
Math 603 Assignment 13, 2020-21

Part I. The first 3 problems are meant to supplement the discussions in class related to change
of groups. E.g. problem 2 provides an explicit quasi-isomorphism between ResGH(C•(G)) and
C•(H). The actual questions in these three problems are straight-forward. Problems 4 and 5
gives some taste in dealing with concrete examples.

1. Let G be a group and let H ≤ G be a subgroup of G. Let N be a left H-module. We have
two versions induced G-modules (from N):

indGH(N) := Z[G]⊗Z[H] N,

and
IndGH(N) := {f : G→ N | f(hx) = h · f(x) ∀h ∈ H, ∀x ∈ G,

where the left G-module structure on IndGH(N) is given by

(y · f)(x) := f(xy) ∀ f ∈ IndGH(N), ∀x, y ∈ G.

(a) For every element g ∈ G and every element n ∈ H, define a function fg,n : G → N
supported on the coset H · g−1 by

fg,n(x) =

{
(xg) · n if xg ∈ H
0 if xg 6∈ H.

Show that the “formula” ∑
i

[gi]⊗H ni 7→
∑
i

fgi,ni

gives a well-defined injective Z[G]-linear map

IGH : indGH(N)→ IndGH(N).

(b) If [G : H] <∞, then IGH is an isomorphism, whose inverse is the map

JGH : IndGH(N)→ indGH(N)

which sends a typical element f ∈ IndGH(N) to the element∑
x∈H\G

[x−1]⊗H f(x) ∈ Z[G]⊗Z[H] N.

(c) Either prove or disprove the following statements.

(c1) The map Hi(G, indGH(N)) → Hi(G, IndGH(N)) induced by IGH is an isomorphism
for all H-module N and all i ∈ N.

(c2) The map H i(G, indGH(N)) → H i(G, IndGH(N)) induced by IGH is an isomorphism
for all H-module N and all i ∈ N.

(Note that Shapiro’s lemma gives canonical isomorphisms

Hi(G, indGH(N))
∼−→ Hi(H,N)

and
H i(G, IndGH(N))

∼−→ H i(G,N)

for every left H-module N and every i ∈ N.)
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(d) Let M be a left G-module, and let ResGH(M) be the left H-module with the same
underlying abelian group as M and the H-action comes from the inclusion H ↪→ G.

(d1) Show that there is a Z[G]-linear surjective map

θGH : indGH(ResGH(M))→M

such that
θGH :

∑
i

ui ⊗H mi 7→
∑
i

ui ·mi

for all families ui ∈ Z[G], mi ∈M indexed by a finite set.

(The G-module homomorphism θGH induces functorial maps

j(G ≥ H,M) : Hn(H,ResGH(M))
' // Hn(G, indGH ResGHM)

θGH∗ // Hn(G,M) ,

called the corestriction maps for H ≤ G in group homology.)

(d2) Show that there is a Z[G]-linear injective map

ψGH : M → IndGH(ResGH(M))

such that
ψGH(m)(x) = x ·m ∀m ∈M ∀x ∈ G.

(The G-module map ψGH induces functorial maps

i(H ≤ G,M) : Hn(G,M)
ψG
H∗ // Hn(G, IndGHResGHM)

' // Hn(H,ResGHM) ,

called the restriction maps group group cohomology.)

2. Recall that for any group G, the inhomogeneous chain complex (C•(G), ∂•)•∈N is defined
by

Cn(G) = Z[G]⊗Z Z[Gn] ∀n ∈ N,

with Z[G]-module structure through the factor Z[G], so Cn(G) is a free Z[G]-module with
basis (

[σ1, . . . , σn]
∣∣σ1, . . . , σn ∈ G

)
,

and also a free Z-module with basis(
σ0[σ1, . . . , σn]

∣∣σ0, σ1, . . . , σn ∈ G
)
.

The differential ∂n : Cn(G)→ Cn−1, n ≥ 1, is the Z[G]-linear map defined by

∂n(σ0[σ1, . . . , σn]) = σ0σ1[σ2, . . . , σn] +
n−1∑
i=1

(−1)iσ0[σ1, . . . , σi−1, σiσi+1]

+ (−1)nσ0[σ1, . . . , σn−1] ∀σ0, . . . , σn ∈ G.

The augmentation map ε : C0(G) → Z is given by ε(σ0) = 1 ∀σ0 ∈ G; it defines a chain
complex map from ((C•(G), ∂•) to the trivial chain complex Z concentrated at degree 0, which
induces an isomorphism on homology groups. In other words (C•(G), ∂•) is a free resolution
of the trivial G-module Z.
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Let H ≤ G be a subgroup of G. The chain complex (C•(G), ∂•), regarded as a complex
of Z[H]-modules, is another free resolution of the trivial H-module Z, and one can use it to
compute homology and cohomology groups of H-modules. Thus for every left H-module N ,
we have canonical isomorphisms

Hi(H,N) ∼= Hi

(
N ⊗H C•(G), ∂•

)
, ∀ i ∈ N,

and similarly for cohomologies. Here N ⊗H C•(G) is short for N ⊗Z[H] C•(G), and the tensor
product N ⊗H C•(G) is formed by regarding N as a right H-module via the isomorphism
τ 7→ τ−1 from H to Hopp, so that

τn⊗H τc = n⊗H c ∈ N ⊗H C•(G) ∀ τ ∈ H, ∀n ∈ H, ∀ c ∈ C•(G).

(a) Let s̄ : H\G→ G be a section of the projection map π : G→ H\G, i.e. π ◦ s̄ = idH\G.
Let s = s̄ ◦ π be the composition of the projection π with the section s̄. Define a map
η : G→ H (which depends on s) by

η(x) = x · s(x)−1 ∀x ∈ G,

i.e. η(x) · s(x) = x for all x ∈ G. Show that

s(xy) = s(s(x)y), η(xy) = η(x)η(s(x)y) ∀x, y ∈ G.

(b) Define maps φn : Cn(G)→ Cn(H), n ∈ N, by

φn
(
σ0

[
σ1, . . . , σn

])
=

η(σ0)
[
η
(
s(σ0)σ1

)
, η
(
s(σ0σ1)σ2

)
, . . . , η

(
s(σ0σ1 · · ·σi−1)σi

)
, . . . , η

(
s(σ0 · · ·σn−1)σn

)]
.

Show that the φn’s define a morphism
(
φ•) in the category of chain complexes of left

Z[H]-modules, from
(
C•(G), ∂•

)
to
(
C•(H), ∂•

)
, and is a quasi-isomorphism (i.e.

(
φ•)

induces isomorphisms on all homology groups.)

[Note: This quasi-isomorphism
(
φ•) is convenient in explicit calculations.]

3. Suppose that [G : H] <∞. Let M be a left G-module.

(a) Let
Ψ = JGH ◦ ψGH : M → indGH(ResGH(M))

be the composition of
ψGH : M → IndGH(ResGH(M))

with the isomorphism
JGH : IndGHResGH

∼−→ indGHResGHM.

Show that
Ψ(m) =

∑
x∈H\G

[x−1]⊗Z[H] x ·m

for all m ∈M .
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(b) Let
Φ = θGH ◦ JGH : IndGH(ResGH(M))→M

be the composition of

JGH : IndGH(ResGH(M))
∼−→ indGH(ResGH(M))

with
θGH : indGH(ResGH(M))→M.

Show that for each element f : G→M in IndGH(ResGH(M)),

Φ(f) =
∑

x∈H\G

x−1 · f(x)

Definition. For each n ∈ N, the transfer map (also called the restriction map) for group
homology

VerH≤Gn : Hn(G,M)→ Hn(H,M)

is by definition the map which makes the following diagram

Hn(C•(G)⊗GM)
Ψ∗ // Hn

(
C•(G)⊗G indGH ResM

) ' // Hn(C•(G)⊗H M)

φn∗'
��

Hn(G,M)

=

OO

VerH≤G
i // Hn(H,M)

= // Hn(C•(H)⊗H M)

commutative.

Remark. (i) The transfer maps are functorial, i.e. it defines a morphism between
δ-functors on the category left G-modules. So the transfer map VerH≤G0 at degree 0
determines VerH≤Gn for all n ∈ N.

~

(ii) The tensor products ⊗G and ⊗H in the above diagram are formed with the
general convention: when we take the tensor product A1, A2 of two left G-modules, we

turn one of the factors into a right G-module by the isomorphism G
x 7→x−1

// Gopp ,
then take the tensor product, over Z[G], of a right Z[G]-module with a left Z[G]-module.
So this tensor product A1 ⊗G A2 is the same as the coinvariants (A1 ⊗Z A2)G for the
diagonal left action of G on A1 ⊗Z A2. This reminder is relevant for part (c) below.

(c) Show that the formula

m mod IGM 7→
∑

y∈H\G

y ·m mod IHM,

gives a well-defined map
NH\G : MG →MH .

Prove that the transfer map for the homology groups at degree 0

H0(G,M) = MG
VerH≤G

0 //MH = H0(H,ResGH(M))

from MG to MH is equal to NH≤G.
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(Hint: To see that the right-hand-side of above formula is well-defined, show that

N ′H\G :=
∑

y∈H\G

[y] mod IH ∈ Z[G]/IH · Z[G]

is a well-defined element in Z[G]/IH · Z[G], and N ′H\G · IG ⊆ IH · Z[G].)

Remark. (iii) As remarked at the end of part (b) above, one can also use this formula
to define the transfer map on group homologies. The purpose of statement (c) is to
verify that the two definitions give the same map.

(iv) The composition

Hn(G,M)
VerH≤G

n // Hn(H,ResGHM)
j(G≥H,M)// Hn(G,M)

is equal to [[G : H] · idHn(G,M). This assertion is an immediate consequence of (c) when
n = 0. The general case follows from the case n = 0, as in remark (ii), by degree shifting.

(d) In the case when i = 1 and M is trivial G-module Z, we have canonical isomorphisms
H1(G,Z) ∼= Gab and H1(H,Z) ∼= Hab. Let s̄ : H\G → G be a section of the canonical
projection π : G→ H\G as in problem 2 above, and let s = s̄ ◦ π and η : G→ H be as
in problem 2. Prove that

Ver1 : Gab → Hab

is given by

Ver1(x mod (G,G)) =
∏

ȳ∈H\G

η(s̄(ȳ)x)) mod (H,H)).

(The product
∏
ȳ∈H\G modulo the commutator subgroup (H,H) is well-defined.)

(e) (extra credit) Formulate a similar description of the transfer maps (also called the core-
striction maps) in group cohomology

VeriH≤G : H i(H,M)→ H i(G,M)

for cohomologies, and find an explicit formula for

Ver1
H≤G : H1(H,Q/Z)→ H1(G,Q/Z).

(Hint: The cohomological analog of (c) uses the element

NG/H :=
∑

x∈G/H

[x] modZ[G] · IH

of Z[G]/Z[G] · IH .)

4. (a) Compute the cohomology groups H i(S3,Z) (as abstract abelian groups) for i = 0, 1, 2.

(b) (extra credit) Compute Ĥ i(S3,Z) for some i /∈ {−2,−1, 0, 1, 2}.

5. (a) Let sgn : S3 → lµ.. 2 = Z× be the sign character of S3. Compute the cohomology groups

H i(S3,Z(sgn)) for i = 0, 1, 2. Here Z(sgn)) is the S3-module with Z as the underlying abelian
group, such that S3 operates via the sign character of S3.

(b) (extra credit) Compute Ĥ i(S3,Z(sgn)) for some i /∈ {−2,−1, 0, 1, 2}.
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Part II. From Gallier–Shatz

• problem 134 (1), (2); part (3) is extra credit. (This problem is not directly related to
cohomologies of groups.)

• problem 137. (This problem is about finding a direct and explicit description of the
bijection between the set of all classes of extensions of G by M and the set of all classes
of 2-extensions of the trivial Z[G]-module Z and M , not using cocycles.)

• (extra credit) problem 140. (This problem is about identifying the cohomology group
H i(G,M) with a Hochschild homology group, of a suitable module over R⊗Ropp, where
R = Z[G].)
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