1. Do Gallier/Shatz problem 93.

2. Do Gallier/Shatz problem 96, parts 1, 2, 3, 5.

3. Let R be a commutative ring and let M be an R-module. Let I be a maximal member (with respect to inclusion) in the family

$$\{\text{ann}_R(m) \mid 0 \neq m \in M\}$$

of annihilators of non-zero elements of M. Show that I is a prime ideal.

4. Let R be a commutative ring. Let f_1, \ldots, f_n be elements of R such that none of the f_i’s is nilpotent and the ideal generated by f_1, \ldots, f_n is equal to R. Let M_i be an R_{f_i}-module for each $i = 1, \ldots, n$. Suppose that we have isomorphisms $\alpha_{ij} : (M_j)_{f_i} \xrightarrow{\sim} (M_i)_{f_j}$ of $R_{f_i}f_j$-modules for all pairs (i, j) such that the equality

$$\left(\alpha_{ij}\right)_{f_k} \circ \left(\alpha_{jk}\right)_{f_i} = \left(\alpha_{ik}\right)_{f_j}$$

holds for all triples i, j, k. Here $(\alpha_{ij})_{f_k} : (M_j)_{f_i f_k} \xrightarrow{\sim} (M_i)_{f_j f_k}$ is the localization of α_{ij} with respect to the multiplicative closed subset $\{f_k^N\}$. Show that there exists an R-module M and isomorphisms

$$\beta_i : M_{f_i} \xrightarrow{\sim} M_i$$

such that

$$\alpha_{ij} \circ (\beta_j)_{f_i} = (\beta_i)_{f_j}$$

for all i, j.

5. Let R be a commutative ring satisfying the following properties.

- The localization R_m is noetherian for every maximal ideal m of R.
- For every non-zero element $f \in R$, there exist only a finite number of maximal ideals of R which contains f.

Show that R is noetherian.