Notes on semisimple algebras

§1. Semisimple rings

(1.1) Definition A ring R with 1 is semisimple, or left semisimple to be precise, if the free left R-module underlying R is a sum of simple R-module.
(1.2) Definition A ring R with 1 is simple, or left simple to be precise, if R is semisimple and any two simple left ideals (i.e. any two simple left submodules of R) are isomorphic.
(1.3) Proposition A ring R is semisimple if and only if there exists a ring S and a semisimple S-module M of finite length such that $R \cong \operatorname{End}_{S}(M)$
(1.4) Corollary Every semisimple ring is Artinian.
(1.5) Proposition Let R be a semisimple ring. Then R is isomorphic to a finite direct product $\prod_{i=1}^{s} R_{i}$, where each R_{i} is a simple ring.
(1.6) Proposition Let R be a simple ring. Then there exists a division ring D and a positive integer n such that $R \cong \mathrm{M}_{n}(D)$.
(1.7) Definition Let R be a ring with 1. Define the radical of R to be the intersection of all maximal left ideals of R. The above definitions uses left R-modules. When we want to emphasize that, we say that \mathfrak{n} is the left radical of R.
(1.8) Proposition The radical of a semisimple ring is zero.
(1.9) Proposition Let R be a simple ring. Then R has no non-trivial two-sided ideals, and its radical is zero.
(1.10) Proposition Let R be an Artinian ring whose radical is zero. Then R is semisimple. In particular, if R has no non-trivial two-sided ideal, then R is simple.
(1.11) Remark In non-commutative ring theory, the standard definition for a ring to be semisimple is that its radical is zero. This definition is different from Definition 1.1, For instance, \mathbb{Z} is not a semisimple ring in the sense of Def. 1.1, while the radical of \mathbb{Z} is zero. In fact the converse of Prop. 1.10 holds; see Cor. 1.4 below.
(1.12) Exercise. Let R be a ring with 1 . Let \mathfrak{n} be the radical of R
(i) Show that there exists a maximal left ideal in R. Deduce that the radical of R is a proper left ideal of R. (Hint: Use Zorn's Lemma.)
(ii) Show that $\mathfrak{n} \cdot M=(0)$ for every simple left R-module M. (Hint: Show that for every $0 \neq x \in M$, the set of all elements $y \in R$ such that $y \cdot x=0$ is a maximal left ideal of R.)
(iv) Suppose that I is a left ideal of R such that $I \cdot M=(0)$ for every simple left R-module M. Prove that $I \subseteq \mathfrak{n}$.
(v) Show that \mathfrak{n} is a two-sided ideal of R. (Hint: Use (iv).)
(vi) Let I be a left ideal of R such that $I^{n}=(0)$ for some positive integer n. Show that $I \subseteq \mathfrak{n}$.
(vi) Show that the radical of R / \mathfrak{n} is zero.
(1.13) Exercise. Let R be a ring with 1 and let \mathfrak{n} be the (left) radical of R.
(i) Let $x \in \mathfrak{n}$. Show that $R \cdot(1+x)=R$, i.e. there exists an element $z \in R$ such that $z \cdot(1+x)=1$.
(ii) Suppose that J is a left ideal of R such that $R \cdot(1+x)=R$ for every $x \in J$. Show that $J \subseteq \mathfrak{n}$. (Hint: If not, then there exists a maximal left ideal \mathfrak{m} of R such that $J+\mathfrak{m} \ni 1$.)
(iii) Let $x \in \mathfrak{n}$, and let z be an element of R such that $z \cdot(1+x)=1$. Show that $z-1 \in \mathfrak{n}$. Conclude that $1+\mathfrak{n} \subset R^{\times}$.
(iv) Show that the \mathfrak{n} is equal to the right radical of R. (Hint: Use the analogue of (i)-(iii) for the right radical.)

§2. Simple algebras

(2.1) Proposition Let K be a field. Let A be a central simple algebra over K, and let B be simple K-algebra. Then $A \otimes_{K} B$ is a simple K-algebra. Moreover $\mathrm{Z}\left(A \otimes_{K} B\right)=\mathrm{Z}(B)$, i.e. every element of the center of $A \otimes_{K} B$ has the form $1 \otimes b$ for a unique element $b \in \mathrm{Z}(B)$. In particular, $A \otimes_{K} B$ is a central simple algebra over K if both A and B are.

Proof. We assume for simplicity of exposition that $\operatorname{dim}_{K}(B)<\infty$; the proof works for the infinite dimensional case as well. Let b_{1}, \ldots, b_{r} be a K-basis of B. Define the length of an element $x=\sum_{i=1}^{r} a_{i} \otimes b_{i} \in A \otimes B, a_{i} \in A$ for $i=1, \ldots, r$, to be $\operatorname{Card}\left\{i \mid a_{i} \neq 0\right\}$.

Let I be a non-zero ideal in $A \otimes_{K} B$. Let x be a non-zero element of I of minimal length. After relabelling the b_{i} 's, we may and do assume that x has the form

$$
x=a_{1} \otimes b_{1}+\sum_{i=2}^{s} a_{i} \otimes b_{i}
$$

and a_{1}, \ldots, a_{s} are all non-zero. Since $a_{1} \neq 0$ and A is simple, there exist elements $u_{1}, u_{2}, \ldots, u_{h}$ and $v_{1}, v_{2}, \ldots, v_{h}$ in A such that $\sum_{j=1}^{h} u_{j} a_{1} v_{j}=1$. Consider the element

$$
y=\sum_{j=1}^{h}\left(u_{j} \otimes 1\right) \cdot x \cdot\left(v_{j} \otimes 1\right) \in I
$$

We have

$$
y=1 \otimes b_{1}+\sum_{i=2}^{s} a_{i}^{\prime} \otimes b_{i}
$$

where $a_{i}^{\prime}=\sum_{j=1}^{h} u_{j} \cdot a_{i} \cdot v_{j}$ for $j=2, \ldots, s$. Clearly $y \neq 0$ and its is at most s. So y has length s and $a_{i}^{\prime} \neq 0$ for $i=2, \ldots, s$. Consider the element $[a \otimes 1, y] \in I$ with $a \in A$, whose length is strictly less than s. Therefore $[a \otimes 1, y]=0$ for all $a \in A$, i.e. $\left[a, a_{i}^{\prime}\right]=0$ for all $a \in A$ and all $i=2, \ldots, s$. In other words, $a_{i}^{\prime} \in K$ for all $i=2, \ldots, s$. Write $a_{i}^{\prime}=\lambda_{i} \in K$, and $y=1 \otimes b \in I$, where $b=b_{1}+\lambda_{2} b_{2}+\cdots \lambda_{s} b_{s} \in B, b \neq 0$. So $1 \otimes B b B \subseteq I$. Since B is simple, we have $B b B=B$ and hence $I=A \otimes_{K} B$. We have shown that $A \otimes_{K} B$ is simple.

Next we prove that $\mathrm{Z}\left(A \otimes_{K} B\right)=K$. Let $x=\sum_{i=1}^{r} a_{i} \otimes b_{i}$ be any element of $\mathrm{Z}\left(A \otimes_{K} B\right)$, with $a_{1}, \ldots, a_{r} \in A$. We have

$$
0=[a \otimes 1, x]=\sum_{i=1}^{r}\left[a, a_{i}\right] \otimes b_{i}
$$

for all $a \in A$. Hence $a_{i} \in \mathrm{Z}(A)=K$ for each $i=1, \ldots, r$, and $x=1 \otimes b$ for some $b \in B$. The condition that $0=[1 \otimes y, x]$ for all $y \in B$ implies that $b \in \mathrm{Z}(B)$ and hence $x \in 1 \otimes \mathrm{Z}(B)$.
(2.2) Corollary Let A be a finite dimensional algebra over a field K, and let $n=\operatorname{dim}_{K}(A)$. If A is a central simple algebra over K, then

$$
A \otimes_{K} A^{\text {opp }} \xrightarrow{\sim} \operatorname{End}_{K}(A) \cong \mathrm{M}_{n}(K) .
$$

Conversely, if $A \otimes_{K} A^{\mathrm{opp}} \rightarrow \operatorname{End}_{K}(A)$, then A is a central simple algebra over K.
Proof. Suppose that A is a central simple algebra over K. By Prop. 2.1, $A \otimes_{K} A^{\text {opp }}$ is a central simple algebra over K. Consider the map

$$
\alpha: A \otimes_{K} A^{\mathrm{opp}} \rightarrow \operatorname{End}_{K}(A)
$$

which sends $x \otimes y$ to the element $u \mapsto x u y \in \operatorname{End}_{K}(A)$. The source of α is simple by Prop. 2.1, so α is injective because it is clearly non-trivial. Hence it is an isomorphism because the source and the target have the same dimension over K.

Conversely, suppose that $A \otimes_{K} A^{\mathrm{opp}} \rightarrow \operatorname{End}_{K}(A)$ and I is a proper ideal of A. Then the image of $I \otimes A^{\text {opp }}$ in $\operatorname{End}_{K}(A)$ is an ideal of $\operatorname{End}_{K}(A)$ which does not contain Id_{A}. so A is a simple K-algebra. Let $L:=\mathrm{Z}(A)$, then the image of the canonical map $A \otimes_{K} A^{\mathrm{opp}}$ in $\operatorname{End}_{K}(A)$ lies in the subalgebra $\operatorname{End}_{L}(A)$, hence $L=K$.
(2.3) Lemma Let D be a finite dimensional central division algebra over an algebraically closed field K. Then $D=K$.
(2.4) Corollary The dimension of any central simple algebra over a field is a perfect square.
(2.5) Lemma Let A be a finite dimensional central simple algebra over a field K. Let $F \subset A$ be an overfield of K contained in A. Then $[F: K] \mid[A: K]^{1 / 2}$. In particular if $[F: K]^{2}=$ $[A: K]$, then F is a maximal subfield of A.
Proof. Write $[A: K]=n^{2},[F: K]=d$. Multiplication on the left defines an embedding $A \otimes_{K} F \hookrightarrow \operatorname{End}_{F}(A)$. By Lemma 3.1, $n^{2}=\left[A \otimes_{K}: F\right]$ divides $\left[\operatorname{End}_{F}(A): F\right]=\left(n^{2} / d\right)^{2}$, i.e. $d^{2} \mid n^{2}$. So d divides n.
(2.6) Lemma Let A be a finite dimensional central simple algebra over a field K. If F is a subfield of A containing K, and $[F: K]^{2}=[A: K]$, then F is a maximal subfield of K and $A \otimes_{K} F \cong \mathrm{M}_{n}(F)$, where $n=[A: K]^{1 / 2}$.

Proof. We have seen in Lemma 2.5 that F is a maximal subfield of A. Consider the natural map $\alpha: A \otimes_{K} F \rightarrow \operatorname{End}_{K}(A)$, which is injective because $A \otimes_{K} F$ is simple and α is nontrivial. Since the dimension of the source and the target of α are both equal to n^{2}, α is an isomorphism.
(2.7) Proposition Let D be a non-commutative central division algebra over a field K, There exists an element $u \notin K$ which is separable over K.

Proof. Suppose that every element $u \notin K$ is purely inseparable over K. Clearly K is infinite. The assumption implies that the minimial polynomial of every element of D has the form $T^{p^{i}}-a$ for some $i \in \mathbb{N}$ and some $a \in K$. Moreover $p^{i} \leq \operatorname{dim}_{K}(D)^{1 / 2}$. So there exists an integer N such that $x^{p^{N}} \in K$ for all $x \in D$. Therefore $\left[x^{p^{N}}, y\right]=0$ for all $x, y \in D$.

Let \underline{D} be the affine K-scheme such that $\underline{D}(L)=D \otimes_{K} L$ for every extension field L / K. There is a K-morphism

$$
f: \underline{D} \times_{\operatorname{Spec}(K)} \underline{D} \rightarrow \underline{D}
$$

such that $f(x, y)=\left[x^{p^{N}}, y\right]$ for all extension field L / K and all $x, y \in \underline{D}(L)$. We know that this morphism is zero on the dense subset $\underline{D}(K) \times \underline{D}(K)$, hence f is the zero morphism. The last statement is impossible, for $\underline{D}\left(K^{\text {alg }}\right) \cong \mathrm{M}_{r}\left(L^{\text {alg }}\right)$ with $r=\operatorname{dim}_{K}(D)^{1 / 2}>0$ and the equality $\left[x^{p^{N}}, y\right]=0$ for all $x, y \in \mathrm{M}_{r}\left(L^{\text {alg }}\right)$ is absurd.
(2.8) Theorem (Noether-Skolem) Let B be a finite dimensional central simple algebra over a field K. Let A_{1}, A_{2} be simple K-subalgebras of B. Let $\phi: A_{1} \xrightarrow{\sim} A_{2}$ be a K-linear isomorphism of K-algebras. Then there exists an element $x \in B^{\times}$such that $\phi(y)=x^{-1} y x$ for all $y \in A_{1}$.

Proof. Consider the simple K-algebra $R:=B \otimes_{K} A_{1}^{\mathrm{opp}}$, and two R-module structures on the K-vector space V underlying B : an element $u \otimes a$ with $u \in B$ and $a \in A_{1}^{\text {opp }}$ operates either as $b \mapsto u b a$ for all $b \in V$, or as $b \mapsto u b \phi(a)$ for all $b \in V$. Hence there exists a $\psi \in \mathrm{GL}_{K}(V)$ such that

$$
\psi(u b a)=u \psi(b) \phi(a)
$$

for all $u, b \in B$ and all $a \in A_{1}$. One checks easily that $\psi(1) \in B^{\times}:$if $u \in B$ and $u \cdot \psi(1)=0$, then $\psi(u)=0$, hence $u=0$. Then $\phi(a)=\psi(1)^{-1} \cdot a \cdot \psi(1)$ for every $a \in A_{1}$.
(2.9) Theorem Let B be a K-algebra and let A be a finite dimensional central simple K subalgebra of B. Then the natural homomorphism $\alpha: A \otimes_{K} \mathrm{Z}_{B}(A) \rightarrow B$ is an isomorphism.

Proof. Passing from K to $K^{\text {alg }}$, we may and do assume that $A \cong \mathrm{M}_{n}(K)$, and we fix an isomorphism $A \xrightarrow{\sim} \mathrm{M}_{n}(K)$.

First we show that α is surjective. Given an element $b \in B$, define elements $b_{i j} \in B$ for $1 \leq i, j \leq n$ by

$$
b_{i j}:=\sum_{k=1}^{n} e_{k i} b e_{j k},
$$

where $e_{k i} \in \mathrm{M}_{n}(K)$ is the $n \times n$ matrix whose (k, i)-entry is equal to 1 and all other entries equal to 0 . One checks that each $b_{i j}$ commutes with all elements of $A=\mathrm{M}_{n}(K)$. The following computation

$$
\sum_{i, j=1}^{n} b_{i j} e_{i j}=\sum_{i, j, k} e_{k i} b e_{j k} e_{i j}=\sum_{i, j} e_{i i} b e_{j j}=b
$$

shows that α is surjective.

Suppose that $0=\sum_{i, j=1}^{n} b_{i j} e_{i j}, b_{i j} \in \mathrm{Z}_{B}(A)$ for all $1 \leq i, j \leq n$. Then

$$
0=\sum_{k=1}^{n} e_{k l}\left(\sum_{i, j} b_{i j} e_{i j}\right) e_{m k}=\sum_{k=1}^{n} b_{l m} e_{k k}=b_{l m}
$$

for all $0 \leq l, m \leq n$. Hence α is injective.
(2.10) Theorem Let B be a finite dimensional central simple algebra over a field K, and let A be a simple K-subalgebra of B. Then $\mathrm{Z}_{B}(A)$ is simple, and $\mathrm{Z}_{B}\left(\mathrm{Z}_{B}(A)\right)=A$.

Proof. Let $C=\operatorname{End}_{K}(A) \cong \mathrm{M}_{n}(K)$, where $n=[A: K]$. Inside the central simple K-algebra $B \otimes_{K} C$ we have two simple K-subalgebras, $A \otimes_{K} K$ and $K \otimes_{K} A$. Here the right factor of $K \otimes_{K} A$ is the image of A in $C=\operatorname{End}_{K}(A)$ under left multiplication. Clearly these two simple K-subalgebras of $B \otimes_{K} C$ are isomorphic, since both are isomorphic to A as a K-algebra. By Noether-Skolem, these two subalgebras are conjugate in $B \otimes_{K} C$ by a suitable element of $\left(B \otimes_{K} C\right)^{\times}$, therefore their centralizers (resp. double centralizers) in $B \otimes_{K} C$ are conjugate, hence isomorphic.

Let's compute the centralizers first:

$$
\mathrm{Z}_{B \otimes_{K} C}\left(A \otimes_{K} K\right)=\mathrm{Z}_{B}(A) \otimes_{K} C,
$$

while

$$
\mathrm{Z}_{B \otimes_{K} C}\left(K \otimes_{K} A\right)=B \otimes_{K} A^{\mathrm{opp}}
$$

Since $B \otimes_{K} A^{\mathrm{opp}}$ is central simple over K, so is $\mathrm{Z}_{B}(A) \otimes_{K} C$. Hence $\mathrm{Z}_{B}(A)$ is simple.
We compute the double centralizers:

$$
\mathrm{Z}_{B \otimes_{K} C}\left(\mathrm{Z}_{B \otimes_{K} C}\left(A \otimes_{K} K\right)\right)=\mathrm{Z}_{B \otimes_{K} C}\left(\mathrm{Z}_{B}(A) \otimes_{K} C\right)=\mathrm{Z}_{B}\left(\mathrm{Z}_{B}(A) \otimes_{K} K\right.
$$

while

$$
\mathrm{Z}_{B \otimes_{K} C}\left(\mathrm{Z}_{B \otimes_{K} C}\left(K \otimes_{K} A\right)\right)=\mathrm{Z}_{B \otimes_{K} C}\left(B \otimes_{K} A^{\mathrm{opp}}\right)=K \otimes_{K} A
$$

So $\mathrm{Z}_{B}\left(\mathrm{Z}_{B}(A)\right)$ is isomorphic to A as K-algebras. Since $A \subseteq \mathrm{Z}_{B}\left(\mathrm{Z}_{B}(A)\right)$, the inclusion is an equality.

§3. Some invariants

(3.1) Lemma Let K be a field and let A be a finite dimensional simple K-algebra. Let M be an (A, A)-bimodule. Then M is free as a left A-module.

Proof. We have $A \cong \mathrm{M}_{n}(D)$ for some division K-algebra D. To say that M is free means that length $A_{A}(M) \equiv 0(\bmod n)$. Let A_{s} be the left A-module underlying A. Because A_{s} is isomorphic direct sum of n copies of the irreducible left A-module $N:=\mathrm{M}_{n \times 1}(D)$, we have

$$
M \cong M \otimes_{A} A_{s} \cong\left(M \otimes_{A} N\right)^{\oplus n}
$$

So length $A_{A}(M) \equiv 0(\bmod n)$.
(3.2) Definition Let K be a field, B be a K-algebra, and let A be a finite dimensional simple K-subalgebra of B. Then B is a free left A-module by Lemma 3.1. We define the rank of B over A, denoted $[B: A]$, to be the rank of B as a free left A-module. Clearly $[B: A]=\operatorname{dim}_{K}(B) / \operatorname{dim}_{K}(A)$ if $\operatorname{dim}_{K}(A)<\infty$.
(3.3) Definition Let K be a field. Let B be a finite dimensional simple K-algebra, and let A be a simple K-subalgebra of B. Let N be a left simple B-module, and let M be a left simple A-module.
(i) Define $i(B, A):=\operatorname{length}_{B}\left(B \otimes_{A} M\right)$, called the index of A in B.
(ii) Define $h(B, A):=\operatorname{length}_{A}(N)$, called the height of B over A.

Here $[B: A]$ denotes the A-rank of B_{s}, where B_{s} is the free left A-module underlying B.
(3.4) Lemma Notation as in Def. 3.3.
(i) length ${ }_{B}\left(B \otimes_{A} U\right)=i(B, A)$ length $_{A}(U)$ for every left A-module U.
(ii) $\operatorname{length}_{A}(V)=h(B, A) \cdot$ length $_{B}(V)$ for every left B-module V.
(iii) length ${ }_{B}\left(B_{s}\right)=i(B, A) \cdot$ length $_{A}\left(A_{s}\right)$.
(iv) length $_{A}\left(B \otimes_{A} U\right)=[B: A] \cdot$ length $_{A}(U)$ for every left A-module U.
(v) $[B: A]=h(B, A) \cdot i(B, A)$

Proof. Statements (i), (ii) follow immediately from the definition. The statement (iii) follows from (i) and the fact that $B_{s} \cong B \otimes_{A} A_{s}$. The statement (iv) holds for $U=A_{s}$ from the definition of $[B: A]$, hence it hold for all left A-modules U. To show (v), we apply (iv) to a simple A-module M and get

$$
[B: A]=\operatorname{length}_{A}\left(B \otimes_{A} M\right)=h(B, A) \operatorname{length}_{B}\left(B \otimes_{A} M\right)=h(B, A) i(B, A) .
$$

Another proof of (iv) is to use the A-module A_{s} instead of a simple A-module M :

$$
[B: A] \operatorname{length}_{A}\left(A_{s}\right)=\operatorname{length}_{A}\left(B_{s}\right)=\operatorname{length}_{B}\left(B_{s}\right) h(B, A)=h(B, A) i(B, A) \operatorname{length}_{A}\left(A_{s}\right) .
$$

The last equality follows from (iii).
(3.5) Lemma Let $A \subset B \subset C$ be inclusion of simple algebras over a field K. Then $i(C, A)=$ $i(C, B) \cdot i(B, A), h(C, A)=h(C, B) \cdot h(B, A)$, and $[C: A]=[C: B] \cdot[B: A]$.
(3.6) Lemma Let K be an algebraically closed field. Let B be a finite dimensional simple K-algebra, and let A be a semisimple K-subalgebra of B. Let M be a simple A-module, and let N be a simple B-module.
(i) N contains M as a left A-module.
(ii) The following equalities hold.

$$
\begin{array}{r}
\operatorname{dim}_{K}\left(\operatorname{Hom}_{B}\left(B \otimes_{A} M, N\right)\right)=\operatorname{dim}_{K}\left(\operatorname{Hom}_{A}(M, N)\right)=\operatorname{dim}_{K}\left(\operatorname{Hom}_{A}(N, M)\right) \\
=\operatorname{dim}_{K}\left(\operatorname{Hom}_{B}\left(N, \operatorname{Hom}_{A}(B, M)\right)\right)
\end{array}
$$

(iii) Assume in addition that A is simple. Then $i(B, A)=h(B, A)$.

Proof. Statements (i), (ii) are easy and left as exercises. The statement (iii) follows from the first equality in (ii).
(3.7) Lemma Let A be a simple algebra over a field K. Let M be a non-trivial finitely generated left A-module, and let $A^{\prime}:=\operatorname{End}_{A}(M)$. Then length $A_{A}(M)=\operatorname{length}_{A^{\prime}}\left(A_{s}^{\prime}\right)$, where A_{s}^{\prime} is the left A_{s}^{\prime}-module underlying A^{\prime}.

Proof. Write $M \cong U^{n}$, where U is a simple A-module. Then $A^{\prime} \cong \mathrm{M}_{n}(D)$, where $D:=$ $\operatorname{End}_{A}(U)$ is a division algebra. So length $A_{A^{\prime}}\left(A_{s}^{\prime}\right)=n=\operatorname{length}_{A}(M)$.
(3.8) Proposition Let K be a field, B be a finite dimensional simple K-algebra, and let A be a simple K-subalgebra of B. Let N be a non-trivial B-module. Then
(i) $A^{\prime}:=\operatorname{End}_{A}(N)$ is a simple K-algebra, and $B^{\prime}:=\operatorname{End}_{B}(N)$ is a simple K-subalgebra of A^{\prime}.
(ii) $i\left(A^{\prime}, B^{\prime}\right)=h(B, A)$, and $h\left(A^{\prime}, B^{\prime}\right)=i(B, A)$.

Proof. The statement (i) is easy and omitted. To prove (ii), we have

$$
\operatorname{length}_{A}(N)=\operatorname{length}_{A^{\prime}}\left(A_{s}^{\prime}\right)=i\left(A^{\prime}, B^{\prime}\right) \operatorname{length}_{B^{\prime}}\left(B_{s}^{\prime}\right)
$$

where the first equality follows from Lemma 3.7 and the second equality follows from Lemma 3.4 (iii). We also have

$$
\operatorname{length}_{A}(N)=h(B, A) \operatorname{length}_{B}(N)=h(B, A) \text { length }_{B^{\prime}}\left(B_{s}^{\prime}\right)
$$

where the last equality follows from Lemma 3.7. So we get $i\left(A^{\prime}, B^{\prime}\right)=h(B, A)$. Replacing (B, A) by $\left(A^{\prime}, B^{\prime}\right)$, we get $i(B, A)=h\left(A^{\prime}, B^{\prime}\right)$.
(3.9) Extending the method in, we can express the invariants $i(B, A)$ and $h(B, A)$ somewhat more explicitly in terms of the basic invariants of B and A. Write

$$
A \cong \mathrm{M}_{m}(D), \quad B \cong \mathrm{M}_{n}(E)
$$

where E is a central division algebra over K, and E is a central division algebra over a finite extension field L / K. Let $d^{2}=\operatorname{dim}_{L}(D), e^{2}=\operatorname{dim}_{K}(E)$. Let $M \cong D^{\oplus m}, N \cong E^{\oplus n}$, with their natural module structure over $\mathrm{M}_{m}(D)$ and $\mathrm{M}_{n}(E)$ respectively. The canonical isomorphism

$$
\operatorname{Hom}_{B}\left(B \otimes_{A} M, N\right) \cong \operatorname{Hom}_{A}(M, N)
$$

gives us the equality

$$
i(B, A) \cdot e^{2}=h(B, A) \cdot d^{2} \cdot[L: K]
$$

Together with $i(B, A) \cdot h(B, A)=[B: A]=\frac{n^{2} e^{2}}{m^{2} d^{2}[L: K]}$, we get

$$
i(B, A)=\frac{n}{m}, \quad h(B, A)=\frac{[B: A]}{(n / m)}
$$

In particular, $m \mid n$, and $(n / m) \mid[B: A]$.

$\S 4$. Centralizers

(4.1) Theorem Let K be a field. Let B be a finite dimensional central simple algebra over K. Let A be a simple K-subalgebra of B, and let $A^{\prime}:=\mathrm{Z}_{B}(A)$. Let $L:=A \cap A^{\prime}=\mathrm{Z}(A)$. Then the following holds.
(i) A^{\prime} is a simple K-algebra.
(ii) $A:=\mathrm{Z}_{B}\left(\mathrm{Z}_{B}(A)\right)$.
(iii) $\left[B: A^{\prime}\right]=[A: K],[B: A]=\left[A^{\prime}: K\right],[B: K]=[A: K] \cdot\left[A^{\prime}: K\right]$.
(iv) $L=\mathrm{Z}(A)=\mathrm{Z}\left(A^{\prime}\right)$; A and A^{\prime} are linearly disjoint over L.
(v) If A is a central simple algebras over K, then $A \otimes_{K} A^{\prime} \xrightarrow{\sim} B$.
(vi) For any non-trivial B-module N we have natural isomorphisms

$$
\operatorname{End}_{B}(N) \otimes_{K} A \xrightarrow{\sim} \operatorname{End}_{Z_{B}(A)}(N), \quad \operatorname{End}_{B}(N) \otimes_{K} \mathrm{Z}_{B}(A) \xrightarrow{\sim} \operatorname{End}_{A}(N) .
$$

Remark (1) Statements (i) and (ii) of Thm. 4.1 is the content of double centralizer theorem 2.10. The proof in 2.10 uses Noether-Skolem and the fact that the double centralizer of any K-algebra A in $\operatorname{End}_{K}(A)$ is equal to itself. The proof in 4.1 relies on Prop. 3.8.
(2) Statement (v) of Thm. 4.1 is a special case of Thm. 2.9.

Proof. Let N be a non-trivial left B-module. Let $D:=\operatorname{End}_{B}(N)$. We have $D \subseteq \operatorname{End}_{K}(N) \supseteq$ B, and $\mathrm{Z}(D)=\mathrm{Z}(B)=K$. So $D \otimes_{K} A$ is a simple K-algebra, and we have

$$
D \otimes_{K} A \xrightarrow{\sim} D \cdot A \subseteq \operatorname{End}_{K}(N)=: C
$$

where $D \cdot A$ is the subalgebra of $\operatorname{End}_{K}(N)$ generated by D and A. We have $B \cong \mathrm{M}_{n}(R)$ for some central division K-algebra R. Under this identification we can take N to be $\mathrm{M}_{n \times 1}(R)$. Then $D=R^{\text {opp }}$, operating naturally on $\mathrm{M}_{n \times 1}(R)$, and $\mathrm{Z}_{C}(D)=B$. So we know one instance of the double centralizer theorem; $\mathrm{Z}_{C}\left(\mathrm{Z}_{C}(B)\right)=B$. We will leverage this one instance to prove the general double centralizer theorem. We have

$$
\mathrm{Z}_{C}(D \cdot A)=\mathrm{Z}_{C}(D) \cap \mathrm{Z}_{C}(A)=B \cap \mathrm{Z}_{C}(A)=A^{\prime}
$$

Hence $A^{\prime}=\operatorname{End}_{D \cdot A}(N)$ is simple, because $D \cdot A$ is simple. We have proved (i).
Apply Prop. 3.8 (ii) to the pair $(D \cdot A, D)$ and the $D \cdot A$-module N. We get

$$
[A: K]=[D \cdot A: D]=\left[B: A^{\prime}\right]
$$

since $\mathrm{Z}_{C}(D)=B$. On the other hand, we have

$$
[B: A] \cdot[A: K]=[B: K]=\left[B: A^{\prime}\right] \cdot\left[A^{\prime}: K\right]=[A: K] \cdot\left[A^{\prime}: K\right]
$$

so $[B: A]=\left[A^{\prime}: K\right]$. We have proved (iii).
Apply (i) and (iii) to the simple K-subalgebra $A^{\prime} \subseteq B$, we see that $[A: K]=\left[\mathrm{Z}_{B}\left(A^{\prime}\right): K\right]$, so $A=\mathrm{Z}_{B}\left(\mathrm{Z}_{B}(A)\right)$ because $A \subset \mathrm{Z}_{B}\left(A^{\prime}\right)$. We have proved (ii).

Let $L:=A \cap A^{\prime}=\mathrm{Z}(A) \subseteq \mathrm{Z}\left(A^{\prime}\right)=\mathrm{Z}(A)$. The last equality follows from (ii). The tensor product $A \otimes_{L} A^{\prime}$ is a central simple algebra over L since A and A^{\prime} are central simple over L. So the canonical homomorphism $A \otimes_{L} A^{\prime} \rightarrow B$ is an injection. We have prove (iv). The above inclusion is an equality if and only if $L=K$, because $\operatorname{dim}_{L}(B)=[L: K] \cdot[A: L] \cdot\left[A^{\prime}: L\right]$.

We have seen in the proof of (i) that the centralizer of the image C of $\operatorname{End}_{B}(N) \otimes_{K} A$ in $\operatorname{End}_{K}(N)$ is $\mathrm{Z}_{B}(A)$. So C is equal to $\operatorname{End}_{\mathrm{Z}_{B}(A)}(N)$. We have proved the first equality in (vi). The second equality in (vi) follows.

Remark (a) Theorem 4.1 (iii) is crucial in 4.3-4.6 below.
(b) One can also finish the proof of (vi) by dimension count, after having shown a natural injection $\operatorname{End}_{B}(N) \otimes_{K} A^{\prime} \hookrightarrow \operatorname{End}_{A}(N)$. Let $r=\operatorname{dim}_{K}(N)$. Then

- $\operatorname{dim}_{K}\left(\operatorname{End}_{A}(N)\right)=r^{2} / \operatorname{dim}_{K}(A)$,
- $\operatorname{dim}_{K}\left(\operatorname{End}_{B}(N)\right)=r^{2} / \operatorname{dim}_{K}(B)$,
- $\operatorname{dim}_{K}\left(A^{\prime}\right)=\operatorname{dim}_{K}(B) / \operatorname{dim}_{K}(A)$,
all by $4.1(\mathrm{iii})$. $\operatorname{So~}_{\operatorname{dim}}^{K}\left(\operatorname{End}_{B}(N) \otimes_{K} A^{\prime}\right)=\operatorname{dim}_{K}\left(\operatorname{End}_{A}(N)\right)$.
(4.2) Corollary Notation as in 4.1. Let $L:=\mathrm{Z}(A)=\mathrm{Z}\left(\mathrm{Z}_{B}(A)\right)$. Then $\left[A \otimes_{L} \mathrm{Z}_{B}(A)\right]$ and [$\left.B \otimes_{K} L\right]$ are equal as elements of $\operatorname{Br}(L)$.

Proof. Take $N=B$, the left regular representation of B, in Thm. 4.1. The second equality in 4.1 (vi) becomes

$$
B^{\mathrm{opp}} \otimes_{K} \mathrm{Z}_{B}(A) \cong \operatorname{End}_{A}\left(B_{s}\right) \cong \mathrm{M}_{[B: A]}\left(A^{\mathrm{opp}}\right)
$$

because B_{s} is a free left A-module of rank [$B: A$]. Similarly the first equality in 4.1 (vi) reads

$$
B^{\mathrm{opp}} \otimes_{K} A \cong \mathrm{M}_{\left[B: \mathrm{Z}_{B}(A)\right]}\left(\mathrm{Z}_{B}(A)^{\mathrm{opp}}\right)
$$

(4.3) Corollary Let A be a finite dimensional central simple algebra over a field K, and let F be a subfield of A which contains K. Then F is a maximal subfield of A if and only if $[F: K]^{2}=[A: K]$.

Proof. Immediate from Thm. 4.1 (iii).
(4.4) Proposition Let D be a finite dimensional central division algebra over a field K. Then D admits a maximal subfield L with $[L: K]^{2}=\operatorname{dim}_{K}(D)$ such that L is separable over K. In particular D has a separable splitting field.

Proof. Induction on $\operatorname{dim}_{K}(D)$, use Proposition 2.7 and Theorem 4.1 (iii).

Remark It is not true that every finite dimensional central simple algebra A over K has subfield L with $[L: K]^{2}=\operatorname{dim}_{K}(A)$. The most obvious example is when K is algebraically closed. Another similar example is when $K \supset \mathbb{F}_{p}$ is separably closed and $\operatorname{dim}_{K}(A)$ is relatively prime to p.
(4.5) Proposition Let A be a finite dimensional central simple algebra over K. Let F be an extension field of K such that $[F: K]=n:=[A: K]^{1 / 2}$. Then there exists a K-linear ring homomorphism $F \hookrightarrow A$ if and only if $A \otimes_{K} F \cong \mathrm{M}_{n}(F)$.

Proof. The "only if" part is contained in Lemma 2.6. It remains to show the "if" part. Suppse that $A \otimes_{K} F \cong \mathrm{M}_{n}(F)$. Choose a K-linear embedding $\alpha: F \hookrightarrow \mathrm{M}_{n}(K)$. The central simple algebra $B:=A \otimes_{K} \mathrm{M}_{n}(K)$ over K contains $C_{1}:=A \otimes_{K} \alpha(F)$ as a subalgebra, whose centralizer in B is $K \otimes_{K} \alpha(F)$. Since $C_{1} \cong \mathrm{M}_{n}(F)$ by assumption, C_{1} contains a subalgebra C_{2} which is isomorphic to $\mathrm{M}_{n}(K)$. By Noether-Skolem, $\mathrm{Z}_{B}\left(C_{2}\right)$ is isomorphic to A over K. So we get $F \cong \mathrm{Z}_{B}\left(C_{1}\right) \subset \mathrm{Z}_{B}\left(C_{2}\right) \cong A$.
(4.6) Corollary Let Δ be a central division algebra over K, and let F be a finite extension field of K. Let $n=\operatorname{dim}_{K}(\Delta)^{1 / 2}$. The field F is a splitting field of Δ if and only if $n \mid[F: K]$ and F is a maximal subfield of $\mathrm{M}_{r}(\Delta)$, where $r=[F: K] / n$.

Proof. By 4.5, it suffices to show that if F is a splitting field of Δ, then $n \mid[F: K]$. But then we have an action of Δ on $F^{\oplus n}$, and $n^{2}=\operatorname{dim}_{K}(D) \mid \operatorname{dim}_{K}\left(F^{\oplus}\right)=n[F: K]$. Therefore $n \mid[F: K]$.

Remark Here is an equivalent form of 4.6, and a direct proof.
Let A be a central simple algebra over a field K, and let L be a splitting field of A. Then there exists a central simple algebra A_{1} in the same Brauer class of A which has a maximal subfield L_{1} isomorphic to L over K.

Proof. Let $\operatorname{dim}_{K}(A)=n^{2}, d=[L: K]$. By assumption we have

$$
A^{\mathrm{opp}} \otimes_{K} L \xrightarrow[\sim]{\alpha} \mathrm{M}_{n}(L) \stackrel{j}{\longrightarrow} \mathrm{M}_{n d}(K)=: B
$$

According to 4.1 (iv), $A_{1}:=\mathrm{Z}_{C}\left((j \circ \alpha)\left(A^{\mathrm{opp}} \otimes 1\right)\right)$ is a central simple algebra over K, in the same Brauer class as A. Theorem 4.1 (iii) tells us that $\operatorname{dim}_{K}\left(A_{1}\right)=d^{2}=[L: K]^{2}$. Clearly $L_{1}:=(j \circ \alpha)(1 \otimes L) \subset A_{1}$, so L_{1} is a maxmial subfield of A_{1}.

