MATH 603 ASSIGNMENT 13, 2020-21

Part I. The first 3 problems are meant to supplement the discussions in class related to change of groups. E.g. problem 2 provides an explicit quasi-isomorphism between $\operatorname{Res}_{H}^{G}(C_{\bullet}(G))$ and $C_{\bullet}(H)$. The actual questions in these three problems are straight-forward. Problems 4 and 5 gives some taste in dealing with concrete examples.

1. Let G be a group and let $H \leq G$ be a subgroup of G. Let N be a left H-module. We have two versions induced G-modules (from N):

$$\operatorname{ind}_{H}^{G}(N) := \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N,$$

and

$$\operatorname{Ind}_{H}^{G}(N) := \{ f : G \to N \,|\, f(hx) = h \cdot f(x) \quad \forall h \in H, \, \forall x \in G, \, dx \in G \}$$

where the left G-module structure on $\operatorname{Ind}_{H}^{G}(N)$ is given by

$$(y \cdot f)(x) := f(xy) \quad \forall f \in \operatorname{Ind}_{H}^{G}(N), \forall x, y \in G.$$

(a) For every element $g \in G$ and every element $n \in H$, define a function $f_{g,n} : G \to N$ supported on the cos t $H \cdot g^{-1}$ by

$$f_{g,n}(x) = \begin{cases} (xg) \cdot n & \text{if } xg \in H \\ 0 & \text{if } xg \notin H. \end{cases}$$

Show that the "formula"

$$\sum_{i} [g_i] \otimes_H n_i \; \mapsto \; \sum_{i} f_{g_i, n_i}$$

gives a well-defined injective $\mathbb{Z}[G]$ -linear map

$$\Im^G_H: \mathrm{ind}^G_H(N) \to \mathrm{Ind}^G_H(N).$$

(b) If $[G:H] < \infty$, then \mathfrak{I}_{H}^{G} is an isomorphism, whose inverse is the map

 $\mathfrak{J}_{H}^{G}: \mathrm{Ind}_{H}^{G}(N) \to \mathrm{ind}_{H}^{G}(N)$

which sends a typical element $f \in \operatorname{Ind}_{H}^{G}(N)$ to the element

$$\sum_{x \in H \setminus G} [x^{-1}] \otimes_H f(x) \in \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N.$$

- (c) Either prove or disprove the following statements.
 - (c1) The map $H_i(G, \operatorname{ind}_H^G(N)) \to H_i(G, \operatorname{Ind}_H^G(N))$ induced by \mathfrak{I}_H^G is an isomorphism for all H-module N and all $i \in \mathbb{N}$.
 - (c2) The map $H^i(G, \operatorname{ind}_H^G(N)) \to H^i(G, \operatorname{Ind}_H^G(N))$ induced by \mathfrak{I}_H^G is an isomorphism for all H-module N and all $i \in \mathbb{N}$.

(Note that Shapiro's lemma gives canonical isomorphisms

$$H_i(G, \operatorname{ind}_H^G(N)) \xrightarrow{\sim} H_i(H, N)$$

and

$$H^i(G, \operatorname{Ind}_H^G(N)) \xrightarrow{\sim} H^i(G, N)$$

for every left *H*-module *N* and every $i \in \mathbb{N}$.)

- (d) Let M be a left G-module, and let $\operatorname{Res}_{H}^{G}(M)$ be the left H-module with the same underlying abelian group as M and the H-action comes from the inclusion $H \hookrightarrow G$.
 - (d1) Show that there is a $\mathbb{Z}[G]$ -linear surjective map

$$\theta_H^G : \operatorname{ind}_H^G(\operatorname{Res}_H^G(M)) \to M$$

such that

$$\theta_H^G : \sum_i u_i \otimes_H m_i \; \mapsto \; \sum_i u_i \cdot m_i$$

for all families $u_i \in \mathbb{Z}[G]$, $m_i \in M$ indexed by a finite set. (The *G*-module homomorphism θ_H^G induces functorial maps

$$j(G \ge H, M) : H_n(H, \operatorname{Res}_H^G(M)) \xrightarrow{\simeq} H_n(G, \operatorname{ind}_H^G \operatorname{Res}_H^G M) \xrightarrow{\theta_{H_*}^G} H_n(G, M)$$

called the *corestriction maps* for $H \leq G$ in group homology.)

(d2) Show that there is a $\mathbb{Z}[G]$ -linear injective map

$$\psi_H^G: M \to \mathrm{Ind}_H^G(\mathrm{Res}_H^G(M))$$

such that

$$\psi_H^G(m)(x) = x \cdot m \quad \forall m \in M \ \forall x \in G.$$

(The G-module map ψ_H^G induces functorial maps

$$i(H \le G, M) : H^n(G, M) \xrightarrow{\psi^G_{H_*}} H^n(G, \operatorname{Ind}_H^G \operatorname{Res}_H^G M) \xrightarrow{\simeq} H^n(H, \operatorname{Res}_H^G M) ,$$

called the *restriction maps* group group cohomology.)

2. Recall that for any group G, the inhomogeneous chain complex $(C_{\bullet}(G), \partial_{\bullet})_{\bullet \in \mathbb{N}}$ is defined by

$$C_n(G) = \mathbb{Z}[G] \otimes_{\mathbb{Z}} \mathbb{Z}[G^n] \quad \forall n \in \mathbb{N},$$

with $\mathbb{Z}[G]$ -module structure through the factor $\mathbb{Z}[G]$, so $C_n(G)$ is a free $\mathbb{Z}[G]$ -module with basis

 $([\sigma_1,\ldots,\sigma_n] | \sigma_1,\ldots,\sigma_n \in G),$

and also a free \mathbb{Z} -module with basis

$$(\sigma_0[\sigma_1,\ldots,\sigma_n] | \sigma_0,\sigma_1,\ldots,\sigma_n \in G).$$

The differential $\partial_n : C_n(G) \to C_{n-1}, n \ge 1$, is the $\mathbb{Z}[G]$ -linear map defined by

$$\partial_n(\sigma_0[\sigma_1,\ldots,\sigma_n]) = \sigma_0\sigma_1[\sigma_2,\ldots,\sigma_n] + \sum_{i=1}^{n-1} (-1)^i \sigma_0[\sigma_1,\ldots,\sigma_{i-1},\sigma_i\sigma_{i+1}] + (-1)^n \sigma_0[\sigma_1,\ldots,\sigma_{n-1}] \quad \forall \sigma_0,\ldots,\sigma_n \in G.$$

The augmentation map $\epsilon : C_0(G) \to \mathbb{Z}$ is given by $\epsilon(\sigma_0) = 1 \forall \sigma_0 \in G$; it defines a chain complex map from $((C_{\bullet}(G), \partial_{\bullet})$ to the trivial chain complex \mathbb{Z} concentrated at degree 0, which induces an isomorphism on homology groups. In other words $(C_{\bullet}(G), \partial_{\bullet})$ is a free resolution of the trivial *G*-module \mathbb{Z} . Let $H \leq G$ be a subgroup of G. The chain complex $(C_{\bullet}(G), \partial_{\bullet})$, regarded as a complex of $\mathbb{Z}[H]$ -modules, is another free resolution of the trivial H-module \mathbb{Z} , and one can use it to compute homology and cohomology groups of H-modules. Thus for every left H-module N, we have canonical isomorphisms

$$H_i(H,N) \cong H_i(N \otimes_H C_{\bullet}(G), \partial_{\bullet}), \quad \forall i \in \mathbb{N},$$

and similarly for cohomologies. Here $N \otimes_H C_{\bullet}(G)$ is short for $N \otimes_{\mathbb{Z}[H]} C_{\bullet}(G)$, and the tensor product $N \otimes_H C_{\bullet}(G)$ is formed by regarding N as a right H-module via the isomorphism $\tau \mapsto \tau^{-1}$ from H to H^{opp} , so that

$$\tau n \otimes_H \tau c = n \otimes_H c \in N \otimes_H C_{\bullet}(G) \quad \forall \tau \in H, \forall n \in H, \forall c \in C_{\bullet}(G).$$

(a) Let $\bar{s}: H \setminus G \to G$ be a section of the projection map $\pi: G \to H \setminus G$, i.e. $\pi \circ \bar{s} = \mathrm{id}_{H \setminus G}$. Let $s = \bar{s} \circ \pi$ be the composition of the projection π with the section \bar{s} . Define a map $\eta: G \to H$ (which depends on s) by

$$\eta(x) = x \cdot s(x)^{-1} \quad \forall x \in G,$$

i.e. $\eta(x) \cdot s(x) = x$ for all $x \in G$. Show that

$$s(xy) = s(s(x)y), \quad \eta(xy) = \eta(x)\eta(s(x)y) \quad \forall x, y \in G$$

(b) Define maps $\phi_n : C_n(G) \to C_n(H), n \in \mathbb{N}$, by

$$\phi_n(\sigma_0[\sigma_1,\ldots,\sigma_n]) = \\ \eta(\sigma_0)[\eta(s(\sigma_0)\sigma_1),\eta(s(\sigma_0\sigma_1)\sigma_2),\ldots,\eta(s(\sigma_0\sigma_1\cdots\sigma_{i-1})\sigma_i),\ldots,\eta(s(\sigma_0\cdots\sigma_{n-1})\sigma_n)].$$

Show that the ϕ_n 's define a morphism (ϕ_{\bullet}) in the category of chain complexes of left $\mathbb{Z}[H]$ -modules, from $(C_{\bullet}(G), \partial_{\bullet})$ to $(C_{\bullet}(H), \partial_{\bullet})$, and is a quasi-isomorphism (i.e. (ϕ_{\bullet}) induces isomorphisms on all homology groups.)

[Note: This quasi-isomorphism (ϕ_{\bullet}) is convenient in explicit calculations.]

- 3. Suppose that $[G:H] < \infty$. Let M be a left G-module.
 - (a) Let

$$\Psi = \mathfrak{J}_H^G \circ \psi_H^G : M \to \mathrm{ind}_H^G(\mathrm{Res}_H^G(M))$$

be the composition of

$$\psi_H^G: M \to \mathrm{Ind}_H^G(\mathrm{Res}_H^G(M))$$

with the isomorphism

$$\mathfrak{J}_{H}^{G}: \mathrm{Ind}_{H}^{G}\mathrm{Res}_{H}^{G} \xrightarrow{\sim} \mathrm{ind}_{H}^{G}\mathrm{Res}_{H}^{G}M.$$

Show that

$$\Psi(m) = \sum_{x \in H \setminus G} [x^{-1}] \otimes_{\mathbb{Z}[H]} x \cdot m$$

for all $m \in M$.

(b) Let

$$\Phi = \theta^G_H \circ \mathfrak{J}^G_H : \mathrm{Ind}^G_H(\mathrm{Res}^G_H(M)) \to M$$

be the composition of

$$\mathfrak{J}^G_H: \mathrm{Ind}^G_H(\mathrm{Res}^G_H(M)) \xrightarrow{\sim} \mathrm{ind}^G_H(\mathrm{Res}^G_H(M))$$

with

$$\theta_H^G : \operatorname{ind}_H^G(\operatorname{Res}_H^G(M)) \to M.$$

Show that for each element $f: G \to M$ in $\mathrm{Ind}_{H}^{G}(\mathrm{Res}_{H}^{G}(M))$,

$$\Phi(f) = \sum_{x \in H \setminus G} x^{-1} \cdot f(x)$$

Definition. For each $n \in \mathbb{N}$, the *transfer map* (also called the restriction map) for group homology

$$\operatorname{Ver}_n^{H \leq G} : H_n(G, M) \to H_n(H, M)$$

is by definition the map which makes the following diagram

commutative.

Remark. (i) The transfer maps are functorial, i.e. it defines a morphism between δ -functors on the category left *G*-modules. So the transfer map $\operatorname{Ver}_0^{H \leq G}$ at degree 0 determines $\operatorname{Ver}_n^{H \leq G}$ for all $n \in \mathbb{N}$.

(ii) The tensor products \otimes_G and \otimes_H in the above diagram are formed with the general convention: when we take the tensor product A_1, A_2 of two left *G*-modules, we turn one of the factors into a right *G*-module by the isomorphism $G \xrightarrow{x \mapsto x^{-1}} G^{\text{opp}}$, then take the tensor product, over $\mathbb{Z}[G]$, of a right $\mathbb{Z}[G]$ -module with a left $\mathbb{Z}[G]$ -module. So this tensor product $A_1 \otimes_G A_2$ is the same as the coinvariants $(A_1 \otimes_\mathbb{Z} A_2)_G$ for the diagonal left action of *G* on $A_1 \otimes_\mathbb{Z} A_2$. This reminder is relevant for part (c) below.

(c) Show that the formula

$$m \mod I_G M \quad \mapsto \quad \sum_{y \in H \setminus G} y \cdot m \mod I_H M,$$

gives a well-defined map

$$N_{H\setminus G}: M_G \to M_H.$$

Prove that the transfer map for the homology groups at degree 0

$$H_0(G,M) = M_G \xrightarrow{\operatorname{Ver}_0^{H \le G}} M_H = H_0(H, \operatorname{Res}_H^G(M))$$

from M_G to M_H is equal to $N_{H < G}$.

(Hint: To see that the right-hand-side of above formula is well-defined, show that

$$N'_{H\setminus G} := \sum_{y \in H\setminus G} [y] \mod I_H \in \mathbb{Z}[G]/I_H \cdot \mathbb{Z}[G]$$

is a well-defined element in $\mathbb{Z}[G]/I_H \cdot \mathbb{Z}[G]$, and $N'_{H \setminus G} \cdot I_G \subseteq I_H \cdot \mathbb{Z}[G]$.)

Remark. (iii) As remarked at the end of part (b) above, one can also use this formula to *define* the transfer map on group homologies. The purpose of statement (c) is to verify that the two definitions give the same map.

(iv) The composition

$$H_n(G,M) \xrightarrow{\operatorname{Ver}_n^{H \leq G}} H_n(H, \operatorname{Res}_H^G M) \xrightarrow{j(G \geq H, M)} H_n(G,M)$$

is equal to $[[G:H] \cdot id_{H_n(G,M)}$. This assertion is an immediate consequence of (c) when n = 0. The general case follows from the case n = 0, as in remark (ii), by degree shifting.

(d) In the case when i = 1 and M is trivial G-module \mathbb{Z} , we have canonical isomorphisms $H_1(G,\mathbb{Z}) \cong G^{ab}$ and $H_1(H,\mathbb{Z}) \cong H^{ab}$. Let $\bar{s}: H \setminus G \to G$ be a section of the canonical projection $\pi: G \to H \setminus G$ as in problem 2 above, and let $s = \bar{s} \circ \pi$ and $\eta: G \to H$ be as in problem 2. Prove that

$$\operatorname{Ver}_1: G^{\operatorname{ab}} \to H^{\operatorname{ab}}$$

is given by

$$\operatorname{Ver}_1(x \mod (G, G)) = \prod_{\bar{y} \in H \setminus G} \eta(\bar{s}(\bar{y})x)) \mod (H, H))$$

(The product $\prod_{\bar{u}\in H\setminus G}$ modulo the commutator subgroup (H, H) is well-defined.)

(e) (extra credit) Formulate a similar description of the transfer maps (also called the corestriction maps) in group cohomology

 $\operatorname{Ver}_{H \leq G}^{i} : H^{i}(H, M) \to H^{i}(G, M)$

for cohomologies, and find an explicit formula for

$$\operatorname{Ver}^{1}_{H \leq G} : H^{1}(H, \mathbb{Q}/\mathbb{Z}) \to H^{1}(G, \mathbb{Q}/\mathbb{Z}).$$

(Hint: The cohomological analog of (c) uses the element

$$N_{G/H} := \sum_{x \in G/H} [x] \mod \mathbb{Z}[G] \cdot I_H$$

of $\mathbb{Z}[G]/\mathbb{Z}[G] \cdot I_H$.)

4. (a) Compute the cohomology groups $H^i(S_3, \mathbb{Z})$ (as abstract abelian groups) for i = 0, 1, 2. (b) (extra credit) Compute $\hat{H}^i(S_3, \mathbb{Z})$ for some $i \notin \{-2, -1, 0, 1, 2\}$.

5. (a) Let sgn : $S_3 \to \mu_2 = \mathbb{Z}^{\times}$ be the sign character of S_3 . Compute the cohomology groups $H^i(S_3, \mathbb{Z}(\text{sgn}))$ for i = 0, 1, 2. Here $\mathbb{Z}(\text{sgn})$ is the S_3 -module with \mathbb{Z} as the underlying abelian group, such that S_3 operates via the sign character of S_3 .

(b) (extra credit) Compute $\hat{H}^i(S_3, \mathbb{Z}(\operatorname{sgn}))$ for some $i \notin \{-2, -1, 0, 1, 2\}$.

Part II. From Gallier–Shatz

- problem 134 (1), (2); part (3) is extra credit. (This problem is not directly related to cohomologies of groups.)
- problem 137. (This problem is about finding a *direct and explicit* description of the bijection between the set of all classes of extensions of G by M and the set of all classes of 2-extensions of the trivial $\mathbb{Z}[G]$ -module \mathbb{Z} and M, not using cocycles.)
- (extra credit) problem 140. (This problem is about identifying the cohomology group $H^i(G, M)$ with a Hochschild homology group, of a suitable module over $R \otimes R^{\text{opp}}$, where $R = \mathbb{Z}[G]$.)