Math 602 Midterm Exam, Fall 2006

Part I. For each of the following, either give an example, or show that none exists.

1. (10 pts) A non-cyclic abelian group with 42 elements.
2. (10 pts) A group of order 16 which that has no subgroup of order 4 .
3. (10 pts) A solvable group which is not nilpotent.
4. (10 pts) A non-split extension of groups, i.e. a surjective homomorphism of groups $\pi: G \rightarrow$ Q such that there is no homomorphism $\alpha: Q \rightarrow G$ with $\pi \circ \alpha=\operatorname{Id}_{Q}$.
5. (10 pts) A surjective \mathbb{R}-linear homomorphism $\mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$.
6. (10 pts) A ring R, a left R-module N and a short exact sequence of left R-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

such that the induced sequence of abelian groups

$$
0 \rightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, N\right) \rightarrow \operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{R}\left(M^{\prime}, N\right) \rightarrow 0
$$

is not exact.
7. (10 pts) A ring R, a left R-module N and a short exact sequence of left R-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

such that the induced sequence of abelian groups

$$
0 \rightarrow M^{\prime} \otimes_{R} N \rightarrow M \otimes_{R} N \rightarrow M^{\prime \prime} \otimes_{R} N \rightarrow 0
$$

is not exact.
8. (15 pts) A prime ideal $I \subset \mathbb{Q}[\mathbb{Z} / 4 \mathbb{Z}]=: R$ such that $\operatorname{dim}_{\mathbb{Q}}(R / I) \geq 2$.
9. (15 pts) A maximal ideal in $\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)$.

Part II.
10. (20 pts) (a) Determine the cardinality of the groups $\operatorname{Aut}_{\operatorname{grp}}((\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 7 \mathbb{Z}))$.
(b) Is the group Aut $\operatorname{grp}((\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 7 \mathbb{Z}))$ cyclic? (Either prove that it is cyclic, or prove that it is not cyclic.)
11. (15 pts) Let M be the \mathbb{Z}-module $(\mathbb{Z} / 10 \mathbb{Z}) \oplus(\mathbb{Z} / 25 \mathbb{Z}) \oplus(\mathbb{Z} / 4 \mathbb{Z})$. Determine the \mathbb{Z}-modules $\bigwedge_{\mathbb{Z}}^{3} M$.
11a. (15 extra credit pts) Find the structure of the \mathbb{Z}-module $\bigwedge_{\mathbb{Z}}^{2} M$.
12. (20 extra credit pts) Is there a finitely generated non-trivial \mathbb{Z}-module M such that there exist a natural number $N_{0} \in \mathbb{N}$ such that $\mathrm{S}_{\mathbb{Z}}^{i} M=(0)$ for all $i \geq N_{0}$? (Either give an example, or show that none exists.)

