1. Give an example of a ring \(R \), a projective \(R \)-module \(M \) and an injective \(R \)-module \(N \) such that both annihilator ideals
\[
\text{ann}_R(M) := \{ a \in R \mid a \cdot M = (0) \} \quad \text{and} \quad \text{ann}_R(N) := \{ a \in R \mid a \cdot N = (0) \}
\]
are non-zero.

2. Give an example of a ring \(R \) such that its opposite ring \(R^{opp} \) is not isomorphic to \(R \) (as rings).

3. (a) Do part 1 of problem 42 of Gallier/Shatz without assuming that the ring \(R \) is commutative.
 (b) Do parts 2 and 3 of problem 42 Gallier/Shatz, where \(R \) is assumed to be commutative.

4. Let \(R = \mathbb{F}_p[x,y]/(x^p,y^p) \), where \(p \) is a prime number.
 (a) Is \(R \) an injective module over \(R \)?
 (b) Find an injective envelope and a projective envelope of the \(R \)-module \(R/(x,y)R \).
[Recall that an injective envelope of \(R/(x,y)R \) is an \(R \)-linear essential injection \(R/(x,y)R \to I \) where \(I \) is an injective \(R \)-module; similarly for the projective envelope.]

5. Let \(\mathbb{H} \) be the ring of Hamiltonian quaternions, consisting of all formal \(\mathbb{R} \)-linear combinations of \(1, i, j, k \), such that \(i^2 = j^2 = k^2 = -1 \) and
\[
i \cdot j = k = -j \cdot i, \quad j \cdot k = i = -k \cdot j, \quad k \cdot i = j = -i \cdot k.
\]
The conjugation \(t: \mathbb{H} \to \mathbb{H} \) sends an element \(a + bi + c j + dk \in \mathbb{H} \) to \(a - bi - c j - dk \), where \(a, b, c, d \) are real numbers. The norm of an element \(z = a + bi + c j + dk \in \mathbb{H} \) is defined to be
\[
\text{Nm}(z) := z \cdot t(z) = t(z) \cdot z = a^2 + b^2 + c^2 + d^2
\]
(a) Show that \(\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \) is isomorphic to \(M_2(\mathbb{C}) \) as a ring and exhibit an explicit isomorphism.
(b) Let \(\mathbb{H}_1^\times \) be the subgroup of the \(\mathbb{H}^\times \) consisting of all elements of \(\mathbb{H}^\times \) of norm 1. Use the isomorphism you found in (a) to give an explicit subgroup of \(M_2(\mathbb{C}) \) isomorphic to \(\mathbb{H}_1^\times \).
(c) The three-dimensional \(\mathbb{R} \)-vector subspace \(W := \mathbb{R} \cdot i + \mathbb{R} \cdot j + \mathbb{R} \cdot k \) of \(\mathbb{H} \) is stable under conjugation by group \(\mathbb{H}^\times \) of units in \(\mathbb{H} \), so we have a group homomorphism
\[
\alpha: \mathbb{H}^\times \to \text{GL}_{\mathbb{R}}(W).
\]
Determine the kernel and the image of \(\alpha \); in particular give an alternative/implicit description of the image of \(\alpha \) via the identification of \(\text{GL}_{\mathbb{R}}(W) \) with \(\text{GL}_3(\mathbb{R}) \) using the basis \(i, j, k \) of \(W \).
[Note: Part (c) is independent of part (a) but of related interest.]