$, $\chi_2 = \text{sgn}$, the four dimensional character χ_3 and the 5-dimensional character χ_5.

(d) Show that $\chi_4 := \text{sgn} \cdot \chi_3$ and $\chi_6 := \text{sgn} \cdot \chi_5$ are irreducible characters of S_4, different from the above four characters.

(e) Compute the seventh irreducible character χ_7 of S_5 and complete the character table of S_5.

(f) Compute the character of the representation of S_5 on the second exterior product $\Lambda^2(U)$ of U and show that it is an irreducible character. (So we have found the irreducible representation of S_5 with character χ_7.)

5. The alternating group A_5 has 60 elements and 5 conjugacy classes. The elements e, (12)(34), (123), (12345) and (12354) are representatives of the five conjugacy classes, whose cardinalities are 1, 15, 20, 12 and 12 respectively. Note that the square of (12345) is conjugate to (12354) in A_5 while the inverse of (12345) is conjugate to (12345). One can obtain the character table of A_5 from the character table of S_5, worked out in problem 4.

(a) Show that the restriction to A_5 of the two 4-dimensional irreducible characters χ_3 and χ_4 of S_5 isomorphic and irreducible. This gives us a 4-dimensional irreducible character ξ_2 of A_5.

(b) Show that the restriction to A_5 of the two 5-dimensional irreducible characters χ_5 and χ_6 of S_5 are isomorphic and irreducible. This gives us a 5-dimensional irreducible character ξ_3 of A_5.

(c) Show that the restriction to A_5 of the 6-dimensional irreducible character χ_7 of S_5 (which comes from $\Lambda^2(U)$ in the notation of HW 11) is the sum of two distinct irreducible 3-dimensional characters.

(d) Determine these two 3-dimensional character ξ_4 and ξ_5 and completes the character table of A_5. (Note that ξ_4 and ξ_5 can be relabeled to ξ_5 and ξ_4; i.e. they are specified only up to transposition of the indices.)

[Hint: You can compute for each even permutation σ the 6 eigenvalues of the action of σ on $\Lambda^2(U)$; $\xi_4(\sigma)$ is the sum of three of these eigenvalues, while $\xi_5(\sigma)$ is the sum of the other three eigenvalues. Use these and other constraints for the character table to determine ξ_4 and ξ_5.]