Part I. The first 3 problems are meant to supplement the discussions in class related to change of groups. E.g. problem 2 provides an explicit quasi-isomorphism between $\operatorname{Res}_{H}^{G}(C \cdot(G))$ and $C_{\bullet}(H)$. The actual questions in these three problems are straight-forward. Problems 4 and 5 gives some taste in dealing with concrete examples.

1. Let G be a group and let $H \leq G$ be a subgroup of G. Let N be a left H-module. We have two versions induced G-modules (from N):

$$
\operatorname{ind}_{H}^{G}(N):=\mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N,
$$

and

$$
\operatorname{Ind}_{H}^{G}(N):=\{f: G \rightarrow N \mid f(h x)=h \cdot f(x) \quad \forall h \in H, \forall x \in G
$$

where the left G-module structure on $\operatorname{Ind}_{H}^{G}(N)$ is given by

$$
(y \cdot f)(x):=f(x y) \quad \forall f \in \operatorname{Ind}_{H}^{G}(N), \forall x, y \in G
$$

(a) For every element $g \in G$ and every element $n \in H$, define a function $f_{g, n}: G \rightarrow N$ supported on the coset $H \cdot g^{-1}$ by

$$
f_{g, n}(x)= \begin{cases}(x g) \cdot n & \text { if } x g \in H \\ 0 & \text { if } x g \notin H .\end{cases}
$$

Show that the "formula"

$$
\sum_{i}\left[g_{i}\right] \otimes_{H} n_{i} \mapsto \sum_{i} f_{g_{i}, n_{i}}
$$

gives a well-defined injective $\mathbb{Z}[G]$-linear map

$$
\mathfrak{I}_{H}^{G}: \operatorname{ind}_{H}^{G}(N) \rightarrow \operatorname{Ind}_{H}^{G}(N)
$$

(b) If $[G: H]<\infty$, then \mathfrak{I}_{H}^{G} is an isomorphism, whose inverse is the map

$$
\mathfrak{J}_{H}^{G}: \operatorname{Ind}_{H}^{G}(N) \rightarrow \operatorname{ind}_{H}^{G}(N)
$$

which sends a typical element $f \in \operatorname{Ind}_{H}^{G}(N)$ to the element

$$
\sum_{x \in H \backslash G}\left[x^{-1}\right] \otimes_{H} f(x) \in \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N .
$$

(c) Either prove or disprove the following statements.
(c1) The map $H_{i}\left(G, \operatorname{ind}_{H}^{G}(N)\right) \rightarrow H_{i}\left(G, \operatorname{Ind}_{H}^{G}(N)\right)$ induced by \mathfrak{I}_{H}^{G} is an isomorphism for all H-module N and all $i \in \mathbb{N}$.
(c2) The map $H^{i}\left(G, \operatorname{ind}_{H}^{G}(N)\right) \rightarrow H^{i}\left(G, \operatorname{Ind}_{H}^{G}(N)\right)$ induced by \mathfrak{I}_{H}^{G} is an isomorphism for all H-module N and all $i \in \mathbb{N}$.
(Note that Shapiro's lemma gives canonical isomorphisms

$$
H_{i}\left(G, \operatorname{ind}_{H}^{G}(N)\right) \xrightarrow{\sim} H_{i}(H, N)
$$

and

$$
H^{i}\left(G, \operatorname{Ind}_{H}^{G}(N)\right) \xrightarrow{\sim} H^{i}(G, N)
$$

for every left H-module N and every $i \in \mathbb{N}$.)
(d) Let M be a left G-module, and let $\operatorname{Res}_{H}^{G}(M)$ be the left H-module with the same underlying abelian group as M and the H-action comes from the inclusion $H \hookrightarrow G$.
(d1) Show that there is a $\mathbb{Z}[G]$-linear surjective map

$$
\theta_{H}^{G}: \operatorname{ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right) \rightarrow M
$$

such that

$$
\theta_{H}^{G}: \sum_{i} u_{i} \otimes_{H} m_{i} \mapsto \sum_{i} u_{i} \cdot m_{i}
$$

for all families $u_{i} \in \mathbb{Z}[G], m_{i} \in M$ indexed by a finite set. (The G-module homomorphism θ_{H}^{G} induces functorial maps

$$
j(G \geq H, M): H_{n}\left(H, \operatorname{Res}_{H}^{G}(M)\right) \xrightarrow{\simeq} H_{n}\left(G, \operatorname{ind}_{H}^{G} \operatorname{Res}_{H}^{G} M\right) \xrightarrow{\theta_{H *}^{G}} H_{n}(G, M),
$$

called the corestriction maps for $H \leq G$ in group homology.)
(d2) Show that there is a $\mathbb{Z}[G]$-linear injective map

$$
\psi_{H}^{G}: M \rightarrow \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right)
$$

such that

$$
\psi_{H}^{G}(m)(x)=x \cdot m \quad \forall m \in M \quad \forall x \in G .
$$

(The G-module map ψ_{H}^{G} induces functorial maps

$$
i(H \leq G, M): H^{n}(G, M) \xrightarrow{\psi_{H_{*}}^{G}} H^{n}\left(G, \operatorname{Ind}_{H}^{G} \operatorname{Res}_{H}^{G} M\right) \xrightarrow{\simeq} H^{n}\left(H, \operatorname{Res}_{H}^{G} M\right),
$$

called the restriction maps group group cohomology.)
2. Recall that for any group G, the inhomogeneous chain complex $\left(C_{\bullet}(G), \partial_{\bullet}\right)_{\bullet} \in \mathbb{N}$ is defined by

$$
C_{n}(G)=\mathbb{Z}[G] \otimes_{\mathbb{Z}} \mathbb{Z}\left[G^{n}\right] \quad \forall n \in \mathbb{N},
$$

with $\mathbb{Z}[G]$-module structure through the factor $\mathbb{Z}[G]$, so $C_{n}(G)$ is a free $\mathbb{Z}[G]$-module with basis

$$
\left(\left[\sigma_{1}, \ldots, \sigma_{n}\right] \mid \sigma_{1}, \ldots, \sigma_{n} \in G\right)
$$

and also a free \mathbb{Z}-module with basis

$$
\left(\sigma_{0}\left[\sigma_{1}, \ldots, \sigma_{n}\right] \mid \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n} \in G\right)
$$

The differential $\partial_{n}: C_{n}(G) \rightarrow C_{n-1}, n \geq 1$, is the $\mathbb{Z}[G]$-linear map defined by

$$
\begin{aligned}
\partial_{n}\left(\sigma_{0}\left[\sigma_{1}, \ldots, \sigma_{n}\right]\right)=\sigma_{0} \sigma_{1}\left[\sigma_{2}, \ldots, \sigma_{n}\right]+\sum_{i=1}^{n-1} & (-1)^{i} \sigma_{0}\left[\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i} \sigma_{i+1}\right] \\
& +(-1)^{n} \sigma_{0}\left[\sigma_{1}, \ldots, \sigma_{n-1}\right] \quad \forall \sigma_{0}, \ldots, \sigma_{n} \in G .
\end{aligned}
$$

The augmentation map $\epsilon: C_{0}(G) \rightarrow \mathbb{Z}$ is given by $\epsilon\left(\sigma_{0}\right)=1 \forall \sigma_{0} \in G$; it defines a chain complex map from $\left(\left(C_{\bullet}(G), \partial_{\bullet}\right)\right.$ to the trivial chain complex \mathbb{Z} concentrated at degree 0 , which induces an isomorphism on homology groups. In other words $\left(C_{\bullet}(G), \partial_{\bullet}\right)$ is a free resolution of the trivial G-module \mathbb{Z}.

Let $H \leq G$ be a subgroup of G. The chain complex $\left(C_{\bullet}(G), \partial_{\bullet}\right)$, regarded as a complex of $\mathbb{Z}[H]$-modules, is another free resolution of the trivial H-module \mathbb{Z}, and one can use it to compute homology and cohomology groups of H-modules. Thus for every left H-module N, we have canonical isomorphisms

$$
H_{i}(H, N) \cong H_{i}\left(N \otimes_{H} C_{\bullet}(G), \partial_{\bullet}\right), \quad \forall i \in \mathbb{N},
$$

and similarly for cohomologies. Here $N \otimes_{H} C_{\bullet}(G)$ is short for $N \otimes_{\mathbb{Z}[H]} C \bullet(G)$, and the tensor product $N \otimes_{H} C \bullet(G)$ is formed by regarding N as a right H-module via the isomorphism $\tau \mapsto \tau^{-1}$ from H to $H^{\text {opp }}$, so that

$$
\tau n \otimes_{H} \tau c=n \otimes_{H} c \in N \otimes_{H} C_{\bullet}(G) \quad \forall \tau \in H, \forall n \in H, \forall c \in C_{\bullet}(G) .
$$

(a) Let $\bar{s}: H \backslash G \rightarrow G$ be a section of the projection map $\pi: G \rightarrow H \backslash G$, i.e. $\pi \circ \bar{s}=\operatorname{id}_{H \backslash G}$. Let $s=\bar{s} \circ \pi$ be the composition of the projection π with the section \bar{s}. Define a map $\eta: G \rightarrow H$ (which depends on s) by

$$
\eta(x)=x \cdot s(x)^{-1} \quad \forall x \in G,
$$

i.e. $\eta(x) \cdot s(x)=x$ for all $x \in G$. Show that

$$
s(x y)=s(s(x) y), \quad \eta(x y)=\eta(x) \eta(s(x) y) \quad \forall x, y \in G .
$$

(b) Define maps $\phi_{n}: C_{n}(G) \rightarrow C_{n}(H), n \in \mathbb{N}$, by

$$
\begin{aligned}
& \phi_{n}\left(\sigma_{0}\left[\sigma_{1}, \ldots, \sigma_{n}\right]\right)= \\
& \eta\left(\sigma_{0}\right)\left[\eta\left(s\left(\sigma_{0}\right) \sigma_{1}\right), \eta\left(s\left(\sigma_{0} \sigma_{1}\right) \sigma_{2}\right), \ldots, \eta\left(s\left(\sigma_{0} \sigma_{1} \cdots \sigma_{i-1}\right) \sigma_{i}\right), \ldots, \eta\left(s\left(\sigma_{0} \cdots \sigma_{n-1}\right) \sigma_{n}\right)\right] .
\end{aligned}
$$

Show that the ϕ_{n} 's define a morphism $\left(\phi_{\bullet}\right)$ in the category of chain complexes of left $\mathbb{Z}[H]$-modules, from $\left(C_{\bullet}(G), \partial_{\bullet}\right)$ to $\left(C_{\bullet}(H), \partial_{\bullet}\right)$, and is a quasi-isomorphism (i.e. $\left(\phi_{\bullet}\right)$ induces isomorphisms on all homology groups.)
[Note: This quasi-isomorphism $\left(\phi_{\bullet}\right)$ is convenient in explicit calculations.]
3. Suppose that $[G: H]<\infty$. Let M be a left G-module.
(a) Let

$$
\Psi=\mathfrak{J}_{H}^{G} \circ \psi_{H}^{G}: M \rightarrow \operatorname{ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right)
$$

be the composition of

$$
\psi_{H}^{G}: M \rightarrow \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right)
$$

with the isomorphism

$$
\mathfrak{J}_{H}^{G}: \operatorname{Ind}_{H}^{G} \operatorname{Res}_{H}^{G} \xrightarrow{\sim} \operatorname{ind}_{H}^{G} \operatorname{Res}_{H}^{G} M .
$$

Show that

$$
\Psi(m)=\sum_{x \in H \backslash G}\left[x^{-1}\right] \otimes_{\mathbb{Z}[H]} x \cdot m
$$

for all $m \in M$.
(b) Let

$$
\Phi=\theta_{H}^{G} \circ \mathfrak{J}_{H}^{G}: \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right) \rightarrow M
$$

be the composition of

$$
\mathfrak{J}_{H}^{G}: \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right) \xrightarrow{\sim} \operatorname{ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right)
$$

with

$$
\theta_{H}^{G}: \operatorname{ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right) \rightarrow M
$$

Show that for each element $f: G \rightarrow M$ in $\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right)$,

$$
\Phi(f)=\sum_{x \in H \backslash G} x^{-1} \cdot f(x)
$$

Definition. For each $n \in \mathbb{N}$, the transfer map (also called the restriction map) for group homology

$$
\operatorname{Ver}_{n}^{H \leq G}: H_{n}(G, M) \rightarrow H_{n}(H, M)
$$

is by definition the map which makes the following diagram

commutative.
Remark. (i) The transfer maps are functorial, i.e. it defines a morphism between δ-functors on the category left G-modules. So the transfer map $\operatorname{Ver}_{0}^{H \leq G}$ at degree 0 determines $\operatorname{Ver}_{n}{ }^{H \leq G}$ for all $n \in \mathbb{N}$.
S
(ii) The tensor products \otimes_{G} and \otimes_{H} in the above diagram are formed with the general convention: when we take the tensor product A_{1}, A_{2} of two left G-modules, we turn one of the factors into a right G-module by the isomorphism $G \xrightarrow{x \mapsto x^{-1}} G^{\mathrm{opp}}$, then take the tensor product, over $\mathbb{Z}[G]$, of a right $\mathbb{Z}[G]$-module with a left $\mathbb{Z}[G]$-module. So this tensor product $A_{1} \otimes_{G} A_{2}$ is the same as the coinvariants $\left(A_{1} \otimes_{\mathbb{Z}} A_{2}\right)_{G}$ for the diagonal left action of G on $A_{1} \otimes_{\mathbb{Z}} A_{2}$. This reminder is relevant for part (c) below.
(c) Show that the formula

$$
m \bmod I_{G} M \mapsto \sum_{y \in H \backslash G} y \cdot m \bmod I_{H} M,
$$

gives a well-defined map

$$
N_{H \backslash G}: M_{G} \rightarrow M_{H}
$$

Prove that the transfer map for the homology groups at degree 0

$$
H_{0}(G, M)=M_{G} \xrightarrow{\mathrm{Ver}_{0}^{H \leq G}} M_{H}=H_{0}\left(H, \operatorname{Res}_{H}^{G}(M)\right)
$$

from M_{G} to M_{H} is equal to $N_{H \leq G}$.
(Hint: To see that the right-hand-side of above formula is well-defined, show that

$$
N_{H \backslash G}^{\prime}:=\sum_{y \in H \backslash G}[y] \bmod I_{H} \in \mathbb{Z}[G] / I_{H} \cdot \mathbb{Z}[G]
$$

is a well-defined element in $\mathbb{Z}[G] / I_{H} \cdot \mathbb{Z}[G]$, and $N_{H \backslash G}^{\prime} \cdot I_{G} \subseteq I_{H} \cdot \mathbb{Z}[G]$.)
Remark. (iii) As remarked at the end of part (b) above, one can also use this formula to define the transfer map on group homologies. The purpose of statement (c) is to verify that the two definitions give the same map.
(iv) The composition

$$
H_{n}(G, M) \xrightarrow{\operatorname{Ver}_{n}^{H \leq G}} H_{n}\left(H, \operatorname{Res}_{H}^{G} M^{j}\right) \xrightarrow{(G \geq H, M)} H_{n}(G, M)
$$

is equal to $\left[[G: H] \cdot \operatorname{id}_{H_{n}(G, M)}\right.$. This assertion is an immediate consequence of (c) when $n=0$. The general case follows from the case $n=0$, as in remark (ii), by degree shifting.
(d) In the case when $i=1$ and M is trivial G-module \mathbb{Z}, we have canonical isomorphisms $H_{1}(G, \mathbb{Z}) \cong G^{\text {ab }}$ and $H_{1}(H, \mathbb{Z}) \cong H^{\text {ab }}$. Let $\bar{s}: H \backslash G \rightarrow G$ be a section of the canonical projection $\pi: G \rightarrow H \backslash G$ as in problem 2 above, and let $s=\bar{s} \circ \pi$ and $\eta: G \rightarrow H$ be as in problem 2. Prove that

$$
\operatorname{Ver}_{1}: G^{\mathrm{ab}} \rightarrow H^{\mathrm{ab}}
$$

is given by

$$
\left.\left.\operatorname{Ver}_{1}(x \bmod (G, G))=\prod_{\bar{y} \in H \backslash G} \eta(\bar{s}(\bar{y}) x)\right) \bmod (H, H)\right) .
$$

(The product $\prod_{\bar{y} \in H \backslash G}$ modulo the commutator subgroup (H, H) is well-defined.)
(e) (extra credit) Formulate a similar description of the transfer maps (also called the corestriction maps) in group cohomology

$$
\operatorname{Ver}_{H \leq G}^{i}: H^{i}(H, M) \rightarrow H^{i}(G, M)
$$

for cohomologies, and find an explicit formula for

$$
\operatorname{Ver}_{H \leq G}^{1}: H^{1}(H, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(G, \mathbb{Q} / \mathbb{Z})
$$

(Hint: The cohomological analog of (c) uses the element

$$
N_{G / H}:=\sum_{x \in G / H}[x] \bmod \mathbb{Z}[G] \cdot I_{H}
$$

of $\left.\mathbb{Z}[G] / \mathbb{Z}[G] \cdot I_{H}.\right)$
4. (a) Compute the cohomology groups $H^{i}\left(S_{3}, \mathbb{Z}\right)$ (as abstract abelian groups) for $i=0,1,2$. (b) (extra credit) Compute $\hat{H}^{i}\left(S_{3}, \mathbb{Z}\right)$ for some $i \notin\{-2,-1,0,1,2\}$.
5. (a) Let sgn : $S_{3} \rightarrow \mu_{2}=\mathbb{Z}^{\times}$be the sign character of S_{3}. Compute the cohomology groups $H^{i}\left(S_{3}, \mathbb{Z}(\mathrm{sgn})\right)$ for $i=0,1,2$. Here $\left.\mathbb{Z}(\mathrm{sgn})\right)$ is the S_{3}-module with \mathbb{Z} as the underlying abelian group, such that S_{3} operates via the sign character of S_{3}.
(b) (extra credit) Compute $\hat{H}^{i}\left(S_{3}, \mathbb{Z}(\operatorname{sgn})\right)$ for some $i \notin\{-2,-1,0,1,2\}$.

Part II. From Gallier-Shatz

- problem 134 (1), (2); part (3) is extra credit. (This problem is not directly related to cohomologies of groups.)
- problem 137. (This problem is about finding a direct and explicit description of the bijection between the set of all classes of extensions of G by M and the set of all classes of 2-extensions of the trivial $\mathbb{Z}[G]$-module \mathbb{Z} and M, not using cocycles.)
- (extra credit) problem 140. (This problem is about identifying the cohomology group $H^{i}(G, M)$ with a Hochschild homology group, of a suitable module over $R \otimes R^{\mathrm{opp}}$, where $R=\mathbb{Z}[G]$.

