
Algebra

by

Stephen S. Shatz∗ and Jean Gallier∗∗

∗Department of Mathematics
∗∗Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA

c©Stephen S. Shatz & Jean Gallier

August 12, 2006



ii



iii

To Peter A. Cassileth and to the memories of Stanley M.K. Chung and Ralph C. Marcove,
physicians and friends all. Being mortal and denied the gift of life, he gives and they gave

the next best thing: Time

To Anne, Mia, Philippe and Sylvie



iv



Contents

Preface vii

For the Student ix

1 Group Theory 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Group Actions and First Applications; The Three Sylow Theorems . . . . . . . . . . . . . . . 1
1.3 Elementary Theory of p-Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Group Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Solvable and Nilpotent Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Preface

A book on “Abstract” or “Modern” Algebra is a commonplace thing in today’s mathematical milieu. Even a
book for well-prepared, serious beginning graduate students who intend to become research mathematicians
is not so strange any longer. But, the genesis of this book, which is intended for serious, well-prepared
graduate students, is somewhat strange.

To begin with, it is a reworking of notes for a year long graduate course I gave several years ago–not
in itself a strange thing. But, I possess no such notes nor did I ever make any and I never lecture with a
written aide memoir of any sort. Rather, my method is to work out fully during lecture (at the board) each
proof and example. Students will thus see what are the “inner workings” of the subject. Of course, this is
pedagogically to their advantage and, furthermore, it slows me down.

Then where did the notes (to be reworked) come from? They were provided by my friend and colleague
Jean H. Gallier (of the Computer Science Department at Penn). Determined to augment his mathematical
knowledge, he began several years ago to audit some of my graduate courses. “Audit” for him means
faithfully attending lectures, doing all the problem assignments, participating in each bi-weekly problem
session (where he takes his turn presenting problems), writing excellent notes from my oral presentation and
rendering these notes in LATEX form.1 That this book will appear is, in large measure, his doing. While I
have been responsible for its writing, he has on occasion introduced results and/or alternate proofs that have
rendered some material more perspicacious from a student’s point of view–these have improved the text. He
is in every sense a joint author, save that errors are solely my responsibility. There is no way I can thank
him adequately here in plain words and I won’t try except to say, Je te remercie vivement, mon ami Jean,
pour tout ton travail .

Others should be thanked as well–in particular the members of the class that attended the course from
which the book is formed.2 By their interest and attention to detail, they kept me on my toes. One
particular member of that class deserves special mention: Mathew Cross.3 Mathew started the index and
set the original 115 problems in LATEX. He lightened our burden by a considerable amount.

The content of the book follows rather closely the oral lectures–with just a few exceptions. These are: In
Chapter 3, the section on Integral Dependence is now augmented by proofs of all results, the original lectures
had statements only of some of these (due to exigencies of time) and Gallier insisted on a full treatment.
In Chapter 4, the sections on Norms and Traces as well as Kummer Theory and Transcendental Extensions
are likewise augmented by full proofs. In Chapter 5, there is now more to the section on (co)homological
functors and there are full proofs in the last section on the Koszul Complex. Otherwise, the material is just
(a smoothed out version of) what was presented. One will have to move fast to present it to students in one
year, at least I did.

But the heart of the book is the Problem section. Here, I’ve attempted to simulate at the beginning
graduate level some of the features of real mathematical work. There is a jumbling of the problems vis a

1One must realize he maintains a full research and teaching schedule, directs Ph.D. students, attends to administrative duties
and has a family life in addition to this “auditing”!

2The members of the class were: A. Bak, D. Boyarchenko, S. Brooks, M. Campbell, S. Corry, M. Cross, C. Daenzer, C.
Devena, J. Gallier, S. Guerra, C. Hoelscher, T. Jaeger, J. Long, S. Mason, T. Zhu.

3Mathew spells his name with but one “t”; there is no misprint.
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viii Preface

vis subject matter just as in real research one never knows what kind of mathematics will be needed in the
solution of a problem. There is no hint of the level of difficulty of a problem (save for the few problems
where suggestions are offered), and anyway the notion of difficulty is ill-defined. And, the problems refer to
each other, just as in real work one is constantly reminded of past efforts (successful or not). In effect, as
suggested in the preface for students, one should begin with the problems and use the text as a means to
fill in knowledge as required to do them (as well as to do other problems assigned by an instructor in this
course or another course).

This brings me to the text material itself. There is no attempt to be encyclopedic. After all, the material
is a faithful copy of what was actually covered in a year and any competent instructor can add material
that has been omitted. I regret not covering the Wederburn-Artin Theory of DCC rings, the Brauer Group,
and some basic material on group representations. What is covered, however, is to my mind central to
the education of any prospective mathematician who aspires to contribute to what is now the mainstream
of mathematical endeavor. Also, while there are over 150 problems filling some 55 pages of text (some of
the problems are rather long being multi-part), other problems of an instructor’s choosing can certainly be
assigned. As to the attribution of the origins of these problems, I have assigned names when they are known
to me. If no name is assigned, the problem comes from some source in my past (perhaps one of my own
teachers or their teachers) and in no way do I claim it as my own. Good problems from all sources are the
treasure hoard of practicing mathematicians in their role as passers on of our common heritage.

I refer to the special symbols (DX) and the “curves ahead” road sign (appearing at odd places in the
text) in the student preface; no repeat of the explanations I offer there is necessary. If you as instructor are
lucky enough to have a class as interested and tough to satisfy as I did, you are lucky indeed and need no
further assurance that mathematics will be in good hands in the future. I intend this book to be of service
to such individuals as they begin their long climb to mathematical independence and maturity.

Tolda Santa Cotogna
Summer, 2006



For the Student

It may be surprising but the most important part of the book you now hold before you is the very last
section–the one labeled “Problems”. To learn mathematics one must do mathematics. Indeed, the best
way to read this book is to turn immediately to the problem section and begin to do the problems. Of
course, you will soon reach some unknown terminology or not have enough knowledge to meet the technical
demands of a problem and this is where you turn to the text to fill in gaps, see ideas explained and techniques
demonstrated. Then you plunge once more back into the problems and repeat the whole process.

The book is designed for serious, well-prepared students who plan on becoming research mathematicians.
It presumes you have had previous acquaintance with algebra; in particular you have met the concepts of
group, ring, field, vector space, homomorphism, isomorphism, and the elementary theorems about these
things. No book on mathematics can be simply read, rather you must recreate the text yourself line by line
checking at each stage all details including those omitted. This is slow work and, as you know, mathematics
has very high density on the page.

In the text, you will find two special symbols: (DX) and a sign such as one sees on the road warning
of dangerous curves ahead. The symbol (DX) stands for “diagnostic exercise”, it means some elementary
details have been omitted and that supplying them should be easy. However, if supplying them is not easy,
then you should go back a page or two as something fundamental has skipped you by. In this way, the sign
(DX) is like a medical test: failing it is sure to tell you if something is wrong (no false positives), however,
if you pass it (supply the details), something still might be wrong. Just read on and anything wrong will
surface later. As for the dangerous curves sign, it precedes counter-examples to naively made conjectures, it
warns when things could go wrong if hypotheses are omitted, and generally forces you to slow down in the
reading and recreating.

If you use this book in a course or even for self study, I recommend that you tackle the problems in a
small group (two to four persons, total). This is because no person has a monopoly on ideas, a good idea
or half-idea can germ in any head, and the working out of a problem by a committed group is akin to the
actual way much research mathematics is accomplished. In your group, you want constant give and take,
and there must be time to think alone so that a real contribution to the group’s effort can be made.

The problems are all jumbled up by area and there is no signal given as to a problem’s difficulty (exceptions
are the few cases where hints or suggestions are given). In real mathematical life, no signs are given that a
question being attacked involves a certain small area of mathematical knowledge or is hard or easy; any such
sign is gleaned by virtue of experience and that is what you are obtaining by doing mathematics in these
problems. Moreover, hard and easy are in the eyes of the beholder; they are not universal characteristics
of a problem. About all one can say is that if a large number of people find a problem difficult, we may
classify it so. However, we shouldn’t be surprised when an individual solves it and claims that, “it was not
that hard”. In any case, guard against confusing mathematical talent either with overall intelligence or with
mathematical speed. Some quick people are in fact talented, many are just quick. Don’t be discouraged if
you find yourself slower than another, the things that really count in doing mathematics (assuming talent)
are persistence and courage.

ix



x For the Student

I can think of no better lines to close with than these which come from B. Pasternak’s poem entitled
“Night”4

“And maybe in an attic
And under ancient slates
A man sits wakeful working
He thinks and broods and waits.”

“He looks upon the planet,
As if the heavenly spheres
Were part of his entrusted
Nocturnal private cares.”

“Fight off your sleep: be wakeful,
Work on, keep up your pace,
Keep vigil like the pilot,
Like all the stars in space.”

“Work on, work on, creator–
To sleep would be a crime–
Eternity’s own hostage,
And prisoner of Time.”

Tolda Santa Cotogna
Summer, 2006

4From the collection entitled “When It Clears Up”, 1956. Translated by Lydia Pasternak Slater (the poet’s sister).



Chapter 1

Group Theory

1.1 Introduction

Groups are probably the most useful of the structures of algebra; they appear throughout mathematics,
physics1 and chemistry. They almost always occur as “groups of transformations” and that is the way we
will use them at first. This allows of tremendous freedom, constrained only by the imagination in finding
objects on which to let groups act, or, what is the same, in finding homomorphisms from the group to the
“automorphisms” of some object or structure. Then we will look into groups qua groups, and here there
is a sharp distinction between the finite case and the infinite case. In the finite case, there is a subtle
interplay (not yet fully understood) between the order of a group and its structure, whereas in the infinite
case“geometric” arguments and applications are more the norm.

1.2 Group Actions and First Applications; The Three Sylow The-
orems

We begin by reviewing the notion of group action.

Definition 1.1 Let G be a group and S be a set. We say that G acts on S (on the left) (or that there is a
(left) G-action on S) iff there is a map

G
∏

S −→ S

(σ, s) �→ σ · s

called the action, satisfying the two rules:

(1) (∀s ∈ S)(1 · s = s)

(2) (∀σ, τ ∈ G)(∀s ∈ S)(σ · (τ · s) = (στ) · s).

Remarks:

(1) For every σ ∈ G, the map s �→ σ · s is a bijection of S to itself. Its inverse is the map s �→ σ−1 · s. We
let Aut(S) denote the set of all set theoretic bijections of S.

1The word group even occurs in Einstein’s first paper [12] on special relativity; it is the only place to my knowledge where
that word appears in Einstein’s corpus of scientific work.

1



2 CHAPTER 1. GROUP THEORY

(2) Write θ(σ) for the element of Aut(S) given by remark (1), i.e.,

θ(σ)(s) = σ · s.

Then, the map θ : G→ Aut(S) is a homomorphism of groups (where Aut(S) is a group under compo-
sition).

(3) Conversely, a n.a.s.c. that G act on S is that there is a homomorphism θ : G → Aut(S). (The action
gives θ by remarks (1) and (2), and given θ, define the corresponding action by σ · s = θ(σ)(s). Check
that this is an action (DX).)

Say G acts on S, and for any given s consider

St(s) = {σ ∈ G | σ · s = s},

the stabilizer of s. It is always a subgroup of G. The set

{t ∈ S | (∃σ ∈ G)(σ · s = t)}

is the orbit of s under the action, and it is denoted OG(s).

(4) There is a one-to-one correspondence between the elements of the orbit of s and the left cosets of St(s)
in G. Namely, if H = St(s), there are maps

σH �→ σ · s
σ · s �→ σH,

for any left coset, σH. The first map is well-defined because if σH = τH, then τ = σh for some h ∈ H,
and

τ · s = (σh) · s = σ · (h · s) = σ · s
as h ∈ St(s). The reader should check that the second map is well-defined (DX).

If G is finite or (G : St(s)) is finite (here, (G : H) denotes the index of the subgroup H in G, i.e., the
number of (left) cosets of H in G), then OG(s) is a finite set and when G is finite, #(OG(s)) divides
#(G).

(5) Say t ∈ OG(s) and H = St(s). Write t = σ · s. What is St(t)?

We have τ ∈ St(t) iff τ · t = t iff τ · (σ · s) = σ · s iff (σ−1τσ) · s = s iff σ−1τσ ∈ H iff τ ∈ σHσ−1. In
conclusion, we see that St(σ · s) = σSt(s)σ−1, a conjugate subgroup of St(s).

(6) The reader can check that the relation ∼ on the set S defined by

s ∼ t iff t = σ · s for some σ ∈ G

is an equivalence relation on S, and that the equivalence classes of this relation are exactly the distinct
orbits OG(s). Thus, given two orbits, OG(s) and OG(t), either OG(s) ∩ OG(t) = ∅ or OG(s) = OG(t).
As a conclusion,

S =
⋃
·

distinct orbits

OG(s).

The orbit space, G \ S, is the quotient set S/ ∼, i.e., the collection of orbits, each considered as a
distinct entity.



1.2. GROUP ACTIONS AND FIRST APPLICATIONS; THE THREE SYLOW THEOREMS 3

Obviously, we can define the notion of right action using a map S
∏
G −→ G. It is obvious how to modify

conditions (1) and (2) in Definition 1.1.

We now give some examples of group actions.

Example 1.1

(1) Trivial action. Let G be any group and S be any set. The action is

σ · s = s,

that is, it leaves every element of S fixed.

(2) Let G be a group and H be a subgroup of G. Consider G as a set, H as a group, and the action
H
∏
G −→ G given by

(τ, s) �→ τ · s = τs ∈ G.

This action is called translation. Observe that

St(s) = {τ ∈ H | τs = s} = {1},

and

OH(s) = {t ∈ G | (∃σ ∈ H)(σ · s = t)}
= {t ∈ G | (∃σ ∈ H)(σs = t)}
= Hs = a right coset of s.

(3) Let G be a group and H be a subgroup of G. Consider G as a set, H as a group, and the action
H
∏
G −→ G given by

(τ, s) �→ τ · s = τsτ−1 ∈ G.

This action is called conjugation. Note that

St(s) = {τ ∈ H | τsτ−1 = s}
= {τ ∈ H | τs = sτ},

the collection of τ ’s in H which commute with s. When H = G, we see that St(s) is the centralizer of
s in G, denoted ZG(s). For an arbitrary subgroup H of G, we get St(s) = ZG(s) ∩H. We also have

OH(s) = {t ∈ G | (∃σ ∈ H)(σsσ−1 = t)},

the H-conjugacy class of s, denoted ClH(s). When H = G, we get the conjugacy class of s, denoted
Cl(s).

(4) Suppose the set S has some structure. Two very important special cases are:

(a) The set S is a vector space over a field. Then, we require θ : G → Aut(S) to land in the linear
automorphisms of S, i.e., in the invertible linear maps. In this case, our action is called a (linear)
representation of G.

(b) The set S is an abelian group under addition, +. Then, we require θ : G → Aut(S) to land in
the group of group automorphisms of S. Our action makes S into a G-module. Observe that in
addition to the axioms (1) and (2) of Definition 1.1, a G-module action also satisfies the axiom

σ · (a+ b) = (σ · a) + (σ · b), for all σ ∈ G and all a, b ∈ S.



4 CHAPTER 1. GROUP THEORY

Now, assume that G is finite. Observe that the converse of Lagrange’s theorem is false; namely, if G has
order n and h divides n, then there isn’t necessarily a subgroup of order h. Indeed, the group, A4, of even
permutations on four elements, has order 12 and 6 | 12, yet A4 has no subgroup of order 6. In 1872, Sylow
(pronounce “Zŏloff”) discovered the Sylow existence theorem and the classification theorem, known now as
Sylow theorems I & II.

Theorem 1.1 (Sylow, I) If G is a finite group of order g and p is a given prime number, then whenever
pα | g (with α ≥ 0), there exists a subgroup, H, of G of exact order pα.

To prove Theorem 1.1, we need an easy counting lemma. If m is an integer, write ordp(m) for the
maximal exponent to which p divides m (i.e., ordp(m) = β for the largest β such that pβ | m). The following
simple properties hold (DX):

(1) ordp(mn) = ordp(m) + ordp(n).

(2) ordp(m± n) ≥ min{ordp(m), ordp(n)},
with equality if ordp(m) = ordp(n).

(3) By convention, ordp(0) = ∞.

Lemma 1.2 (Counting lemma) Let p be a prime, α,m positive integers. Then,

ordp

(
pαm

pα

)
= ordp(m).

Proof . We know that (
pαm

pα

)
=
pαm(pαm− 1) · · · (pαm− (pα − 1))

pα(pα − 1) · · · 2 · 1 .

Observe that for 0 < i < pα, we have (DX)

ordp(pαm− i) = ordp(pα − i).

Thus, (
pαm

pα

)
= mK, where K is prime to p.

Therefore,

ordp

(
pαm

pα

)
= ordp(m),

as contended.

Proof of Sylow I . (Wielandt, 1959) If S is any subset of G, let

σ · S = {σt | t ∈ S},
and note that σ · S is a subset of the same cardinality of that of S. Let

S = {S ⊆ G | #(S) = pα}.
Note that in the above definition, S is any subset of G, and not necessarily a subgroup of G. Of course,

#(S) =
(
pαm

pα

)
.

The group G acts on S by translation, i.e., via, S �→ σ · S.
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Claim. There is some S ∈ S so that

ordp(#(OG(S))) ≤ ordp(m).

If not, then for all S ∈ S, we have ordp(#(OG(S))) > ordp(m). But we know that S can be written as a
disjoint union of G-orbits,

S =
⋃
·

distinct orbits

OG(S).

So,
#(S) =

∑
distinct orbits

#(OG(S)).

Consequently,
ordp(#(S)) ≥ min{ordp(#(OG(S)))} > ordp(m).

But

ordp(#(S)) = ordp

(
pαm

pα

)
,

contradicting Lemma 1.2. This proves the claim.

Now, pick some S ∈ S so that ordp(#(OG(S))) ≤ ordp(m). Let H be the stabilizer of S. We know that

(a) #(OG(S)) = (G : St(S)) = (G : H).

(b) pαm = #(G) = #(H)#(OG(S)).

From (b), applying the ord function, we get

α+ ordp(m) = ordp(#(H)) + ordp(#(OG(S))) ≤ ordp(#(H)) + ordp(m).

So, α ≤ ordp(#(H)) and then, pα divides #(H), and thus, #(H) ≥ pα. Now, H takes S elementwise to
itself by translation, and for every s ∈ S,

St(s) = {σ ∈ H | σs = s} = {1}.
Therefore, #(H) = #(OH(s)) for every s ∈ S, and yet every orbit is contained in S. Thus,

#(OH(s)) ≤ #(S) = pα,

from which we deduce that #(H) ≤ pα. We conclude that #(H) = pα, and H is the required subgroup.

Corollary 1.3 (Original Sylow I) If pβ is the maximal power of p to divide #(G) and p is a prime number,
then G possesses a subgroup of order pβ.

The subgroups of maximal p-power order arising in Corollary 1.3 are called the p-Sylow subgroups of G
(there can be more than one).

Corollary 1.4 (Cauchy, 1840) Say G is a finite group and p | #(G), where p is a prime number. Then,
there is some σ of order p in G.

Nomenclature: A p-group is a finite group whose order is a power of the prime number p.

Corollary 1.5 Say G is a p-group, with #(G) = pr. Then G possesses a descending chain

G = G0 > G1 · · · > Gr−1 > Gr = {1},
so that (Gi : Gi+1) = p for all i with 0 ≤ i ≤ r − 1. Hence, #(Gi) = pr−i.
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Proof . By Sylow I, a subgroup G1 of order pr−1 exists. An induction finishes the proof.

Remark: It is not clear that Gi+1 is normal in Gi. In fact, this is true, but it takes more work (see
Proposition 1.10).

To prove Sylow II, we need the local embedding lemma. In order to state this lemma, we need to recall
the concept of a normalizer. If S denotes the collection of all subsets of G, then G acts on S by conjugation:
S �→ σSσ−1. This action preserves cardinality. For every S ∈ S, we have

St(S) = {σ ∈ G | σSσ−1 = S}.

The group St(S) is called the normalizer of S in G, and it is denoted NG(S). If S is a subgroup of G, then
S is normal in NG(S) (denoted S �NG(S)), and NG(S) is the biggest subgroup in which S is normal (DX).

The “philosophy” behind the local embedding lemma is that if P is any subgroup of a group G, then
NG(P ) is a “local neighborhood” of P in which P perhaps behaves nicely. We recall the following proposition
which is used for proving Lemma 1.7.

Proposition 1.6 Given a group G, for any two subgroups S and P , if S ⊆ NG(P ), then PS = SP is the subgroup
of NG(P ) generated by S ∪ P , the subgroup P is normal in SP and (SP )/P ∼= S/(S ∩ P ).

Proof . Since S ⊆ NG(P ), we have σPσ−1 = P for all σ ∈ S, and thus, it clear that SP = PS. We have στσ−1 ∈ P
for all σ ∈ S and all τ ∈ P , and thus, for all a, c ∈ S and all b, d ∈ P , we have

(ab)(cd) = (ac)(c−1bc)d

b−1a−1 = a−1(ab−1a−1).

The above identities prove that SP is a group. Since S and P contain the identity, this group contains S and P , and

clearly any subgroup containing S and P contains SP . Therefore, SP is indeed the subgroup of NG(P ) generated

by S ∪ P and it is clear that P is normal in SP . Now, look at the composition ϕ of the injection S −→ SP with the

quotient map SP −→ (SP )/P . It is surjective, and ϕ(σ) = σP for every σ ∈ S. Thus, σ ∈ Ker ϕ iff σ ∈ S ∩ P , and

so Ker ϕ = S ∩ P , and the first isomorphism theorem yields

(SP )/P ∼= S/(S ∩ P ).

After this short digression, we return to the main stream of the lecture.

Lemma 1.7 (Local embedding lemma) Suppose that P is a p-Sylow subgroup of G. Then for every σ ∈
NG(P ), if σ has p-power order then σ ∈ P . In particular, if H is a p-subgroup of NG(P ), then H ⊆ P and
P is unique in NG(P ).

Proof . Let S be any p-subgroup of NG(P ). Look at the group, H, generated by S and P in NG(P ),
denoted Gp{S, P}. Since P is normal in NG(P ), from Proposition 1.6, we have H = SP = PS, and
H/P = (SP )/P ∼= S/(S ∩ P ). Thus,

(H : P ) = (S : S ∩ P ),

and (S : S ∩P ) is a p-power, since S is a p-group. On the other hand, (S : S ∩P ) is prime to p, as (G : P ) =
(G : H)(H : P ) and (G : P ) is prime to p by definition of P . So, we must have (H : P ) = (S : S ∩ P ) = 1,
which implies that H = P . Thus, S = S ∩ P , and S ⊆ P . We finish the proof by letting S be the cyclic
p-group generated by σ.

Theorem 1.8 (Sylow II) If G is a finite group, write Sylp(G) for the collection of all p-Sylow subgroups of
G, and P for the collection of all the p-subgroups of G, where p is a prime number. Then, the following
hold:

(1) sylp(G) = #(Sylp(G)) ≡ 1 (mod p).
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(2) For all S ∈ P(G) and all P ∈ Sylp(G), there is some σ ∈ G so that S ⊆ σPσ−1. In particular, any
two p-Sylow subgroups of G are conjugate in G.

(3) sylp(G) divides #(G); in fact, sylp(G) divides the prime to p part of #(G).

Proof . (1) The group G acts by conjugation on Syl(G) (drop the subscript p in the course of this proof). So

Syl(G) =
⋃
·

distinct orbits

OG(P ).

Any S ∈ P(G) also acts by conjugation on Syl(G), and so

Syl(G) =
⋃
·

distinct orbits

OS(P ).

What is St(P )? We have
St(P ) = {σ ∈ S | σPσ−1 = P} = S ∩NG(P ).

But S has p-power order, so S ∩ NG(P ) is a p-subgroup of NG(P ). The embedding lemma implies that
S ∩NG(P ) ⊆ P , from which we deduce that S ∩NG(P ) = S ∩ P . So,

#(OS(P )) = (S : S ∩ P ).

Now, take for S one of the p-Sylow subgroups, say P . Then, #(OP (Q)) = (P : P ∩ Q). If Q �= P , then
P ∩Q < P , and so, (P : P ∩Q) is a nontrivial p-power (i.e, not equal to 1). If P = Q, then (P : P ∩Q) = 1.
Therefore, in the orbit decomposition

Syl(G) =
⋃
·

distinct orbits
Q∈Syl(G)

OP (Q),

one orbit has cardinality 1, the rest having nontrivial p-power cardinalities. We conclude that

#(Syl(G)) = 1 +
∑

p-powers,

and sylp(G) = #(Sylp(G)) ≡ 1 (mod p), as claimed.

(2) Let S ∈ P(G) and look at OG(P ) where P ∈ Syl(G). The subgroup S acts by conjugation on OG(P ).
So, we have

OG(P ) =
⋃
·

distinct orbits
Q∈OG(P )

OS(Q). (∗)

If Q ∈ OG(P ), then consider the stabilizer of Q in S,

St(Q) = {σ ∈ S | σQσ−1 = Q} = S ∩NG(Q).

As before, by the embedding lemma, S ∩ NG(Q) = S ∩ Q. Then, #(OS(Q)) = (S : S ∩ Q). Take S = P
itself. If Q = P , then (P : P ∩ P ) = 1 and #(OP (P )) = 1. On the other hand, if P �= Q, then (P : P ∩Q)
is a nontrivial p-power. Thus, as before, using (∗), we deduce that

#(OG(P )) ≡ 1 (mod p).

Assume that (2) is false. Then, there exist some S and some P such that S �⊆ σPσ−1 for any σ ∈ G. Let
this S act on OG(P ), for this P . But we have

#(OG(P )) =
∑

distinct orbits
Q∈OG(P )

#(OS(Q)), (∗∗)
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and #(OS(Q)) = (S : S ∩ Q) where Q is a conjugate of P , so that S �⊆ Q, and therefore (S : S ∩ Q) is a
nontrivial p-power. Then, (∗∗) implies

#(OG(P )) ≡ 0 (mod p),

a contradiction. Thus, neither S nor P exist and (2) holds.

(3) By (2), Syl(G) = OG(P ), for some fixed P . But the size of an orbit divides the order of the group.
The rest is clear.

Theorem 1.9 (Sylow III) If G is a finite group and P is a p-Sylow subgroup of G, then NG(NG(P )) =
NG(P ).

Proof . Let T = NG(NG(P )) and S = NG(P ), so that T = NG(S) and S � T .

Claim. For every σ ∈ T , if σ has p-power order then σ ∈ P .

The order of T/S is (T : S). But

(G : P ) = (G : T )(T : S)(S : P )

and (G : P ) is prime to p by definition of P . So, (T : S) is prime to p. Consider σ, the image of σ in
T/S. The element σ has p-power order, yet #(T/S) is prime to p. Thus, σ = 1, and so, σ ∈ S. The local
embedding lemma yields σ ∈ P . Therefore, if H is a p-subgroup of T , we have H ⊆ P . Thus, any p-Sylow
subgroup, H, of T is contained in P ; but since H has maximal p-size, H = P . This implies that T has a
single p-Sylow subgroup, namely P . By Sylow II, the group P is normal in T and so T ⊆ NG(P ) = S. Yet,
S ⊆ T , trivially, and S = T .

Remark: A p-Sylow subgroup is unique iff it is normal in G.

Definition 1.2 A group, G, is simple if and only if it possesses no nontrivial normal subgroups ({1} and G
itself are the two trivial normal subgroups).

Example 1.2

(1) Assume that G is a group of order pq, with p and q prime and p < q. Look at the q-Sylow subgroups.
Write syl(q) for the number of q-Sylow subgroups of G. We know that

syl(q) ≡ 1 (mod q) and syl(q) | p.
This implies that syl(q) = 1, p. But p < q, so that p ≡ p (mod q), and the only possibility is syl(q) = 1.
Therefore, the unique q-Sylow subgroup is normal, and G is not simple.

(2) Assume that G is a group of order pqr, with p, q, r prime and p < q < r. Look at the r-Sylow
subgroups. We must have

syl(r) ≡ 1 (mod r) and syl(r) | pq.
This implies that syl(r) = 1, p, q, pq. Since p < r and q < r, as above, p and q are ruled out, and syl(r) = 1, pq.

Suppose that syl(r) = pq. We see immediately that r < pq. Now, each r-Sylow subgroup is isomorphic to
Z/rZ (cyclic of prime order), and any two distinct such subgroups intersect in the identity (since, otherwise,
they would coincide). Hence, there are pq(r− 1) elements of order r. We shall now show that if syl(r) = pq,
then syl(q) = 1. Assume that syl(r) = pq and look at the q-Sylow subgroups of G. We have

syl(q) ≡ 1 (mod q) and syl(q) | pr.
This implies that syl(q) = 1, p, r, pr and, as before, p is ruled out since p < q. So, syl(q) = 1, r, pr. Suppose
that syl(q) = r or syl(q) = pr, and call it x. Reasoning as before but now on the q-Sylow subgroups, we see
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that there are x(q − 1) elements of order q. Now, q − 1 ≥ p and x ≥ r. Thus, there are at least rp elements
of order q. But r > q, so there are more than pq elements of order q. Now, since there are pq(r−1) elements
of order r and more than pq elements of order q, there are more than

pq(r − 1) + pq = pqr − pq + pq = pqr

elements in G, a contradiction. So, either the r-Sylow subgroup is normal in G (which is the case when
r > pq) or the q-Sylow subgroup is normal in G. In either case, G is not simple.

Cases (1) and (2) have the following generalizations:

(a) Frobenius (1890’s) showed that if #(G) = p1p2 · · · pt, a product of distinct primes, then G is not simple.
The proof uses group representations and characters.

(b) Burnside (1901) proved the “paqb-theorem”: If #(G) = paqb, where p, q are distinct primes and a, b ∈ N,
then G is not simple. There are three known proofs, all hard, and all but one use group representations.

Obvious generalizations of (a) and (b) are false. The easiest case is #(G) = 22 · 3 · 5 = 60. Indeed, the
alternating group, A5, is simple. After proving (b), Burnside conjectured (circa 1902) that every nonabelian
group of odd order is not simple. This conjecture was proved in 1961 by W. Feit and J. Thompson. The
proof is very hard, and very long (over 200 pages).

A piece of the proof of (a) and (b) is the following proposition:

Proposition 1.10 If G is a finite group and p is the smallest prime number which divides the order of G,
then any subgroup, H, of index p is automatically normal in G.

Proof . Take H so that (G : H) = p. Consider the set S = {H1 = H,H2, . . . , Hp} of cosets of H in G. The
group G acts on S by translation,

σ ·Hj = σHj = Hl, for some l, with 1 ≤ l ≤ p.

This action is nontrivial, that is, we get a nontrivial homomorphism θ : G→ Sp (where Sp
∼= Aut(S) is the

group of permutations on p elements), and Im θ �= {1}. We shall prove that H = Ker θ, which yields H�G.

Observe that #(G) = #(Ker θ) · #(Im θ). We must have

(1) #(Im θ) | p!
(2) #(Im θ) | #(G).

But #(G) = pαK, where K contains primes greater than p. Therefore, #(Im θ) = paJ , where J = 1 or
J contains primes greater than p. If J �= 1, then J contains some prime q > p, and since pαJ divides
p! = p(p − 1) · · · 2 · 1, the prime q must divide p!. Since q is prime, q must divide one of the terms in p!,
which is impossible, since q > p. We conclude that J = 1. Now, a ≥ 1 since Im θ is nontrivial. If a ≥ 2,
since pa−1 | (p − 1) · · · 2 · 1, the prime p should divide p − j, for some j with 1 ≤ j ≤ p − 1. However, this
is impossible, and so, a = 1. Therefore, #(Im θ) = p and (G : Ker θ) = p. Note that σ ∈ Ker θ iff σ acts
trivially on S iff στH = τH iff τ−1Hτ = H iff τ−1στ ∈ H for all τ iff σ ∈ τHτ−1 for all τ /∈ H iff

σ ∈
⋂
τ∈G

τHτ−1.

We deduce that
Ker θ =

⋂
τ∈G

τHτ−1 ⊆ H.
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As (G : Ker θ) = p = (G : H) and Ker θ ⊆ H, we get H = Ker θ, and H is indeed normal in G.

Note that we can now improve Corollary 1.5 as follows: If G is a p-group with #(G) = pr, then there is
a descending chain of subgroups

G = G0 > G1 > · · · > Gr = {1},
where each Gj+1 is normal in Gj and each quotient Gj+1/Gj is simple; so, Gj+1/Gj = Z/pZ, a cyclic group
of order p.

Definition 1.3 A composition series for a group G is a chain of subgroups

G = G0 > G1 > · · · > Gt = {1}

in which each subgroup Gj+1 is maximal, normal in Gj . The factor groups G/G1, G1/G2, . . ., Gt−1/Gt =
Gt−1 are called the composition factors of the given composition series and each one is a simple group.

Remark: Every finite group possesses a composition series (DX).

� Not every group possesses maximal subgroups, even maximal normal subgroups (such groups must be
infinite).

However, finitely generated groups do possess maximal subgroups, but because such groups can be infinite,
the proof requires a form of transfinite induction known as Zorn’s lemma. Since this lemma is an important
tool, we briefly digress to state the lemma and illustrate how it is used.

Recall that a partially ordered set or poset is a pair, (S,≤), where S is a set and ≤ is a partial order on
S, which means that ≤ is a binary relation on S satisfying the properties: For all a, b, c ∈ S, we have:

(1) a ≤ a (reflexivity)

(2) If a ≤ b and b ≤ c, then a ≤ c (transitivity)

(3) If a ≤ b and b ≤ a, then a = b. (antisymmetry)

Observe that given a, b ∈ S, it may happen that neither a ≤ b nor b ≤ a. A chain, C, in S is a linearly
ordered subset of S (which means that for all a, b ∈ C, either a ≤ b or b ≤ a). The empty set is considered
a chain. An element, b ∈ S, is an upper bound of C (resp. a lower bound of C) if a ≤ b for all a ∈ C (resp.
b ≤ a for all a ∈ C). Note that an upper bound of C (resp. a lower bound of C) need not belong to C. We
say that C ⊆ S is bounded above if it possesses some upper bound (in S) (resp. bounded below if it possesses
some lower bound (in S)). The notion of least upper bound (resp. greatest lower bound) of a chain is clear
as is the notion of least or greatest element of a chain. These need not exist. A set, S, which is a chain, is
well ordered iff every nonempty subset of S has a least element.

Remark: Obviously, the notions of upper bound (resp. lower bound), maximal (resp. minimal) element, greatest

(resp. smallest) element, all make sense for arbitrary subsets of a poset, and not just for chains. Some books define

a well ordered set to be a poset so that every nonempty subset of S has a least element. Thus, it is not required that

S be a chain, but it is required that every nonempty subset have a least element, not just chains. It follows that a

well ordered set (under this new definition) is necessarily a chain. Indeed, for any two elements a, b ∈ S, the subset

{a, b} must have a smallest element, so, either a ≤ b or b ≤ a.

Hausdorff maximal principle: Every nonempty poset possesses a maximal chain.

From set theory, it is known that Hausdorff’s maximal principle is equivalent to the axiom of choice,
which is also equivalent to Zermelo’s well ordering principle (every nonempty subset can be well ordered).

We say that a poset is inductive iff every nonempty chain possesses a least upper bound.
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Zorn’s lemma: Each inductive poset possesses a maximal element.

Proof . By Hausdorff.

Remark: Some books define a poset to be inductive iff every nonempty chain is bounded above. Zorn’s lemma still

holds under this slightly weaker assumption. In practice, this makes little difference, because when proving that a

chain is bounded above, one usually shows that this chain has a least upper bound.

Here are two illustrations of the use of Zorn’s lemma.

Theorem 1.11 Every finitely generated group, G, possesses a maximal subgroup.

Proof . Consider the set, S, of all proper subgroups, H, of G. Partially order S by inclusion (ı.e., H ≤ K
iff H ⊆ K). Let {Hα} be a chain in S. If H =

⋃
αHα, we see that H is a group and that it is the

least upper bound of {Hα}. We must show that H �= G. If H = G, then as G is finitely generated,
H = G = Gp{σ1, . . . , σt}, with σi ∈ H for i = 1, . . . , t. This means that, for each i, there is some αi so that
σi ∈ Hαi

. Since {Hα} is a chain, there is some s so that Hαj
⊆ Hαs

for j = 1, . . . , t. Thus, σ1, . . . , σt ∈ Hαs
,

and so, Hαs
= G, contradicting the fact that Hαs

�= G. Therefore, S is inductive, and consequently, by
Zorn’s lemma, it possesses a maximal element. Such an element is a maximal subgroup of G.

As a second illustration of Zorn’s lemma, we prove that every vector space has a Hamel basis. Given a
vector space, V , over a field, k, a Hamel basis of V is a family, {eα}α∈Λ, so that:

(1) For every v ∈ V , there exists a finite subset of Λ, say I, and some elements of k for these α’s in I, say
cα, so that

v =
∑
α∈I

cαeα.

(2) The eα’s are linearly independent, i.e., given any finite subset I of Λ, if
∑
α∈I cαeα = 0, then cα = 0,

for all α ∈ I.

Theorem 1.12 Every vector space, V , possesses a Hamel basis.

Proof . Let S∗ be the collection of all subspaces, W , of V which possess a Hamel basis, together with a choice
of a basis. Write (W, {eα}) for any element of S∗. The collection, S∗, is nonempty, since finitely dimensional
vector spaces have bases. Partially order S∗ by (W, {eα}) ≤ (W̃ , {fβ}) iff

(a) W ⊆ W̃ and

(b) {eα} ⊆ {fβ}, which means that the basis {fβ} extends the basis {eα}.
We claim that S∗ is inductive.

Given a chain, {W (λ), {e(λ)
α }), in S∗, take

W =
⋃
λ

W (λ) and {eγ} =
⋃
λ

{e(λ)
α } ⊆W.

The reader should check that {eγ} is a basis for W (DX); therefore, (W, {eγ}) is the least upper bound of
our chain. By Zorn’s lemma, there exists a maximal element of S∗, call it (W0, {eγ}). We need to show that
W0 = V . If not, there is some v ∈ V with v /∈W0. Consider the subspace

Z = W0 � kv = {w + ξv | w ∈W0, ξ ∈ k}.

The subspace, Z, strictly contains W0 and {eγ}∪{v} is a Hamel basis for Z (DX). However, this contradicts
the maximality of W0. Therefore, W0 = V .
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Corollary 1.13 If W is a subspace of V and {eα} is a Hamel basis for W , then there exists a Hamel basis
of V extending {eα}.

Application: The field, R, is a vector space over Q, and 1 ∈ Q is a Hamel basis for Q. We can extend
this basis of Q to a Hamel basis for R (over Q), call it {eα}α∈Λ, and say, e0 = 1; then, R/Q is a vector space
(over Q) spanned by the eα other than e0. So, we have

R/Q ∼=
∐

α∈Λ,α�=0

Q.
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1.3 Elementary Theory of p-Groups

Recall that for a group G, the center of G, denoted Z(G), is given by

Z(G) = {σ ∈ G | (∀τ ∈ G)(στ = τσ)}.

We write [σ, τ ] for the element στσ−1τ−1, called the commutator of σ and τ . Observe that [τ, σ] = [σ, τ ]−1.
Also,

Z(G) = {σ ∈ G | (∀τ ∈ G)([σ, τ ] = 1)}
and Z(G) is the centralizer of G under conjugation.

Let G act on itself by conjugation. When do we have OG(σ) = {σ}? This happens when

(∀τ ∈ G)(τστ−1 = σ) i.e. (∀τ ∈ G)(τστ−1σ−1 = [τ, σ] = 1).

Thus, σ ∈ Z(G) iff OG(σ) = {σ}.

Remark: Obviously,

Z(G) =
\

σ∈G

ZG(σ).

Moreover, it is obvious that σ ∈ ZG(σ) for every σ ∈ G. Thus, for every σ /∈ Z(G), we have Z(G) < ZG(σ) (obviously,

ZG(σ) = G if σ ∈ Z(G).) Therefore, if G is nonabelian, then Z(G) < ZG(σ) for all σ ∈ G.

Proposition 1.14 The center, Z(G), of a p-group, G, is nontrivial.

Proof . If we let G act on itself by conjugation, we know that G is the disjoint union of distinct orbits, and
since OG(σ) is the conjugacy class of σ and σ ∈ Z(G) iff OG(σ) = {σ}, we get

G = Z(G)∪·
⋃
·

distinct orbits
τ /∈Z(G)

OG(τ).

Consequently, using the fact that #(OG(τ)) = (G : St(τ)), we get

#(G) = #(Z(G)) +
∑

distinct orbits
τ /∈Z(G)

(G : St(τ)). (∗)

But #(G) = pr, so that each term (G : St(τ)) for τ /∈ Z(G) is a nontrivial p-power. So, in (∗), all terms
must be divisible by p. Therefore, p | #(Z(G)).

Note that Z(G) is normal in G. Thus, G/Z(G) is a p-group of strictly smaller order, providing a basis
for induction proofs.

We make the following provisional definition (due to E. Galois, 1832). A finite group, G, is solvable iff it
possesses a composition series all of whose factors are abelian, or equivalently iff it possesses a composition
series all of whose factors are cyclic of prime order.

We have shown that a p-group is solvable.

Remark: The above definition is provisional because it only works for finite group (c.f. Definition 1.7), but
the concept of a solvable group can be defined for an arbitrary group.

Corollary 1.15 Every p-group of order less than or equal to p2 is abelian.
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Proof . Since #(G) = 1, p, p2 andG is obviously abelian in the first two cases, we may assume that #(G) = p2.
We know that Z(G) is non-trivial and we must prove that Z(G) = G. If Z(G) < G, then there is some
σ ∈ G so that σ /∈ Z(G). Clearly, Z(G) ⊆ ZG(σ) (where ZG(σ) denotes the centralizer of σ in G). But
σ ∈ ZG(σ) implies that (ZG(σ) : Z(G)) ≥ p and since Z(G) is nontrivial, we must have ZG(σ) = G. So,
σ ∈ Z(G), a contradiction.

We now consider a nice property possessed by p-groups called property (N). If G is any group, G has
property (N) iff for every proper subgroup, H, of G, the group H is a proper subgroup of NG(H).

Remark: An abelian group has (N). Indeed, every subgroup of an abelian group is normal, and so, NG(H) =
G.

Proposition 1.16 Every p-group has (N).

Proof . We proceed by induction on #(G) = pr. Corollary 1.15 takes care of the base case of the induction.
Next, let #(G) = pr+1 and assume that the induction hypothesis holds up to r. We know that Z(G) is
nontrivial, and so #(G/Z(G)) ≤ pr. Thus, G/Z(G) has (N). Pick H, any proper subgroup of G. Of course,
Z(G) ⊆ NG(H), and we may assume that Z(G) ⊆ H (since, otherwise, it is clear that H < NG(H)). By
the second homomorphism theorem, the question: H < NG(H)? is reduced to the question: H < NG(H)?,
where the bar means pass to G/Z(G). But in this case, as Z(G) ⊆ H, we see that (DX)

NG(H) = NG(H),

and we just remarked that G = G/Z(G) has (N). Therefore, NG(H) > H, and so, NG(H) > H, as desired.

Groups that have property (N) tend to have good properties. Here are a few of them.

Proposition 1.17 Say G is a finite group having (N), then each of its p-Sylow subgroups is unique and
normal in G. Every maximal subgroup of G is also normal and has prime index.

Proof . Look at P , a p-Sylow subgroup of G. Now, if NG(P ) �= G, then by (N), we have NG(NG(P )) >
NG(P ), a contradiction to Sylow III. Thus, NG(P ) = G and so, P �G. Next, let H be a maximal subgroup.
By (N), we have NG(H) > H, yet H is maximal, so NG(H) = G, and H�G. It follows that G/H is a group
with no nontrivial subgroup. But then, G/H is cyclic of prime order.

Proposition 1.18 Say G is a finite group and suppose that

(a) g = #(G) = pa1
1 · · · pat

t (where the pi’s are distinct primes)

(b) G has (N).

Write Pj for the pj-Sylow subgroup of G. Then, the map

P1

∏
· · ·
∏

Pt
ϕ−→ G

via ϕ(σ1, . . . , σt) = σ1 · · ·σt is an isomorphism of groups. Hence, G is isomorphic to a product of p-groups.

The proof depends on the following lemma:

Lemma 1.19 Let G be a group and let H and K be normal subgroups of G. If H ∩K = {1}, then every
element of H commutes with every element of K. Suppose that σ and τ are commuting elements in G, with
orders r and s respectively. If r and s are relatively prime then the order of στ is rs.
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Proof . Look at [σ, τ ], where σ ∈ H and τ ∈ K. We have

[σ, τ ] = στσ−1τ−1 = (στσ−1)τ−1 = σ(τσ−1τ−1).

Now, στσ−1 ∈ K, since K � G. Thus, (στσ−1)τ−1 ∈ K. Similarly, σ(τσ−1τ−1) ∈ H. But H ∩K = {1},
and since we just proved that [σ, τ ] ∈ H ∩K, we have [σ, τ ] = 1. The second part of the lemma is left to the
reader (DX).

Proof of Proposition 1.18. By Proposition 1.17, each pj-Sylow subgroup Pj is normal in G. First, we claim
that the map P1

∏ · · ·∏Pt
ϕ−→ G is a group homomorphism. Now, because the orders of Pi and Pj are

relatively prime if i �= j, we have Pi ∩ Pj = {1}. Since

ϕ((σ1, . . . , σt)(τ1, . . . , τt)) = σ1τ1 · · ·σtτt,
using Lemma 1.19, we can push each τj past σj+1 · · ·σt, and we get

ϕ((σ1, . . . , σt)(τ1, . . . , τt)) = σ1 · · ·σtτ1 · · · τt = ϕ(σ1, . . . , σt)ϕ(τ1, . . . , τt),

proving that ϕ is a homomorphism. The kernel of ϕ consists of those σ = (σ1, . . . , σt) so that σ1 · · ·σt = 1, or
equivalently, σ−1

t = σ1 · · ·σt−1. Using Lemma 1.19 and an obvious induction, the order on the righthand side
is pl11 · · · plt−1

t−1 and the order on the left hand side in pltt , which implies that l1 = · · · = lt, and thus, all σj = 1.
Therefore, Ker ϕ = {1} and ϕ is injective. One more application of Lemma 1.19 yields #(P1

∏ · · ·∏Pt) = g.
Since ϕ is injective, it is an isomorphism.

Remark: The proof of Proposition 1.18 only uses the fact that every p-Sylow subgroup is normal in G.

Definition 1.4 Let G be any group, then the Frattini subgroup of G, denoted Φ(G), is the intersection of
all the maximal proper subgroups of G. In case G has no maximal proper subgroup, we set Φ(G) = G.

Remark: The additive abelian group (Q,+) has no maximal proper subgroup.

Definition 1.5 In a group, G, an element σ is a non-generator iff for every subset, A, if G = Gp{A, σ},
then G = Gp{A} (where Gp{A} denotes the subgroup of G generated by A).

As an example, assume that G is a cyclic group of order pr. Then, Φ(G) is the cyclic subgroup of order
pr−1.

Proposition 1.20 The Frattini subgroup of G is a characteristic subgroup of G, i.e., for every automor-
phism, ϕ ∈ Aut(G), we have ϕ(Φ(G)) = Φ(G). In particular, Φ(G) is normal in G. Furthermore, if G is
finite, then

Φ(G) = {σ ∈ G | σ is a non-generator}.
Proof . Every automorphism permutes the collection of maximal subgroups of G. Therefore, Φ(G) is char-
acteristic. Now assume G is finite, or, at least, that every proper subgroup is contained in a maximal
subgroup.

Claim: If Gp{A,Φ(G)} = G, then Gp{A} = G.

If not, Gp{A} �= G, and so, there exists a maximal subgroup, M , containing Gp{A}. Now, Φ(G) ⊆ M ,
therefore, Gp{A,Φ(G)} ⊆ M �= G, a contradiction. This proves that Φ(G) is contained in the set of
non-generators.

Conversely, assume that σ is a non-generator. Were σ /∈ Φ(G), we would have a maximal subgroup,
M , with σ /∈ M . Take M = A in the definition of a non-generator. Look at Gp{M,σ}. Of course,
M ⊆ Gp{M,σ} and σ ∈ Gp{M,σ}, so M < Gp{M,σ}. But M is maximal, and so, Gp{M,σ} = G. By
definition (since σ is a non-generator), G = Gp{M}, and thus, G = M , a contradiction.
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Definition 1.6 A group G is an elementary abelian p-group iff

(1) It is abelian, and

(2) For every σ ∈ G, we have σp = 1.

Remark: Any elementary abelian p-group is, in a natural way, a vector space over Fp. Conversely, for
any vector space over the finite field Fp, its additive group is an elementary abelian p-group. Under this
correspondence, an endomorphism of G goes over to a linear map and an automorphism of G goes to an
invertible linear map. The group G is finite iff the corresponding vector space is finite dimensional.

(Given G, write the group operation additively. Thus, we have

p · σ = σ + · · · + σ︸ ︷︷ ︸
p

= 0.

The finite field Fp acts on G as follows: If λ ∈ Fp = Z/pZ, i.e., λ ≡ 0, 1, . . . , p− 1 (mod p), we set

λ · σ = σ + · · · + σ︸ ︷︷ ︸
λ (mod p) times

.

The reader should check that scalar multiplication is indeed well defined and that the facts asserted in the
previous remark are true (DX).)

Proposition 1.21 For any p-group, G, the quotient group, G/Φ(G), is an elementary abelian p-group.

Proof . Say H is a maximal subgroup of G. Since G has (N), the group, H, is normal in G and (G : H) = p.
Therefore, G/H is cyclic of order p. Write σ for the image of σ in G/H. We know that (σ)p = 1. So, σp = 1,
i.e., σp ∈ H. But H is arbitrary, and so,

σp ∈
⋂

H maximal

H = Φ(G).

Now, G/H is abelian since G/H = Z/pZ. This implies that [G,G] ⊆ H (here [G,G] is the subgroup of G
generated by the commutators, called the commutator group of G; it is the smallest normal subgroup, K, of
G such that G/K is abelian). Since H is arbitrary, we get

[G,G] ⊆
⋂

H maximal

H = Φ(G).

This shows that G/Φ(G) is abelian. As σp ∈ Φ(G), we get (σ)p = 1 in G/Φ(G), where σ is the image of σ
in G/Φ(G).

We now come to a famous theorem of Burnside.

Theorem 1.22 (Burnside Basis Theorem) Say G is a p-group and let d be the minimal number of elements
found among all minimal generating sets for G. The following properties hold:

(1) Given any set of d elements in G, say σ1, . . . , σd, they generate G iff σ1, . . . , σd are a basis of G/Φ(G).

(2) More generally, any set of t elements σ1, . . . , σt in G generates G iff {σ1, . . . , σt} spans G/Φ(G). Hence,
any set of generators of G possesses a subset of exactly d elements which generates G. The number d
is the dimension of G/Φ(G) over Fp.
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Proof . Everything follows from the statement: σ1, . . . , σt generate G iff σ1, . . . , σt generate G = G/Φ(G)
(DX).

The implication (=⇒) is trivial and always true. Conversely, if σ1, . . . , σt generate G, then

G = Gp{σ1, . . . , σt,Φ(G)}.

But then, as Φ(G) is the set of nongenerators, we have

G = Gp{σ1, . . . , σt,Φ(G)} = Gp{σ1, . . . , σt},

as desired.

Let G be a group (possibly infinite). We set ∆(0)(G) = G, and ∆(1)(G) = [G,G] and, more generally

∆(j+1)(G) = [∆(j)(G),∆(j)(G)] = ∆(1)(∆(j)(G)).

Observe that ∆(1)(G) = [G,G] is the commutator group of G, and recall that for any normal subgroup, H,
of G, we have ∆(1)(G) ⊆ H iff G/H is abelian. Moreover, for a simple nonabelian group, [G,G] = G.

Proposition 1.23 Suppose G is a group, then each ∆(j)(G) is a characteristic subgroup of G and each
group ∆(j)(G)/∆(j+1)(G) is abelian (j ≥ 0). If G has property (N), then ∆(1)(G) ⊆ Φ(G) < G (provided
maximal subgroups exist). If G is a p-group, then the chain

G ⊇ ∆(1)(G) ⊇ ∆(2)(G) ⊇ · · · ⊇ ∆(t)(G) ⊇ · · ·

is strictly descending and reaches {1} after finitely many steps.

Proof . The group ∆(1)(G) consists of products of the form

[σ1, τ1] · · · [σl, τl], l ≥ 1.

If ϕ ∈ Aut(G), then
ϕ([σ1, τ1] · · · [σl, τl]) = ϕ([σ1, τ1]) · · ·ϕ([σl, τl]),

and ϕ([σ, τ ]) = [ϕ(σ), ϕ(τ)], so ∆(1)(G) is characteristic. We prove that ∆(j)(G) is characteristic by induction
on j. The base case j = 1 has just been established. Look at ∆(j+1)(G). By the induction hypothesis, we
have ϕ(∆(j)(G)) = ∆(j)(G). Therefore, ϕ is an automorphism of ∆(j)(G). Yet, ∆(j+1)(G) = ∆(1)(∆(j)(G)),
and we proved that ∆(1)(H) is characteristic for any group H (case j = 1). Now, G/∆(1)(G) is abelian for
any group G, so ∆(j)(G)/∆(j+1)(G) = ∆(j)(G)/∆(1)(∆(j)(G)) is abelian.

Say G has (N) and possesses maximal subgroups. If H is a maximal subgroup of G we know that H �G
and H has prime index. So, G/H is abelian, and thus, ∆(1)(G) ⊆ H. Since H is arbitrary, we deduce that

∆(1)(G) ⊆
⋂

H maximal

H = Φ(G).

Now, assume that G is a p-group. Then, G has (N), and thus, ∆(1)(G) ⊆ Φ(G) < G. But ∆(1)(G) in
turn is a p-group, so we can apply the argument to ∆(1)(G) and we get ∆(2)(G) < ∆(1)(G), etc.

Nomenclature.

(1) The group ∆(1)(G) is called the first derived group of G (or commutator group of G).

(2) The group ∆(j)(G) is the j-th derived group of G.
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(3) The sequence
G = ∆(0)(G) ⊇ ∆(1)(G) ⊇ ∆(2)(G) ⊇ · · · ⊇ ∆(t)(G) ⊇ · · ·

is the derived series of G.

(4) The smallest t ≥ 0 for which ∆(t)(G) = {1} is the derived length of G and if ∆(t)(G) is never {1} (e.g.,
in a nonabelian simple group) then the derived length is infinite. Write δ(G) for the derived length of
G.

Look at the derived series of G:

G = ∆(0)(G) ⊇ ∆(1)(G) ⊇ ∆(2)(G) ⊇ · · · ⊇ ∆(t)(G) ⊇ · · · .

Each quotient ∆(j)(G)/∆(j+1)(G) is abelian. Suppose G is finite, then ∆(j)(G)/∆(j+1)(G) is finite abelian.
Interpolate between ∆(j)(G) and ∆(j+1)(G) a sequence of subgroups, necessarily normal, each maximal in
the previous one. If δ(G) < ∞, we get a composition series all of whose factors are cyclic of prime order.
This proves half of the

Proposition 1.24 A necessary and sufficient condition that a finite group be solvable (in the sense of Galois)
is that δ(G) <∞.

Proof . We need only prove: If G is (Galois) solvable, then δ(G) <∞. Say

G = G0 > G1 > G2 > · · · > Gt = {1}

is a composition series with abelian factors. We have G1 < G and G/G1 is abelian. Therefore, by a previous
remark, ∆(1)(G) ⊆ G1. Each quotient Gj/Gj+1 is abelian, so ∆(1)(Gj) ⊆ Gj+1 for all j. Now, ∆(1)(G) ⊆ G1

implies that ∆(1)(∆(1)(G)) ⊆ ∆(1)(G1), and so,

∆(2)(G) ⊆ ∆(1)(G1) ⊆ G2.

An easy induction yields ∆(r)(G) ⊆ Gr (DX). Therefore, ∆(t)(G) ⊆ {1}, i.e., δ(G) ≤ t.

Observe that we actually proved more: The derived length, δ(G), of a solvable finite group is less than
or equal to the length of any composition series for G.

Definition 1.7 An arbitrary group, G, is solvable iff δ(G) <∞.

Proposition 1.25 Say G is a p-group of order at least p2. Then, (G : ∆(1)(G)) ≥ p2.

Proof . We may assume that G is nonabelian, else ∆(1)(G) = {1} and so, (G : ∆(1)(G)) = #(G) ≥ p2. As
G is a p-group, if (G : ∆(1)(G)) < p2, then (G : ∆(1)(G)) = p. We know that ∆(1)(G) ⊆ Φ(G). Therefore,
(G : Φ(G)) = p and the Burnside dimension of G (i.e. dimFp

G/Φ(G)) is equal to 1. By the Burnside basis
theorem, G is cyclic, so abelian, a contradiction.
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1.4 Group Extensions

Let G be a finite group and let

G = G0 > G1 > G2 > · · · > Gt = {1}
be a composition series. We have the groups Gj/Gj+1 = Gj , the composition factors of the composition
series.

Problem: Given the (ordered) sequence G0, G1, G2, . . . , Gt−1, try to reconstruct G.

Say H and K are two groups, G is a “big” group and H � G with G/H →̃K. Note, this is exactly the
case at the small end of a composition series. We have
Gt−1 = Gt−1 = Gt−1/Gt. We also have Gt−1 � Gt−2, and the quotient is Gt−2, so we are in the above
situation with H = Gt−1 = Gt−1, K = Gt−2, G = Gt−2, and G/H →̃K.

The above situation is a special case of an exact sequence. A diagram of groups and homomorphisms

0 −→ H
ϕ−→ G ψ−→ K −→ 0,

where the map 0 −→ H is the inclusion of {1} into H and the map K −→ 0 is the surjection sending
every element of K to 1 in the trivial group {1}, is called a short exact sequence iff the kernel of every
homomorphism is equal to the image of the previous homomorphism on its left. This means that

(1) Ker ϕ = {1}, so ϕ is injective, and we identify H with a subgroup of G.

(2) H = Im ϕ = Ker ψ, so H is normal in G.

(3) Im ψ = K, so ψ is surjective. By the first homomorphism theorem, G/H →̃K.

(4) Properties (1), (2), (3) are equivalent to 0 −→ H −→ G −→ K −→ 0 is exact.

Going back to composition series, we have Gj+1 � Gj and Gj = Gj/Gj+1. So, a composition series is
equivalent with a collection of short exact sequences

0 −→ Gt−1 −→ Gt−2 −→ Gt−2 −→ 0
0 −→ Gt−2 −→ Gt−3 −→ Gt−3 −→ 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 −→ G1 −→ G −→ G0 −→ 0.

So our problem reduces to the problem of group extensions: Given H and K, groups, find (classify) all
groups, G, which can possibly fit into an exact sequence

0 −→ H −→ G −→ K −→ 0.

The problem is very hard when H is nonabelian.

Definition 1.8 If A,G are groups, a group, G, is an extension of G by A iff G fits into an exact sequence

(E) 0 −→ A −→ G −→ G −→ 0.

Two such extensions (E), (E′) are equivalent iff there exists a commutative diagram

(E) 0 �� A �� G ��

ψ

��

G �� 0

(E′) 0 �� A �� G′ �� G �� 0.
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Remarks:

(1) The homomorphism, ψ, in the above diagram is an isomorphism of groups. So, the notion of equivalence
is indeed an equivalence relation (DX).

(2) Equivalence of group extensions is stronger than isomorphism of G with G′.

(3) The group G in (E) should be considered a “fibre space” whose base is G and whose “fibre” is A.

As we remarked before, the theory is good only when A is abelian. From now on, we assume A is an
abelian group.

Proposition 1.26 Say

(E) 0 −→ A −→ G −→ G −→ 0

is a group extension and A is abelian. Then, there exists a natural action of G on A; so, A is a G-module.
Equivalent extensions give rise to the same action.

Proof . Denote the surjective homomorphism G −→ G in (E) by bar ( ). Pick ξ ∈ G and any a ∈ A. There
exists x ∈ G with x = ξ. Consider xax−1. Since A� G, we have xax−1 ∈ A. If y ∈ G and if y = x = ξ, then
x = yα for some α ∈ A. Then,

xax−1 = yαaα−1y−1 = yay−1,

as A is abelian. Therefore, if we set
ξ · a = xax−1,

this is a well-defined map. The reader should check that it is an action (DX). Assume we have an equivalence
of extensions between (E) and (E′):

(E) 0 �� A �� G ��

ψ

��

G �� 0

(E′) 0 �� A �� G′ �� G �� 0.

Pick ξ ∈ G and any a ∈ A. Denote the E-action by · and the E′-action by · ·. Observe that

ξ · a = ψ(ξ · a) = ψ(xax−1) = ψ(x)ψ(a)ψ(x)−1 = ψ(x)aψ(x)−1,

since the left vertical arrow is the identity in the diagram, yet ψ(x) lifts ξ in G′, as the right vertical arrow
is the identity in the diagram. However, by definition,

ξ · · a = ψ(x)aψ(x)−1,

so, ξ · · a = ξ · a for all a ∈ A.

The type of (E) is the structure of A as G-module, i.e., the action of G on A. We get a first invariant of
a group extension, its action (of G on A).

Fix the action of (E). Can we classify the extensions up to equivalence? Say we are given an extension

(E) 0 −→ A −→ G π−→ G −→ 0.

There is always a set-theoretic section s : G→ G, i.e., a set map, s, so that π(s(σ)) = σ for all σ ∈ G. Write
uσ for the s-lift of σ, i.e., s(σ) = uσ. So, π(uσ) = uσ = σ. As s is not necessarily a group homomorphism,
what is the obstruction? Consider

uσuτ (uστ )−1 = f(σ, τ). (∗)
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Note that f(σ, τ) = 1 iff s : σ �→ uσ is a group homomorphism. If we apply the homomorphism bar to (∗),
we get f(σ, τ) = 1, and so, f(σ, τ) ∈ A. Observe that f is a function
f : G

∏
G → A. Given x ∈ G, look at x. We know that x = σ ∈ G. If we apply bar to xu−1

σ , we get 1,
because u−1

σ = σ−1 and x = σ. So, we have xu−1
σ ∈ A, which yields x = auσ, for some a ∈ A.

Observe that:

(1) Each x determines uniquely a representation x = auσ, with a ∈ A and σ ∈ G.

(2) The map A
∏
G −→ G (where A

∏
G is the product of A and G as sets) via

(a, σ) �→ auσ

is a bijection of sets (an isomorphism in the category of sets).

(3) G (as a set) is just A
∏
G (product in the category of sets).2

Can we recover the group multiplication of G? We have

(auσ)(buτ ) = a(uσb)uτ
= a(uσbu−1

σ )uσuτ
= a(σ · b)uσuτ
= a(σ · b)f(σ, τ)uστ
= cuστ ,

where c = a(σ · b)f(σ, τ), and c ∈ A. Therefore, knowledge of the action and f(σ, τ) gives us knowledge of
the group multiplication.

Thus, it is natural to try to go backwards and make G from the groups A and G, the action of G on A,
and f . It is customary to use an additive notation for the group operation in A, since A is abelian. The
underlying set of the group G is

A
∏

G = {〈a, σ〉 | a ∈ A, σ ∈ G}.
Multiplication is given by

〈a, σ〉〈b, τ〉 = 〈a+ σ · b+ f(σ, τ), στ〉. (†)

However, the multiplication defined by (†) is supposed to make G into a group, and this imposes certain
conditions on f . First, we deal with associativity. For this, we go back to the original G where we have the
associative law:

(auσ)((buτ )(cuρ)) = ((auσ)(buτ ))(cuρ).

Expanding the left hand side, we get

(auσ)((buτ )(cuρ)) = (auσ)(b(τ · c)f(τ, ρ)uτρ)
= (aσ · (b(τ · c)f(τ, ρ))f(σ, τρ)uσ(τρ)

= a(σ · b)(στ · c)(σ · f(τ, ρ))f(σ, τρ)uσ(τρ).

Expanding the righthand side, we get

((auσ)(buτ ))(cuρ) = a(σ · b)f(σ, τ)uστ )(cuρ)
= a(σ · b)f(σ, τ)(στ · c)f(στ, ρ)u(στ)ρ.

2In (2) and (3) we give a foretaste of the language of categories to be introduced in Section 1.7.
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Thus, the associative law becomes (writing RHS = LHS)

f(σ, τ)(στ · c)f(στ, ρ) = (στ · c)(σ · f(τ, ρ))f(σ, τρ).

Now, all the above terms are in A, and since A is abelian, we can permute terms and perform cancellations,
and we get

f(σ, τ)f(στ, ρ) = (σ · f(τ, ρ))f(σ, τρ). (††)
This identity is equivalent to the associativity law in G.

Nomenclature: A function from G
∏
G to A is called a 2-cochain on G with values in A. Any 2-cochain

satisfying (††) is called a 2-cocycle with coefficients in A.

Therefore, (†) is an associative multiplication in A
∏
G iff f is a 2-cocycle with values in A.

Does A
∏
G with multiplication (†) have an identity?

The original group, G, has identity 1 and we have 1 = u−1
1 u1, where u1 ∈ A, and so, u−1

1 ∈ A. For all
b ∈ A and all τ ∈ G, we have

(u−1
1 u1)(buτ ) = buτ ,

which yields
u−1

1 (1 · b)f(1, τ)uτ = u−1
1 bf(1, τ)uτ = buτ .

Since A is abelian, we get
f(1, τ) = u1,

which shows that f(1, τ) is independent of τ . In particular, u1 = f(1, 1).

Question: Is (††) sufficient to imply that f(1, τ) = f(1, 1) for all τ ∈ G?

In (††), take σ = 1. We get
f(1, τ)f(τ, ρ) = f(τ, ρ)f(1, τρ).

Again, since A is abelian, we deduce that f(1, τ) = f(1, τρ). If we take τ = 1, we get f(1, 1) = f(1, ρ), for
all ρ.

Therefore, (††) is sufficient and A
∏
G has an identity 1 = 〈f(1, 1)−1, 1〉, or in additive notation (since

A is abelian),

1 = 〈−f(1, 1), 1〉. (∗)

Finally, what about inverses? Once again, go back to our original G.

We have (auσ)−1 = u−1
σ a−1. Now,

u−1
σ = (uσ)−1 = σ−1 = uσ−1 .

Therefore, there is some α ∈ A so that u−1
σ = αuσ−1 . By multiplying on the right by uσ, we get

1 = αuσ−1uσ = αf(σ−1, σ)uσσ−1 = αf(σ−1, σ)u1 = αf(σ−1, σ)f(1, 1),

since u1 = f(1, 1). So, α = f(1, 1)−1f(σ−1, σ)−1. Consequently, we get

(auσ)−1 = u−1
σ a−1

= αuσ−1a−1

= α(uσ−1a−1u−1
σ−1)uσ−1

= α(σ−1 · a−1)uσ−1

= f(1, 1)−1f(σ−1, σ)−1(σ−1 · a−1)uσ−1

= f(1, 1)−1f(σ−1, σ)−1(σ−1 · a)−1uσ−1

= ((σ−1 · a)f(σ−1, σ)f(1, 1))−1uσ−1 .
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Therefore, in A
∏
G (switching to additive notation since A is abelian), inverses are given by

〈a, σ〉−1 = 〈−σ−1 · a− f(σ−1, σ) − f(1, 1), σ−1〉. (∗∗)

We find that A
∏
G can be made into a group via (†), provided f(σ, τ) satisfies (††). The formulae (∗)

and (∗∗) give the unit element and inverses, respectively. For temporary notation, let us write (A
∏
G; f)

for this group. Also, since A is abelian, let us rewrite (††) in additive notation, since this will be more
convenient later on:

σ · f(τ, ρ) + f(σ, τρ) = f(στ, ρ) + f(σ, τ). (††)

Go back to the original group, G, and its set-theoretic section s : G→ G (with s(σ) = uσ). We might have
chosen another set-theoretic section, t : G→ G, namely, t(σ) = vσ. We get a 2-cocycle g(σ, τ) = vσvτ (vστ )−1,
i.e., vσvτ = g(σ, τ)vστ .

What is the relation between f and g?

We know that vσ = σ = uσ, which implies that there is some k(σ) ∈ A with vσ = k(σ)uσ. Then, we have

vσvτ = g(σ, τ)vστ = g(σ, τ)k(στ)uστ ,

and also
vσvτ = k(σ)uσk(τ)uτ = k(σ)(σ · k(τ))uσuτ = k(σ)(σ · k(τ))f(σ, τ)uστ .

By equating these expressions, we get

g(σ, τ)k(στ) = k(σ)(σ · k(τ))f(σ, τ).

But A is abelian, so we can write the above

g(σ, τ) − f(σ, τ) = σ · k(τ) − k(στ) + k(σ). (∗)

Observe that k : G → A is a function of one variable on G. We call k a 1-cochain on G with values in A.
For a 1-cochain, define a corresponding 2-cochain, called its coboundary , δk, by

(δk)(σ, τ) = σ · k(τ) − k(στ) + k(σ).

Remarks:

(1) Every coboundary of a 1-cochain is automatically a 2-cocycle (DX).

(2) Cocycles form a group under addition of functions denoted by Z2(G,A). The special 2-cocycles which
are coboundaries (of 1-cochains) form a group (DX) denoted by B2(G,A). Item (1) says that B2(G,A)
is a subgroup of Z2(G,A).

(3) The quotient group, Z2(G,A)/B2(G,A), denoted H2(G,A), is the second cohomology group of G with
coefficients in A.

(4) Equation (∗) above says: If we change the choice of section from s to t, the corresponding cocycles, f
and g, are cohomologous, i.e., g − f = δk, i.e., the image of f in H2(G,A) is the same as the image of
g in H2(G,A). Thus, it is the cohomology class of f which is determined by (E).
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Now, make (A
∏
G; f). Then, we can map A into (A

∏
G; f) via

a �→ 〈a− f(1, 1), 1〉.
Claim. The set {〈a − f(1, 1), 1〉 | a ∈ A} is a subgroup of (A

∏
G; f). In fact, it is a normal subgroup and

the quotient is G.

Proof . We have

〈a− f(1, 1), 1〉〈b− f(1, 1), 1〉 = 〈a− f(1, 1) + b− f(1, 1) + f(1, 1), 1〉 = 〈a+ b− f(1, 1), 1〉,
and thus, the map λ : a �→ 〈a− f(1, 1), 1〉 is a group homomorphism. We leave the rest as a (DX).

Say f − g = δk, i.e., f and g are cohomologous, and make (A
∏
G; f) and (A

∏
G; g). Consider the map

θ : (A
∏
G; f) → (A

∏
G; g) given by

θ : 〈a, σ〉 �→ 〈a+ k(σ), σ〉.
We claim that θ is a homomorphism. Since

〈a, σ〉〈b, τ〉 = 〈a+ σ · b+ f(σ, τ), στ〉,
we have

θ(〈a, σ〉〈b, τ〉) = 〈a+ σ · b+ f(σ, τ) + k(στ), στ〉.
We also have

θ(〈a, σ〉)θ(〈b, τ〉) = 〈a+ k(σ), σ〉〈b+ k(τ), τ〉)
= 〈a+ k(σ) + σ · b+ σ · k(τ) + g(σ, τ), στ〉).

In order for θ to be a homomorphism, we need

k(σ) + σ · k(τ) + g(σ, τ) = f(σ, τ) + k(στ),

that is, f − g = δk. Consequently, θ is a homomorphism, in fact, an isomorphism. Moreover, (A
∏
G; f) and

(A
∏
G; g) fit into two extensions and we have the following diagram:

(E)f 0 �� A �� (A
∏
G; f) ��

θ

��

G �� 0

(E′)g 0 �� A �� (A
∏
G; g) �� G �� 0.

The rightmost rectangle commutes, but we need to check that the leftmost rectangle commutes. Going over
horizontally and down from (A

∏
G; f), for any a ∈ A, we have

a �→ 〈a− f(1, 1), 1〉 �→ 〈a− f(1, 1) + k(1), 1〉,
and going horizontally from the lower A, we have

a �→ 〈a− g(1, 1), 1〉.
For the rectangle to commute, we need: g(1, 1) = f(1, 1) − k(1). However,
f(σ, τ) = g(σ, τ) + δk(σ, τ) and δk(σ, τ) = σ · k(τ) − k(στ) + k(σ). If we set σ = τ = 1, we get

δk(1, 1) = k(1) − k(1) + k(1) = k(1),

and it follows that g(1, 1) = f(1, 1) − k(1), as desired.
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Hence, cohomologous 2-cocycles give rise to equivalent group extensions (the action is fixed). Conversely,
we now show that equivalent group extensions give rise to cohomologous 2-cocycles. Say

(E) 0 �� A �� G ��

ψ

��

G �� 0

(E′) 0 �� A �� G′ �� G �� 0.

is an equivalence of extensions (i.e., the diagram commutes). We know, up to the notion of being cohomol-
ogous, that we may adjust both cocycles f and g associated with (E) and (E′) by choice of sections. In
both cases, take u1 = 0 (since we are using additive notation). Therefore, f(1, 1) = g(1, 1) = 0. From the
commutativity of the diagram, ψ must be of the form

ψ〈a, σ〉 = 〈ϕ(a, σ), σ〉
for some function ϕ : A

∏
G → A. By the above choice, the maps A −→ G and A −→ G′ are given by

a �→ 〈a, 1〉 in both cases. Therefore,
ψ(a, 1) = 〈ϕ(a, 1), 1) = (a, 1), and so,

ϕ(a, 1) = a, for all a ∈ A.

Since ψ is a homomorphism, we have

ψ(〈a, σ〉〈b, τ〉) = ψ(〈a, σ〉)ψ(〈b, τ〉),
and this yields an identity relating f , g and ϕ. The left hand side of the above equation is equal to

ψ(〈a+ σ · b+ f(σ, τ), στ〉) = 〈ϕ(a+ σ · b+ f(σ, τ), στ〉), στ〉,
and the righthand side is equal to

〈ϕ(a, σ), σ〉〈ϕ(b, τ), τ〉 = 〈ϕ(a, σ) + σ · ϕ(b, τ) + g(σ, τ), στ〉,
and by equating them, we get

ϕ(a+ σ · b+ f(σ, τ), στ〉) = ϕ(a, σ) + σ · ϕ(b, τ) + g(σ, τ). (†††)
By taking τ = 1 (using the fact that ϕ(b, 1) = b), we get

ϕ(a+ σ · b+ f(σ, 1), σ〉) = ϕ(a, σ) + σ · b+ g(σ, 1). (∗∗∗)
Now, (††) can be written as

σ · f(τ, ρ) − f(στ, ρ) + f(σ, τρ) − f(σ, τ) = 0.

If we take ρ = 1, we get
σ · f(τ, 1) − f(στ, 1) + f(σ, τ) − f(σ, τ) = 0.

which yields
σ · f(τ, 1) = f(στ, 1).

If we take τ = 1, we get σ · f(1, 1) = f(σ, 1), but f(1, 1) = 0, and so,

f(σ, 1) = 0.

Consequently, (∗∗∗) yields
ϕ(a+ σ · b, σ) = ϕ(a, σ) + σ · b.
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Writing b = σ−1 · c, we get
ϕ(a+ c, σ) = ϕ(a, σ) + c, for all a, c ∈ A.

In particular, when a = 0, we get ϕ(c, σ) = ϕ(0, σ)+c. Let ϕ(0, σ) = k(σ). Now, if we use ϕ(a, σ) = ϕ(0, σ)+a
in (†††), we get

a+ σ · b+ f(σ, τ) + k(στ) = a+ k(σ) + σ · (b+ k(τ)) + g(σ, τ),

which yields
f(σ, τ) + k(στ) = g(σ, τ) + k(σ) + σ · k(τ),

that is, f − g = δk. Hence, we have proved almost all of the following fundamental theorem:

Theorem 1.27 If G and A are groups and A is abelian, then each group extension

(E) 0 −→ A −→ G π−→ G −→ 0

makes A into a G-module; the G-module structure is the type of (E) and equivalent extensions have the same
type. For a given type, the equivalence classes of extensions of G by A are in one-to-one correspondence
with H2(G,A), the second cohomology group of G with coefficients in A. Hence, the distinct extensions of
G by A (up to equivalence) are classified by the pairs (type(E), χ(E)), where χ(E) is the cohomology class
in H2(G,A) corresponding to (E). In this correspondence, central extensions correspond to G-modules, A,
with trivial action ((E) is central iff A ⊆ Z(G)). An extension of any type splits iff χ(E) = 0 in H2(G,A).
((E) is split iff there is a group homomorphism s : G→ G so that π ◦ s = id).

Proof . We just have to prove the last two facts. Note that the type of extension is trivial iff

(∀σ ∈ G)(∀a ∈ A)(σ · a = a)

iff
(∀x ∈ G)(∀a ∈ A)(x−1ax = a)

iff
(∀x ∈ G)(∀a ∈ A)([x, a] = 1)

iff A ⊆ Z(G).

Finally, the cohomology is trivial iff every cocycle is a coboundary iff every cocycle is cohomologous to
0 iff in (E) there is a map σ �→ uσ with f(σ, τ) = 0. Such a map is a homomorphism. Thus, χ(E) = 0 in
H2(G,A) iff (E) has a splitting.

Examples. (I) Find all extensions

0 −→ Z −→ G −→ Z/2Z −→ 0.

There are several cases to consider depending on the type and the cohomology class of the extension.

(a) Trivial type (the action of Z/2Z on Z is trivial).

(a1) Split extension. We get G →̃ Z
∏

(Z/2Z).

(a2) Nonsplit extensions. In this case, we have to compute H2(Z/2Z,Z) (trivial action). We know from
previous work that (up to cohomology) we can restrict ourselves to normalized cochains, f(σ, τ), i.e., cochains
such that

f(σ, 1) = f(1, σ) = 0.

Elements in Z/2Z are ±1. We need to know what f(−1,−1) is. The reader should check that the co-
cycle condition, δf = 0, gives no condition on the integer f(−1,−1), and thus, we have an isomorphism
Z2(Z/2Z,Z) ∼= Z.
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What about coboundaries: f = δk? Such k’s are also normalized, and so, k(1) = 0. We have k(−1) = b,
for any b ∈ Z. Since

δk(σ, τ) = σ · k(τ) − k(στ) + k(σ),

using the fact that the action is trivial and that k(1) = 0, we get

δk(−1,−1) = (−1) · k(−1) − k(1) + k(−1) = k(−1) + k(−1) = 2b.

So, we can adjust f , up to parity by coboundaries, and H2(Z/2Z,Z) ∼= Z/2Z. Consequently, we have exactly
one nonsplit, trivial-type extension

G = {(n,±1) | n ∈ Z}.
The group operation is given by

(n,±1)(m, 1) = (n+m,±1)
(n, 1)(m,±1) = (n+m,±1)

(n,−1)(m,−1) = (n+m+ 1, 1),

where in this last equation, we assumed without loss of generality that f(−1,−1) = 1.

(b) Nontrivial type. We need a nontrivial map Z/2Z −→ Aut(Z). Since Z is generated by 1 and −1,
there is only one nontrivial action:

(−1) · n = −n.
(Recall that 1 · n = n, always).

(b1) The split, nontrivial type extension. In this case

G = {(n, σ) | n ∈ Z, σ ∈ Z/2Z},

with multiplication given by
(n, σ)(m, τ) = (n+ σ ·m,στ).

Now, consider the map

(n, σ) �→
(
σ n
0 1

)
.

Observe that matrix multiplication yields(
σ n
0 1

)(
τ m
0 1

)
=
(
στ n+ σ ·m
0 1

)
.

Therefore, G is isomorphic to the group of matrices(
σ n
0 1

)
under matrix product. This is a nonabelian group, it is infinite and we claim that G is solvable with δ(G) = 2.

Indeed, we have G/Z ∼= Z/2Z, an abelian group, and so ∆(1)(G) ⊆ Z. So,
∆(2)(G) ⊆ ∆(1)(Z) = {0}, and we conclude that δ(G) = 2.

(b2) Nonsplit, nontrivial type extension. We need to figure out what the cocycles are in order to compute
H2(Z/2Z,Z). By the same reasoning as before, we need to know what is f(−1,−1). We know that δf(σ, τ) =
0. So, we have

σ · f(τ, ρ) − f(στ, ρ) + f(σ, τρ) − f(σ, τ) = 0.
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Let τ = ρ = −1 in the above equation. We get

σ · f(−1,−1) − f(−σ,−1) + f(σ, 1) − f(σ,−1) = σ · f(−1,−1) − f(−σ,−1) − f(σ,−1) = 0,

since f(σ, 1) = 0. If we let σ = −1, since f(1,−1) = 0, we get

−f(−1,−1) − f(−1,−1) = 0,

and so, 2f(−1,−1) = 0. Since f(−1,−1) ∈ Z, we get f(−1,−1) = 0. Therefore, f ≡ 0 and the cohomology
is trivial: H2(Z/2Z,Z) = (0) (for nontrivial action).

As a conclusion, there exist three extension classes and three distinct groups, two of them abelian, the
third solvable and faithfully representable by matrices.

(II) Let V be a finite dimensional vector space and consider V + as additive group. Let G = GL(V ) and
let the action of G on V be the natural one (i.e, for any ϕ ∈ GL(V ) and any v ∈ V , ϕ · v = ϕ(v)). We have
the split extension

0 → V → G � GL(V ) → 0.

The group, G, in the above exact sequence is the affine group of V .

(III) Again, we restrict ourselves to split extensions. Let A be any abelian group and let n ∈ N. The
group

A
∏

A
∏

· · ·
∏

A︸ ︷︷ ︸
n

is acted on by the symmetric group, Sn, simply by permuting the factors. We have a split extension

0 → A
∏

A
∏

· · ·
∏

A︸ ︷︷ ︸
n

→ G � Sn → 0.

The group, G, is called the wreath product of A by Sn and is denoted A �Sn. We denote the split extension
of a given type of G by A by A \\// G (note that this notation does not refer to the action).

Here are some useful facts on cohomology:

(1) If G is arbitrary and A is n-torsion, which means that nA = 0, then H2(G,A) is n-torsion.

(2) If G is a finite group, say #(G) = g and A is arbitrary, then H2(G,A) is g-torsion (this is not trivial
to prove!).

(3) Suppose that A is n-torsion and G is finite, with #(G) = g, and suppose that (g, n) = 1. Then,
H2(G,A) = (0). (This is a clear consequence of (1) and (2).)

(4) Suppose that G is finite. We can define a homomorphism (of G-modules) A −→ A, called the G-norm
and denoted NG (we will usually drop the subscript G), defined by

NG(a) =
∑
σ∈G

σ · a.

Moreover, assume that G is a finite cyclic group. Then, for any A, there is an isomorphism

AG/NA ∼= H2(G,A),

where
AG = {a ∈ A | σ · a = a, for all σ ∈ G}.
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Here is an example of how to use the above facts.

(IV) Find all the groups of order pq (with p, q prime and 0 < p < q).

We know that the q-Sylow subgroup is normal, namely, it is Z/qZ = A� G, and
G = G/A = Z/pZ. Therefore, whatever G is, it fits in the group extension

0 −→ Z/qZ −→ G −→ Z/pZ −→ 0.

By (3), since (p, q) = 1, we have H2(G,A) = (0). So, we only have split extensions. What is Aut(Z/qZ)?
Clearly, it is Z/(q − 1)Z. So, we have to consider the homomorphisms

Z/pZ −→ Aut(Z/qZ) = Z/(q − 1)Z. (∗)

If (∗) is non-trivial, then p | (q− 1), i.e., q ≡ 1 (mod p). So, if q �≡ 1 (mod p), then we have trivial action and
we find that

G ∼= (Z/qZ)
∏

(Z/qZ) ∼= Z/pqZ.

If q ≡ 1 (mod p), we also can have trivial action, and we get Z/pqZ, again. So, we now consider nontrivial
actions. The unique cyclic group of order p in Z/(q − 1)Z is generated by λ q−1

p , where λ = 1, 2, . . . , p − 1.
If we send 1 ∈ Z/pZ to λ q−1

p , the corresponding action is

n �→ nλ
q − 1
p

(mod q).

Thus, there are p− 1 nontrivial (split) group extensions, (Eλ), with central groups

Gλ = {(n, ζm) | 0 ≤ m ≤ p− 1}

(here the elements of Z/pZ are 1, ζ, ζ2, . . . , ζp−1) and multiplication given by

(n, ζm)(r, ζs) =
(

(n+ rmλ
q − 1
p

, ζm+s

)
.

Consider the map Gλ −→ G1 given by
(n, ζm) �→ (m, ζλm).

This is a group isomorphism. So, here we have all inequivalent extensions, (Eλ), with p−1 different actions,
yet the groups Gλ are mutually isomorphic. Thus, G1 and Z/pqZ are the two groups of order pq when
q ≡ 1 (mod p).

The second cohomology group, H2(G,A), has appeared naturally in the solution to the group extension
problem. Consequently, it is natural at this stage to define cohomology groups in general.

The set up is: We have a group, G, and a G-action, G
∏
A −→ A, where A is an abelian group. For

every n ∈ N, we define
Cn(G,A) = {f : G

∏
· · ·
∏

G︸ ︷︷ ︸
n

→ A},

where G
∏

· · ·
∏

G︸ ︷︷ ︸
n

is the product of G with itself n times (in the category of sets). By convention, when

n = 0, this set product is the one point set, {∗}. The set Cn(G,A) is an abelian group under addition
of functions (e.g , f + g is the function defined by (f + g)(x) = f(x) + g(x) for all x ∈ G). The group
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Cn(G,A) is called the group of n-cochains of G with coefficients in A. We define the coboundary map,
δn : Cn(G,A) → Cn+1(G,A), for every n ≥ 0, by the formula:

(δnf)(σ1, . . . , σn+1) = σ1 · f(σ2, . . . , σn+1) +
n∑
j=1

(−1)jf(σ1, . . . , σj−1, σjσj+1, σj+2, . . . , σn+1)

+ (−1)n+1f(σ1, . . . , σn),

for all f ∈ Cn(G,A) and all σ1, . . . , σn+1 ∈ G.

(1) Check (DX): For all n ≥ 0,
δn(δn−1f) ≡ 0.

(By convention, δ−1 = 0).

(2) Set Zn(G,A) = Ker δn, a subgroup of Cn(G,A), the group of n-cocycles of G with coefficients in
A. We also let Bn(G,A) = Im δn−1, a subgroup of Cn(G,A), the group of n-coboundaries of G with
coefficients in A. Observe that since δ−1 = 0, we have B0(G,A) = (0). Furthermore, (1) implies that
Bn(G,A) ⊆ Zn(G,A), for all n ≥ 0.

(3) Set Hn(G,A) = Zn(G,A)/Bn(G,A); this is the nth cohomology group of G with coefficients in A.

Examples. (i) Case n = 0: Then, B0 = (0). The functions, f , in C0(G,A) are in one-to-one correspondence
with the elements f(∗) of A, and so, C0(G,A) = A. Note that for any σ ∈ G, if f ∈ C0(G,A) corresponds
to the element a in A, we have

(δ0f)(σ) = σ · f(∗) − f(∗) = σ · a− a.

Thus,
Z0(G,A) = {a ∈ A | δ0(a) = 0} = {a ∈ A | σ · a = a, for all σ ∈ G} = AG.

So, we also have H0(G,A) = AG.

(ii) Case n = 1: Then, C1(G,A) is the set of all functions f : G→ A. For any
f ∈ C1(G,A), we have

(δ1f)(σ, τ) = σ · f(τ) − f(στ) + f(σ).

It follows that

Z1(G,A) = {f ∈ C1(G,A) | δ1f = 0} = {f ∈ C1(G,A) | f(στ) = σ · f(τ) + f(σ)}.

This is the set of crossed (or twisted) homomorphisms from G to A.

Remark: If A has trivial G-action, then Z1(G,A) = HomGr(G,A).

We have B1(G,A) = Im δ0 = all functions, g, so that g(σ) = (δ0(a))(σ) = σ · a − a, for some a ∈ A.
Such objects are twisted homomorphisms, called principal (or inner) twisted homomorphisms.

Remark: If A has trivial G-action, then B1(G,A) = (0). So, H1(G,A) is the quotient of the twisted
homomorphisms modulo the principal twisted homomorphisms if the action is nontrivial, and H1(G,A) =
HomGr(G,A) if the action is trivial.

(iii) Case n = 2: We have already encountered this case in dealing with group extensions. We content
ourselves with computing δ2. Since C2(G,A) = {f : G

∏
G→ A}, we have

(δ2f)(σ, τ, ρ) = σ · f(τ, ρ) − f(στ, ρ) + f(σ, τρ) − f(σ, τ).
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We note that Z2(G,A) gives us back the group of “old” 2-cocycles, B2(G,A) gives us back the group of
“old” 2-coboundaries, and H2(G,A) is in one-to-one correspondence with the equivalence classes of group
extensions of a fixed type.

Remark: Given a group, G, Eilenberg and Mac Lane (1940’s) constructed a topological space, K(G, 1),
unique up to homotopy type, with the following properties:

πn(K(G, 1)) =
{
G if n = 1
(0) if n �= 1.

Fact: If we compute the integral cohomology of K(G, 1), denoted Hn(K(G, 1),Z), we get

Hn(K(G, 1),Z) ∼= Hn(G,Z).

Here, the G-action on Z is trivial.
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1.5 Solvable and Nilpotent Groups

Given a group, G, its derived series,

G = ∆(0)(G) ⊇ ∆(1)(G) ⊇ ∆(2)(G) ⊇ · · · ⊇ ∆(t)(G) ⊇ · · · ,
may decrease very quickly, and even though the solvable groups (those for which the derived series reaches
{1} after finitely many steps, i.e., those for which δ(G) is finite) are not as “wild” as groups for which
δ(G) = ∞, it desirable to delineate families of groups with an even “nicer” behavior. One way of doing
so is to define descending (or ascending) chains that do not decrease (or increase) too quickly and then to
investigate groups whose chains are finite. The collection of nilpotent groups is such a family of groups, and,
moreover, nilpotent groups tend to show up as fundamental groups of spaces arising naturally in geometry.
Every nilpotent group is solvable and solvability is inherited by subgroups and quotient groups, as shown in
the following proposition:

Proposition 1.28 If G is a group and G is solvable, then for every subgroup, H, of G, the group, H, is
solvable. Moreover, if H is normal in G, then G/H is solvable. In fact, for both groups, δ(either) ≤ δ(G).
Conversely, say G possesses a normal subgroup, H, so that both H and G/H are solvable. Then, G is
solvable. In fact, δ(G) ≤ δ(H) + δ(G/H).

Proof . Let G be solvable. Then, H ⊆ G implies ∆(1)(H) ⊆ ∆(1)(G); therefore (by induction),

∆(j)(H) ⊆ ∆(j)(G),

and we deduce that δ(H) ≤ δ(G). Consider G = G/H when H � G. Then, [x, y] = [x, y] and this implies
∆(1)(G) = ∆(1)(G). Hence (by induction),

∆(j)(G) = ∆(j)(G).

Therefore, δ(G) ≤ δ(G).

Conversely, assume that H and G/H are solvable (with H � G). We have ∆(j)(G) = ∆(j)(G) and if
j ≥ δ(G), then ∆(j)(G) = {1}, which implies that ∆(j)(G) ⊆ H. So, ∆(k+j)(G) ⊆ ∆(k)(H), and the latter
is {1} if k = δ(H). Therefore,

∆(δ(G)+δ(H))(G) = {1},
and so, δ(G) ≤ δ(H) + δ(G/H).

Proposition 1.29 Let (P) be some property of finite groups. Assume that (P) satisfies:

(a) The trivial group has (P), every cyclic group of prime order has (P).

(b) Suppose G has (P), then H �G implies H and G/H have (P).

(c) If G has (P) (with G �= {1}), then G is not simple unless G is cyclic of prime order.

Then, when G has (P), the group G is solvable.

Proof . We proceed by induction on #(G). The case G = {1} is trivial, by (a) (nothing to check). Assume
that the proposition holds for all G with #(G) ≤ n, and assume #(G) = n+ 1. If n+ 1 is prime, then G is
cyclic of prime order, which implies that it is solvable. Thus, we may assume that n + 1 is not prime and
that G has (P). By (c), the group G has some nontrivial normal subgroup, H. By (b), both H and G/H
have (P), and the induction hypothesis implies that both H and G/H are solvable. Proposition 1.28 implies
that G is solvable.

Corollary 1.30 (Burnside, Feit & Thompson) Every group G, of order paqb or odd order is solvable.
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Remark: Corollary 1.30 is not really proved. It depends on establishing (c) for the two properties: paqb,
odd order. As remarked just before Proposition 1.10, this is not easy.

Definition 1.9 Let G be any group. The lower central series (LCS) of G is the descending chain of
subgroups

G = Γ0 ⊇ Γ1 ⊇ · · · ⊇ Γd ⊇ · · · ,
where Γj+1 = [G,Γj ]. The upper central series (UCS) of G is the ascending chain of subgroups

{1} = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zd ⊆ · · · ,
where Zj = the inverse image in G of Z(G/Zj−1).

Remarks:

(1) Γ1(G) = [G,Γ0] = [G,G] = ∆(1)(G), and

Γ2(G) = [G,Γ1] = [G,∆(1)(G)] ⊇ [∆(1)(G),∆(1)(G)] = ∆(2)(G),

and so, Γ2(G) ⊇ ∆(2)(G). The reader should check (DX) that Γd(G) ⊇ ∆(d)(G), for all d ≥ 0.

(2) Z1(G) = inverse image in G of Z(G/Z0) = inverse image of Z(G), so Z1(G) = Z(G).

(3) If for some j, the equality Γj(G) = Γj+1(G) holds, then Γj(G) = Γd(G), for all d ≥ j. The lower
central series strictly descends until the first repetition.

(4) Similarly, if for some j, the equality Zj(G) = Zj+1(G) holds, then Zj(G) = Zd(G), for all d ≥ j. The
upper central series strictly ascends until the first repetition.

Proposition 1.31 Suppose the lower central series of G reaches {1} after r steps. Then, for every j ≤ r,
we have Γr−j ⊆ Zj. Consequently, the upper central series reaches G after r steps. Conversely, suppose that
the upper central series reaches G after r steps. Then, for every j ≤ r, we have Γj ⊆ Zr−j. Consequently,
the lower central series reaches {1} after r steps.

Proof . By induction on j. For j = 0, we have Γr = Γr−0, and by hypothesis, Γr = {1} and Z0 = {1}, so the
basis of the induction holds. Before we do the induction step, let us also consider the case j = 1. We need
to show that Γr−1 ⊆ Z1 = Z(G). But Γr = {1}, yet Γr = [G,Γr−1]. This means that for all σ ∈ G and all
τ ∈ Γn−1, we have [σ, τ ] ∈ Γr = {1}. Thus, τ commutes with all σ ∈ G, and so, τ ∈ Z(G) = Z1. Let us now
assume our statement, Γr−j ⊆ Zj , for some j, and look at the case j + 1. Now, Γr−j = [G,Γr−j−1]. By the
induction hypothesis,

[G,Γr−j−1] ⊆ Zj .

Consider the map G −→ G/Zj = G. Then,

[G,Γr−j−1] = {1} in G.

Therefore, Γr−j−1 is contained in the inverse image of Z(G) = Z(G/Zj) = Zj+1, concluding the induction
step.

For the converse, again, use induction on j. When j = 0, we have Γ0 = G and Zr = Zr−0 = G, by
hypothesis, and the basis of the induction holds. Assume that Γj ⊆ Zr−j for some j, and consider the case
j + 1. We have

Γj+1 = [G,Γj ] ⊆ [G,Zr−j ],

by the induction hypothesis. Look at the map G −→ G/Zr−j−1 = G. We have

Γj+1 ⊆ [G,Zr−j ].

But, by definition, Zr−j = Z(G). Thus, [G,Zr−j ] = {1} in G. Therefore,
Γj+1 ⊆ Ker (G −→ G) = Zr−j−1.
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Definition 1.10 A group, G, is nilpotent if and only if the lower central series reaches {1} after finitely
many steps. The smallest number of steps, say c, is the nilpotence class of G. We write G ∈ N ilp(c). (We
let c = ∞ if the LCS does not reach {1} in finitely many steps.)

Remarks:

(1) N ilp(0) = the class consisting only of the trivial group.
N ilp(1) = the collection of abelian, nontrivial groups. If we let N ilp(c) denote the union of the
collections N ilp(k) for k = 0, . . . , c, then it turns out that we have a strictly ascending chain

Ab = N ilp(1) < N ilp(2) < N ilp(3) < · · ·

of “worse and worse behaved” groups.

(2) We have G ∈ N ilp(c) iff the UCS reaches G after c steps and c is minimal with this property.

(3) Each nilpotent group is automatically solvable, but the converse is false, even for finite groups, even for
small finite groups. Indeed, we observed earlier that ∆(r)(G) ⊆ Γr(G). Therefore, δ(G) ≤ nilpotence
class of G. For a counter-example, take G = S3. This group has order 6, its center is trivial, and so
Z1 = Z0 and G is not nilpotent. Yet, we have an exact sequence

0 −→ Z/3Z −→ S3 −→ Z/2Z −→ 0,

and the extremes are solvable (even nilpotent, even abelian), so the middle is solvable.

(4) Every p-group is nilpotent. This is because the center of a p-group is nontrivial, so the UCS is strictly
ascending and our group is finite; so, this implies that our group is nilpotent.

Remark: The fundamental groups of many spaces arising in geometry tend to be nilpotent groups.

Proposition 1.32 (Modified Sylow III) Say G is a finite group, P is a p-Sylow subgroup of G and H is
some subgroup of G. If H ⊇ NG(P ), then NG(H) = H.

Proof . (Frattini Argument). Pick σ ∈ NG(H). Then, σHσ−1 = H and σPσ−1 ⊆ σHσ−1 (since H ⊇
NG(P )). So, P and σPσ−1 are two p-Sylow subgroups of H, and by Sylow II, there is some τ ∈ H so that
τPτ−1 = σPσ−1. Thus, τ−1σP (τ−1σ)−1 = P , and so, τ−1σ ∈ NG(P ) ⊆ H, by hypothesis. So, σ ∈ τH = H
(since τ ∈ H).

Theorem 1.33 Let G be a finite group. Then, the following statements are equivalent:

(1) G is nilpotent.

(2) G has property (N).

(3) Every maximal subgroup of G is normal.

(4) ∆(1)(G) ⊆ Φ(G).

(5) Every p-Sylow subgroup of G is normal in G.

(6) G is isomorphic to the product of its p-Sylow subgroups. (We write G ∼=∏pGp).
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Proof . (1) ⇒ (2). Let H be a proper subgroup of G, we must prove that NG(H) > H. Now, there is some
c with Γc = {1}. Obviously, Γc ⊆ H, so pick a smallest d for which Γd ⊆ H, so that Γd−1 �⊆ H.

Claim: Γd−1 ⊆ NG(H).

If the claim holds, then H < NG(H), i.e., G has property (N). Pick ξ ∈ Γd−1; so,

[H, ξ] ⊆ [H,Γd−1] ⊆ [G,Γd−1] = Γd.

Pick h ∈ H and look at [h−1, ξ]. The element [h−1, ξ] is in Γd, and so, in H (since Γd ⊆ H). Consequently,
h−1ξhξ−1 ∈ H, from which we deduce ξhξ−1 ∈ H, and since this is true for all h ∈ H, we have ξ ∈ NG(H),
as desired.

(2) ⇒ (3). This has already been proved (c.f. Proposition 1.17).

(3) ⇒ (4). This has already been proved (c.f. Proposition 1.23).

(4) ⇒ (5). Let P be a p-Sylow subgroup of G. Look at NG(P ). If NG(P ) �= G, then NG(P ) is contained
is some maximal subgroup, M . By modified Sylow III, we get NG(M) = M . Now, ∆(1)(G) ⊆ Φ(G) ⊆M , by
hypothesis, and the second homomorphism theorem implies that M corresponds to a subgroup of G/∆(1)(G)
and normal subgroups correspond to normal subgroups. Yet, G/∆(1)(G) is abelian, so all its subgroups are
normal, which implies that M is normal, a contradiction.

(5) ⇒ (6). This has already been proved (c.f. Proposition 1.18).

(6) ⇒ (1). Since every p-group is nilpotent, the implication (6) ⇒ (1) follows from the following

Proposition 1.34 Say Gj ∈ N ilp(cj), for j = 1, . . . , t. Then,

t∏
j=1

Gj ∈ N ilp( max
1≤j≤t

{cj}).

Proof . An obvious induction reduces us to the case t = 2. In this case, we use an induction on max{c1, c2}.
The cases c1 ≤ 1 and c2 ≤ 1 are trivial. Now, we have (DX)

Z(G1

∏
G2) ∼= Z(G1)

∏
Z(G2).

But then, (G1

∏
G2)/Z(G1

∏
G2) ∼= (G1/Z(G1))

∏
(G2/Z(G2)); on the left hand side, the purported nilpo-

tence class is down by 1 and on the righthand side, both are down by 1. We conclude by applying the
induction hypothesis.

This concludes the proof of Theorem 1.33.
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1.6 Ω-Groups and the Jordan-Hölder-Schreier Theorem

Let Ω be some set. If M is a group, we denote the monoid of group endomorphisms of M (under composition)
by EndGr(M) and the group of (group) automorphisms of M by AutGr(M).

Definition 1.11 A group, M , is an Ω-group iff there exists a set map Ω −→ EndGr(M). If Ω is itself a
group, we demand that our map be a homomorphism (so, the image lies in AutGr(M)). If Ω is a ring, we
demand that M be an abelian group and that our map be a ring homomorphism taking 1 ∈ Ω to the identity
endomorphism of M .

Examples.

(1) When Ω is a group, we get an Ω-action on M (at first, as a set) and further, we obtain:

1 ·m = m,

ξ · (η ·m) = (ξη) ·m,
ξ · (mn) = (ξ ·m)(η · n).

In particular, (ξ ·m)−1 = ξ ·m−1.

(2) When Ω is a group and M is abelian, we just get an Ω-module.

(3) If Ω is a ring, then the nomenclature is Ω-module instead of Ω-group.

(4) When Ω is a field, then an Ω-module is a vector space over Ω.

(5) Being an Z-module is equivalent to being an abelian group.

An Ω-subgroup of M (resp. Ω-normal subgroup of M) is just a subgroup (resp. a normal subgroup), N ,
of M stable under Ω, i.e., for all ξ ∈ Ω, for all n ∈ N , we have ξ · n ∈ N .

Blanket Assertion (DX). The three isomorphism theorems of ordinary group theory are true for Ω-
groups provided everywhere “subgroup” appears we substitute “Ω-subgroup”, mutatis–mutandis for “normal
subgroups.”

Definition 1.12 A normal flag (normal series, normal chain) is a descending chain of Ω-subgroups of M :

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mr = {1}, (∗)
each Mj being normal in the preceding Mj−1. A normal flag is nonrepetitious if for no j do we have
Mj = Mj−1. Given a second normal flag:

M = M ′
0 ⊇M ′

1 ⊇M ′
2 ⊇ · · · ⊇M ′

s = {1}, (∗∗)
the flag (∗∗) refines (∗) iff for every i the Ω-group Mi occurs as some M ′

j . Two normal flags (∗) and (∗∗)
are isomorphic iff the collection of their successive quotients, Mi−1/Mi and M ′

j−1/M
′
j may be rearranged so

that, after rearrangement, they become pairwise isomorphic (in their new order). When this happens, the
lengths r and s are equal.

Theorem 1.35 (Schreier refinement theorem, 1928) For an Ω-group, any two normal flags possess isomor-
phic refinements. If both normal flags are nonrepetitious, so are their isomorphic refinements.

The main corollary of the Schreier refinement theorem is:

Corollary 1.36 (Jordan–Hölder theorem) Any two composition series for an Ω-group are isomorphic.
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Proof . A composition series has no refinements except itself—apply Schreier’s theorem.

Zassenhaus proved a lemma specifically designed to give the smoothest proof of Schreier’s theorem—this
is

Lemma 1.37 (Zassenhaus’ butterfly lemma) Say G is an Ω-group and A and C are subgroups. Suppose
B �A and D � C are further Ω-subgroups. Then,

(A ∩ C)B/(A ∩D)B ∼= (C ∩A)D/(C ∩B)D.

G

D

CA

B

B ∩ C A ∩D

A ∩ C

Figure 1.1: The butterfly lemma

Proof . Let T = A ∩ C = C ∩A, M = B ∩ C and N = A ∩D. The conclusion of the lemma is

TB/NB ∼= TD/MD.

First of all, there is right-left symmetry in the statement of the lemma and its conclusion (A↔ C, B ↔ D;
under these substitutions, T ↔ T and M ↔ N). We must prove that NB � TB. Pick t ∈ G and look at
tNBt−1 = tNt−1tBt−1. If t ∈ A, then tBt−1 = B, since B �A. Thus, if t ∈ A then tNBt−1 = tNt−1B. If
t ∈ T ⊆ C, then as N = D ∩ C ∩A = D ∩ T and D � C, we get

tNt−1 = tDt−1 ∩ tT t−1 = tDt−1 ∩ T = D ∩ T = N.

Thus, if t ∈ T then tNBt−1 = NB.

Say ξ = tb ∈ TB. Since B �A and N ⊆ A, we have BN = NB. Then, we find

ξNBξ−1 = tbNBb−1t−1

= tbNBt−1

= tbBNt−1

= tBNt−1

= tNBt−1

= NB.

Therefore, NB � TB. By symmetry, we get MD � TD. Look at TB/NB = TNB/BN (since N ⊆ T ). By
the third isomorphism theorem, we have

TB/NB ∼= T/T ∩NB.
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By symmetry,
TD/ND ∼= T/T ∩MD.

If we prove that T ∩ NB = T ∩ NM (and so, T ∩ MD = T ∩ NM , by symmetry), we will be done.
Pick ξ ∈ T ∩ NB. We can write ξ = nb ∈ NB, so b = n−1ξ ∈ NT = T (since N ⊆ T ). Thus,
b ∈ B ∩ T = B ∩ C ∩ A ⊆ M , and so, b ∈ M . Consequently, ξ = nb ∈ NM and since we also have ξ ∈ T ,
then ξ ∈ T ∩ NM . This proves that T ∩ NB ⊆ T ∩ NM . The reverse inclusion is trivial, since M ⊆ B.
Therefore, T ∩NB = T ∩NM , as claimed.

Proof of Theorem 1.35. Let

M = M0 ⊇M1 ⊇M2 ⊇ · · ·Mi−1 ⊇Mi ⊇ · · · ⊇Mr = {1}, (∗)

and

M = M ′
0 ⊇M ′

1 ⊇M ′
2 ⊇ · · ·M ′

j−1 ⊇M ′
j ⊇ · · · ⊇M ′

s = {1}, (∗∗)

be two normal nonrepetitious chains. Consider the groups

M
(j)
i−1 = (Mi−1 ∩M ′

j)Mi.

As j varies, these groups start at Mi−1 (= M
(0)
i−1) and end at Mi (= M

(s)
i−1) and we get a refinement of (∗) if

we do this between any pair in (∗). Also consider the groups

M
′(i)
j−1 = (M ′

j−1 ∩Mi)M ′
j ,

and let i vary. These groups interpolate between M ′
j−1 and M ′

j , just as above. Look at the successive
quotients

M
(j−1)
i−1 /M

(j)
i−1; M

′(i−1)
j−1 /M

′(i)
j−1. (†)

If we let A = Mi−1, B = Mi (� A), C = M ′
j−1 and D = M ′

j (� C), we can write the first quotient group of
(†) as

M
(j−1)
i−1 /M

(j)
i−1 = (Mi−1 ∩M ′

j−1)Mi/(Mi−1 ∩M ′
j)Mi = (A ∩ C)B/(A ∩D)B,

the left hand side of Zassenhaus’ lemma. By symmetry, the second quotient group of (†) is the righthand
side of Zassenhaus’ lemma and we are done.
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1.7 Categories, Functors and Free Groups

Definition 1.13 A category , C, is a pair: 〈Ob(C),F l(C)〉, in which Ob(C) and F l(C) are classes, called the
objects of C and the morphisms (or arrows) of C, respectively. We require the following conditions:

(1) For all A,B ∈ Ob(C), there is a unique set, HomC(A,B), called the collection of morphisms from A
to B, and any two such are either disjoint or equal. Further

F l(C) =
⋃
A,B

HomC(A,B).

For the morphisms, we also require:

(2) For every u ∈ HomC(A,B) and v ∈ HomC(B,C), there exists a unique morphism
w = v ◦ u ∈ HomC(A,C), called the composition of v and u.

(3) For every A ∈ Ob(C), there is some arrow, 1A ∈ HomC(A,A), so that for every B ∈ Ob(C) and
u ∈ HomC(A,B), we have

A
1A−→ A

u−→ B = A
u−→ B

A
u−→ B

1B−→ B = A
u−→ B.

Note: This shows that 1A is unique for each A (DX).

(4) We have the associativity law
u ◦ (v ◦ w) = (u ◦ v) ◦ w,

whenever the compositions all make sense.

Examples of Categories:

(1) Sets, the category of sets; Ob(Sets) = all sets, F l(Sets) = all maps of sets.

(2) Gr, the category of groups; Ob(Gr) = all groups, F l(Gr) = all homomorphisms of groups. A special
case is Ab, the category of abelian groups.

(3) Ω-Gr, the category of Ω-groups. Special cases are: The category of G-modules, Mod(G); the category
of R-modules, Mod(R) (where R is a ring); and the category of vector spaces, Vect(k) (where k is a
field). Also, Ab = Mod(Z).

(4) TOP, the category of topological spaces; Ob(TOP) = all topological spaces,
F l(TOP) = all continuous maps.

(5) Ck-MAN, the category of Ck-manifolds; Ob(Ck-MAN) = all (real) Ck-manifolds (0 ≤ k ≤ ∞ or ω),
F l(Ck-MAN) = all Ck-maps of Ck-manifolds.

(6) HOL, the category of complex analytic manifolds; Ob(HOL) = all complex analytic manifolds,
F l(HOL) = all complex analytic maps of holomorphic manifolds.

(7) RNG, the category of all rings; Ob(RNG) = all rings (with unity), F l(RNG) = all homomorphisms of
rings. A special case is CR, the category of commutative rings.

A subcategory , D, of C is a category, 〈Ob(D),F l(D)〉, so that

(a) Ob(D) ⊆ Ob(C).
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(b) F l(D) ⊆ F l(C), in such a way that for all A,B ∈ Ob(D), we have
HomD(A,B) ⊆ HomC(A,B).

We say that D is a full subcategory of C iff for all A,B ∈ Ob(D), we have
HomD(A,B) = HomC(A,B).

Examples of Subcategories:

(1) The category, Ab, is a full subcategory of Gr; the category, CR, is a full subcategory of RNG.

(2) Recall that u ∈ HomC(A,B) is an isomorphism (in C) iff there is some v ∈ HomC(B,A) so that

A
u−→ B

v−→ A = A
1A−→ A

B
v−→ A

u−→ B = B
1B−→ B.

Take D so that Ob(D) = Ob(C), and morphisms, set
HomD(A,B) = {u ∈ HomC(A,B) | u is an isomorphism} and F l(D) =

⋃
A,B HomD(A,B). (Note that

HomD(A,B) may be empty.) The category, D, is generally a nonfull subcategory of C, for example
when C = Sets.

Say C is a category, we can make a new category, CD, the dual or opposite category , as follows: Ob(CD) =
Ob(C) and reverse the arrows, i.e., for all A,B ∈ Ob(C),

HomCD(A,B) = HomC(B,A).

Definition 1.14 Let C and C′ be categories. A functor (respectively, a cofunctor), F , from C to C′ is a rule
which associates to each object A ∈ Ob(C) an object F (A) ∈ Ob(C′) and to each arrow u ∈ HomC(A,B) an
arrow F (u) ∈ HomC′(F (A), F (B)) (resp. F (u) ∈ HomC′(F (B), F (A))) so that,

F (1A) = 1F (A)

F (u ◦ v) = F (u) ◦ F (v)
(resp. F (u ◦ v) = F (v) ◦ F (u), for cofunctors.)

Remark: Obviously, Definition 1.14 can be made more formal by defining a functor, F , from C to C′ as a
pair, 〈F ob, F fl〉, where F ob : Ob(C) → Ob(C′) and F fl : F l(C) → F l(C′), so that, for every u ∈ HomC(A,B),
we have F fl(u) ∈ HomC′(F ob(A), F ob(B)), and the conditions of Definition 1.14 hold (and similarly for
cofunctors).

We use the notation A� F (A) (or u� F (u)) to indicate that F : C → C′ is a functor from C to C′, and
not just an ordinary function.

Examples of Functors

(1) For the categories in Examples (2)–(7), consider the rule:
A ∈ Ob(C)� |A| = the underlying set of A, and
u ∈ F l(C)� |u| = the morphism, u, as a map of sets.
The functor, | |, is a functor from C to Sets, called the forgetful functor or stripping functor .

(2) A cofunctor, F : C → C′, is just a functor, F : CD → C′ (equivalently, F : C → C′D).

(3) We have the functor, Ga : RNG → Ab, given by taking Ga(R) = R as an additive group, for every
ring, R. The functor, Ga, is called the additive group functor .
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(4) For every integer, n ≥ 0, we have the functor, GLn : CR → Gr, where GLn(A) is the group of invertible
n×n matrices with entries in A. When n = 1, the group GL1 is denoted Gm. This is the multiplicative
group functor , it takes CR to Ab. The functor Gm can be promoted to a functor, RNG −→ Gr, taking
the ring, A, to its group, A∗, of units.

(5) Let (TOP, ∗) be the category of topological spaces together with a base point. We have the subcategory
(C-TOP, ∗) consisting of connected and locally connected topological spaces with a base point. The
morphisms of (C-TOP, ∗) preserve base points. We have the functors (fundamental group)

π1 : (C-TOP, ∗) → Gr,

and for n > 1 (nth homotopy group),

πn : (C-TOP, ∗) → Ab.

(6) For every integer, n ≥ 0, we have a functor (integral homology), TOP −→ Ab, given by X � Hn(X,Z)
and a cofunctor (integral cohomology), TOP −→ Ab, given by X � Hn(X,Z).

(7) math.upenn.edu/ Given a group, G, for any integer, n ≥ 0, we have a functor, Mod(G) −→ Ab, given
by A� Hn(G,A).

Definition 1.15 Say F and F ′ are two functors C −→ C′. A morphism, θ, from F to F ′ is a collection
{θA | A ∈ Ob(C)}, where:

(1) θA : F (A) → F ′(A) in C′, so that (consistency)

(2) For every v : A→ B in C, the diagram

F (A)

F (v)

��

θA �� F ′(A)

F ′(v)
��

F (B)
θB �� F ′(B)

commutes, for all A,B ∈ Ob(C).

A morphism of functors is also called a natural transformation of functors.

Examples of Morphisms of Functors:

(1) In the category (C-TOP, ∗), we have the functors π1 and H1(−,Z). The Hurewicz map

π1(X) uX−→ H1(X,Z)

defines a morphism of functors.

(2) If G is a group and K is a subgroup of G, we have the obvious restriction functor
res : Mod(G) → Mod(K), and it induces a morphism of functors res : Hn(G,−) → Hn(K,−).

(3) The determinant, det : GLn → Gm, is a morphism of functors (from CR to Ab).

(4) Check (DX) that with the above notion of morphisms, the functors from C to C′ form a category
themselves. This category is denoted Fun(C, C′).

Proposition 1.38 Given a category, C, each object, A, of C gives rise to both a functor, hA, and a cofunctor,
hDA , from C to Sets.
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Proof . For any given A ∈ Ob(C), let

hA(B) = HomC(A,B)
hDA (B) = HomC(B,A).

Moreover, for every v ∈ HomC(B,C), define hA(v) : HomC(A,B) → HomC(A,C) by composition, so that for
every u ∈ HomC(A,B),

hA(v)(u) = v ◦ u,
and, for every v ∈ HomC(B,C), define hDA (v) : HomC(C,A) → HomC(B,A), again by composition, so that
for every u ∈ HomC(C,A),

hDA (v)(u) = u ◦ v.
The reader should check that hA and hDA are indeed functors (DX).

The following proposition is half of the Yoneda embedding lemma:

Proposition 1.39 Let A and Ã be two objects of C and suppose that the corresponding functors hA and
h eA are isomorphic, say by θ : hA → h eA. Then, A and Ã are isomorphic via a canonically determined
isomorphism (dependent on θ).

Proof . For every B ∈ Ob(C), we have an isomorphism

θB : HomC(A,B) −̃→ HomC(Ã, B),

and this is functorial. Let B = A, then θA : HomC(A,A)−̃→HomC(Ã, A), and we set ψ = θA(1A), a morphism
in HomC(Ã, A). Now, if we let B = Ã, we get θ eA : HomC(A, Ã) −̃→ HomC(Ã, Ã), and we set ϕ = θ−1

eA
(1 eA), a

morphism in HomC(A, Ã). Pick any z in HomC(A,B). We would like to understand what θB(z) is. We have
the commutative diagram

z ∈ HomC(A,B)
θB �� HomC(Ã, B)

1A ∈ HomC(A,A)

z◦−
��

θA

�� HomC(Ã, A).

z◦−
��

Following the above commutative diagram clockwise, we get θB(z), and following it counterclockwise, we get
z ◦ ψ. We conclude that

θB(z) = z ◦ ψ.
Similarly, for any z̃ ∈ HomC(Ã, B), by considering the commutative diagram involving θ−1

eA
and θ−1

B , we get

θ−1
B (z̃) = z̃ ◦ ϕ.

But then, we have
1 eA = θ eA(ϕ) = ϕ ◦ ψ and 1A = θ−1

A (ψ) = ψ ◦ ϕ,
which shows that ϕ and ψ are inverse isomorphisms. Furthermore, ϕ (resp. ψ) determine θ, just as θ
determines ϕ and ψ.

Example. Recall that Vect(k) is the category of vector spaces over a field, k. There exists a cofunctor,
D : Vect(k) −→ Vect(k), given by: V � V D = HomVect(k)(V, k) = the dual space of V ; and for any linear
map, θ : V → W , the map θD : WD → V D is the adjoint of θ. By applying D again, we get a functor,
DD : Vect(k) −→ Vect(k). However, it is well-known that there exists a morphism of functors,
η : id → DD, where id(V ) = V

ηV−→ DD(V ) = V DD, and this is functorial.

Two categories, C and C′, are equivalent (resp. isomorphic) iff there exist functors F : C → C′ and
F ′ : C′ → C so that F ′ ◦ F ∼= 1C and F ◦ F ′ ∼= 1C′ (resp. F ′ ◦ F = 1C and F ◦ F ′ = 1C′). Here 1C denotes the
identity functor from C to itself.
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Proposition 1.40 (Yoneda’s Embedding Lemma) The functor A � hDA establishes an equivalence of the
category, C, with a full subcategory of FunD(C,Sets) (where FunD(C, C′) denotes the category of cofunctors
from C to C′).

Proof . We already know from Proposition 1.39 that if we have an isomorphism θ : hDA → hD
eA
, then θ de-

termines uniquely two mutually inverse isomorphisms ψ : A → Ã and ϕ : Ã → A. So, two objects A and
Ã in Ob(C) give isomorphic cofunctors iff they themselves are isomorphic. Given any v ∈ HomF (hDA , h

D
eA
),

where F = FunD(C,Sets), we know (again) that there exists a morphism ψ : A → Ã, so that v is given by
composing with ψ, i.e., given a consistent family of morphisms, vB : hDA (B) → hD

eA
(B), that is,

vB : HomC(B,A) → HomC(B, Ã), we have vB(z) = ψ ◦ z, and our ψ is given by ψ = vA(1A) (all this from
the proof of Proposition 1.39). Hence, from v, we get a morphism ψ : A→ Ã, thus

HomC(A, Ã) ∼= HomF (hDA , h
D
eA
).

So, we indeed have an equivalence with a full subcategory of F , namely the image consists of those cofunctors
of the form hDA (easy details are left to the reader (DX)).

Remark: What does Yoneda’s lemma say? It says that any object A ∈ Ob(C) is determined by its corre-
sponding cofunctor hDA . The cofunctor, hDA , is a “collection of interconnected sets”, HomC(B,A) being the
set associated with B.

Definition 1.16 Given a functor, F , from C to Sets (resp. a cofunctor, G, from CD to Sets), it is repre-
sentable iff there exists a pair, (A, ξ), where A ∈ Ob(C) and ξ ∈ F (A), so that F is isomorphic to hA via the
morphism of functors, ξ̃ : hA → F , given by the consistent family of morphisms ξ̃B : HomC(A,B) → F (B)
defined via

ξ̃B(u) = F (u)(ξ),

(resp. G is isomorphic to hDA via the morphism of functors, ξ̃ : hDA → G, given by ξ̃B : HomC(B,A) → G(B).
Here, ξ̃B is defined via ξ̃B(u) = G(u)(ξ)).

The notion of representable functor is a key concept of modern mathematics. The underlying idea is to
“lift” as much as possible of the knowledge we have about the category of sets to other categories. More
specifically, we are interested in those functors from a category C to Sets that are of the form hA for some
object A ∈ Ob(C).

Remark: If (A, ξ) and (A′, ξ′) represent the same functor, then there exists one and only one isomorphism
A −̃→ A′ so that ξ ∈ F (A) maps to ξ′ ∈ F (A′). This is because we have the isomorphisms ξ̃ : hA−̃→ F and

ξ̃′ : hA′−̃→ F ; and so, we have an isomorphism ξ̃′
−1 ◦ ξ̃ : hA−̃→ hA′ . By Yoneda’s lemma, A−̃→ A′ via the

isomorphism determined by ξ̃ and ξ̃′ and this maps ξ to ξ′. Uniqueness follows as everything is determined
by ξ and ξ′.

Examples of Representable Functors:

(1) Let C = Sets; consider the functor F : SetsD → Sets given by: F (S) = the collection of all subsets of
S, and if θ : S → T is a map of sets, the morphism F (θ) : F (T ) → F (S) is the map that sends every
subset, V , of T to its inverse image, θ−1(V ), a subset of S. Is this a representable functor?

We need a set, Q, and an element, ξ ∈ F (Q), i.e., some subset of Q, so that

hDQ(B) = HomSets(B,Q) −̃→ F (B), via ξ̃B(u) = F (u)(ξ).
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Now, we know that F (u) : F (Q) → F (B) is the map that sends a subset, S, of Q to its inverse image,
u−1(S), a subset of B. So, F (u)(ξ) is the inverse image of our chosen ξ.

Take Q = {0, 1} and ξ = {1} ⊆ Q. Then, subsets of B are exactly of the form, u−1(1), for the various
u ∈ HomSets(B,Q), which are thus characteristic functions.

(2) Let C = RNG, and let F : RNG → Sets be the stripping functor. Is it representable?

We need a ring, P , and an element, ξ ∈ P , so that for all rings, B,

HomRNG(P,B) −̃→ |B|,
via

u ∈ HomRNG(P,B) �→ u(ξ) ∈ |B|.
Take P = Z[T ], the polynomial ring in one variable with integral coefficients, and ξ = T . Then, any
ring homomorphism u ∈ HomRNG(Z[T ], B) is uniquely determined by u(T ) = b ∈ |B|, and any b can
be used.

Definition 1.17 Let F : C → C′ and G : C′ → C be two functors. The functor F is the left (resp. right)
adjoint of G iff for every A ∈ Ob(C) and B ∈ Ob(C′), we have functorial isomorphisms (in both A and B)

HomC′(F (A), B) −̃→ HomC(A,G(B)).
(resp. HomC′(B,F (A)) −̃→ HomC(G(B), A)).

Observe that F is left-adjoint to G iff G is right-adjoint to F . Many so-called “universal constructions”
arise from the existence of adjoint functors; this is a key concept in modern mathematics.

Remark: The concept of adjointness is related to the notion of representability of a functor, as shown by the
following proposition whose simple proof is left to the reader:

Proposition 1.41 A functor, G : C′ → C, has a left-adjoint if and only if, for every A ∈ C, the functor B �
HomC(A, G(B)) from C′ to Sets is representable. If (F (A), ξ) represents this functor (so that eξB : HomC′(F (A), B) ∼=
HomC(A, G(B)) is an isomorphism for every B ∈ C′), then F is the object part of a left-adjoint of G for which the

isomorphism eξB is functorial in B and yields the adjointness.

A functor may have a right adjoint, but no left adjoint, and conversely (or no adjoint at all). For example,
the functor, G� G/[G,G] = Gab, from Gr to Ab, is the left adjoint of the inclusion functor from Ab to Gr.
The inclusion views an abelian group just as a group. So, G � Gab has a right adjoint. However, we now
prove that it has no left adjoint.

Suppose such a left adjoint, F , exists.

Claim 1: For any abelian group, H, the group F (H) can never be simple unless F (H) = {1}, in which
case, H = {1}.

The adjointness property states that for every group, G, we have a functorial isomorphism

HomGr(F (H), G) ∼= HomAb(H,Gab). (∗)
If we take G = F (H) in (∗), we have

HomGr(F (H), F (H)) ∼= HomAb(H,F (H)ab).

If F (H) �= {1} and F (H) is non-abelian simple, then, on the left hand side there are at least two maps
(id and the constant map that sends all elements to 1), even though on the righthand side there is a single
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map, since F (H) is non-abelian simple, a contradiction. If F (H) is Z/pZ for some prime p, take G in (∗)
to be A3p. Again, there are at least two maps in HomGr(F (H), A3p), namely: the constant map and an
embedding. But A3p is simple; so, the righthand side has only one element, again a contradiction. Now, if
F (H) = {1}, take G = H in (∗). In this case, the left hand side has a single map but the righthand side has
at least two maps if H �= {1}.

Claim 2: F (H) has no maximal normal subgroups. If M � F (H) and M is maximal, then F (H)/M
is simple. Let G = F (H)/M in (∗). If F (H)/M is non-abelian, there are at least two maps on the left
hand side, but only one on the righthand side, a contradiction. If F (H)/M is abelian, say Z/pZ, again
take G = A3p in (∗). There are two maps (at least) on the left hand side (stemming from the two maps
F (H) −→ F (H)/M) and only one on the righthand side. So, if F (H) exists, it is not finitely generated.

Take H = G = Z/2Z. Then, we have

HomGr(F (Z/2Z),Z/2Z) ∼= HomAb(Z/2Z,Z/2Z).

Clearly, the righthand side has exactly two maps, and thus, so does the left hand side. But one of these
maps is the constant map sending all elements to 1, so the other map must be surjective. If so, its kernel,
K, is a subgroup of index 2, hence normal, and so, it must be maximal normal, a contradiction.

Therefore, the functor G� G/[G,G] = Gab, from Gr to Ab, has no left adjoint.

One often encounters situations (for example in topology, differential geometry and algebraic geometry)
where the objects of interest are arrows “over” a given object (or the dual notion of arrows “co-over” a given
object), for example, vector bundles, fibre bundles, algebras over a ring, etc. Such situations are captured
by the abstract notion of “comma categories.”

Definition 1.18 Let C be a category and fix some object, A, in Ob(C). We let CA, the category over A
(or comma category), be the category whose objects are pairs (B, πB), where B is some object in Ob(C)
and πB is a morphism in HomC(B,A), and whose morphisms from (B, πB) to (C, πC) are the morphisms
u ∈ HomC(B,C) making the following diagram commute:

B
u ��

πB ���
��

��
��

C

πC����
��

��
�

A

Dually, we let CA, the category co- over A (also called comma category), be the category whose objects are
pairs (B, iB), where B is some object in Ob(C) and iB is a morphism in HomC(A,B), and whose morphisms
from (B, iB) to (C, iC) are the morphisms u ∈ HomC(B,C) making the following diagram commute:

B
u �� C

A

iB

��������� iC

���������

The notion of representable functor allows us to define products and coproducts in arbitrary categories.

Let C be any category. Say {Aα}α∈Λ is a set of objects in Ob(C).

(1) We get a cofunctor, F , from CD to Sets via

B �
∏
α

HomC(B,Aα) = F (B),

where the above product is just the cartesian product of sets, and
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(2) We get a functor, G, from C to Sets via

B �
∏
α

HomC(Aα, B) = G(B).

Are these (or either) representable?

First, consider (1). We need an object, P ∈ Ob(C) and some ξ ∈ F (P ), i.e. ξ ∈∏α HomC(P,Aα), which
means that ξ = {prα}α, where the prα are morphisms prα : P → Aα.

Definition 1.19 When (P, {prα}) exists, i.e. for every B ∈ Ob(C), there is a functorial isomorphism

HomC(B,P ) −̃→
∏
α

HomC(B,Aα),

via u �→ (prα ◦ u)α, the pair (P, {prα}) is the product of the Aα’s in C. This product is denoted
∏
αAα (one

usually drops the prα’s). We have the (functorial) isomorphism

HomC(B,
∏
α

Aα) −̃→
∏
α

HomC(B,Aα). (∗)

Remark: Definition 1.19 implies that for every family of morphisms,
{fα : B → Aα} ∈ Q

α HomC(B, Aα), there is a unique morphism, u : B → Q
α Aα, so that

fα = prα ◦ u, for all α.

This is called the universal mapping property of products. In general, universal mapping properties are another name

for representing a functor. The latter is a more general and supple notion and we will mainly stick to it.

Now, consider (2). We need an object, Q ∈ Ob(C), and some ξ ∈ G(Q), i.e. ξ ∈∏α HomC(Aα, Q), which
means that ξ = {iα}α, where the iα are morphisms iα : Aα → Q.

Definition 1.20 When (Q, {iα}) exists, i.e. for every B ∈ Ob(C), there is a functorial isomorphism

HomC(Q,B) −̃→
∏
α

HomC(Aα, B),

via u �→ (u ◦ iα)α, the pair (Q, {iα}) is the coproduct of the Aα’s in C. This coproduct is denoted
∐
αAα

(one usually drops the iα’s). We have the (functorial) isomorphism

HomC(
∐
α

Aα, B) −̃→
∏
α

HomC(Aα, B). (∗∗)

Of course, as above, there is a universal mapping property here, also.

Definition 1.21 The product in CA is called the fibred product over A in C. The coproduct in CA is called
the fibred coproduct over A in C.

Remark: Given any family, {(Aα, πα)}α, of objects in CA (with πα : Aα → A), the fibred product of the Aα’s over
A in C is a pair, (

Q
A

Aα, ξ), where
Q
A

Aα is some object in C (together with a morphism, π :
Q
A

Aα → A), and ξ

consists of a family of morphisms, prα :
Q
A

Aα → Aα, with

πα ◦ prα = πβ ◦ prβ (= π), for all α, β;
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moreover, for any object, B ∈ C, and any family of morphisms, {fα : B → Aα}α, with

πα ◦ fα = πβ ◦ fβ , for all α, β,

there is a unique morphism, u : B → Q
A

Aα, so that fα = prα ◦ u, for all α.

We leave it to the reader to unwind the definition of fibred coproducts over A in C.

Examples of Products, Coproducts, Fibred Products and Fibred Coproducts:

(1) C = Sets. Given a family of sets, {Aα}α∈Λ, does
∏
αAα or

∐
αAα exist? If so, what are they?

For
∏
αAα, we seek a set, P , and an element, ξ, in F (P ), where F is the cofunctor

T � F (T ) =
∏
α

HomSets(T,Aα).

This means that ξ ∈ F (P ) is just a tuple of maps, prα : P → Aα. Take P to be the ordinary cartesian
product of the Aα’s and prα : P → Aα, the αth projection. Check that this works (DX).

For
∐
αAα, we seek a set, Q, and an element, ξ, in G(Q), where G is our functor

T � G(T ) =
∏
α

HomSets(Aα, T ).

So, we need a family of maps iα : Aα → Q. Now, if Q is to work, then for every T , we need an isomorphism

θT : HomSets(Q,T ) −̃→
∏
α

HomSets(Aα, T )

given by θT (ϕ) = (ϕ ◦ iα)α. Take Q =
⋃· αAα (the disjoint union of the Aα’s). The rest of the construction

is easy (DX).

(2) C = Ab, more generally, C = Mod(R) (R a ring) or C = Mod(G) (G a group).

We begin with products. Given a family, {Aα}α∈Λ, with each Aα in Mod(R), we seek P ∈ Mod(R) and
maps prα : P → Aα in Mod(R), so that for every T ∈ Mod(R), there is an isomorphism

θT : HomR(T, P ) −̃→
∏
α

HomR(T,Aα),

where θT (ϕ) = {prα ◦ϕ}α (the notation HomR(A,B) is usually used, instead of the more accurate but more
cumbersome notation HomMod(R)(A,B)). We see that P must be

∏
αAα, the product in the category of

sets, if this can be made an R-module. Now,
∏
αAα is an R-module via coordinatewise addition, with the

R-action given by r(ξα) = (rξα). So,
∏
αAα is the product of the Aα’s in Mod(R).

Next, we consider coproducts. We seek Q ∈ Mod(R) and maps iα : Aα → Q in Mod(R), so that for
every T ∈ Mod(R), there is an isomorphism

θT : HomR(Q,T ) −̃→
∏
α

HomR(Aα, T ),

where θT (ϕ) = {ϕ ◦ iα}α. The disjoint union
⋃· αAα may be a first approximation to Q, but it is not good

enough. Instead, we let

Q =
{
ξ ∈

∏
α

Aα | prα(ξ) = 0 for all but finitely many α
}
.
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This is an R-submodule of
∏
αAα. The isomorphism

θT : HomR(Q,T ) −̃→
∏
α

HomR(Aα, T )

can now be established. First, let iα(u) = (δuβ)β , where δuα = u and δuβ = 0 for all β �= α. Given a family,
(ϕα)α, of maps ϕα : Aα → T , for any ξ = (ξα)α ∈ Q, set ϕ(ξ) =

∑
α ϕα(ξα) ∈ T . If ϕ ∈ HomR(Q,T ) is

given, define ϕα = ϕ ◦ iα. This shows that if we set
∐
αAα to be our R-module Q and the iα to be our

maps, iα : Aα → Q, as above, we have proved the proposition:

Proposition 1.42 The categories: Sets, Ab, Mod(R), Mod(G) all possess arbitrary products and coprod-
ucts.

How about fibred products and coproducts?

(3) Let us go back to C = Sets, and first consider fibred products over A. A first approximation to the
product, P , in SetsA, is

∏
αAα. However, this is not good enough because there is no “structure map”,

π : P → A, so that

P
prα ��

π
���

��
��

��
� Aα

πα����
��

��
��

A

commutes for all α. We let

PA =
{
ξ ∈

∏
α

Aα | πα(ξα) = πβ(ξβ), for all α, β
}
.

This is a set (possibly empty), and it lies over A; indeed, we can define π : PA → A by π(ξ) = πα(ξα), for any
chosen α, since this is well-defined by definition of PA. We write

∏
A

Aα for PA and, for every α, we define

the map, prα :
∏
A

Aβ → Aα, as the restriction of prα :
∏
Aβ → Aα to

∏
A

Aα. The reader should check that

this yields products in SetsA.

Coproducts are a bit harder. It is natural to try
⋃· αAα as a first approximation, but this is not good

enough: this does not tell us what i : A → Q is. The difficulty is that
⋃· αAα is too big, and we need to

identify some of its elements. To do so, we define an equivalence relation on
⋃· αAα, in two steps. First, we

define immediate equivalence. Given ξ ∈ Aα and η ∈ Aβ , we say that ξ and η are immediately equivalent ,
denoted ξ ≈ η, iff there is some a ∈ A, so that ξ = iα(a) and η = iβ(a). The relation ≈ is clearly reflexive
and symmetric but it is not necessarily transitive. So, we define ∼ to be the equivalence relation generated
by ≈. This means that ξ ∼ η iff there exist x0, . . . , xt ∈

⋃· αAα, so that

ξ = x0, x0 ≈ x1, x1 ≈ x2, . . . , xt−1 ≈ xt, xt = η.

(For example, if ξ ≈ x and x ≈ η, then ξ = iα(a), x = iβ(a), x = iβ(b) and η = iγ(b). Note that
iβ(a) = iβ(b).) We let

∐
A

Aα = (
⋃· αAα) / ∼, and i : A → ∐

A

Aα is given by i(a) = class of iα(a), for any

fixed α (this is well-defined, by definition of ∼). The verification that
∐
A

Aα works is left as an exercise

(DX). Therefore, the category of sets has arbitrary fibred coproducts as well .

(4) C = Ab, Mod(R), Mod(G).

For fibred products, we use
∏
A

Aα, as constructed for Sets, but made into an R-module (resp. G-module),

in the usual way.
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For fibred coproducts, begin with
∐
αAα (in C), and define N to be the submodule generated by the

elements iα(a) − iβ(a) with a ∈ A and α, β arbitrary. Take

∐
A

Aα =

(∐
α

Aα

)
/N.

Again, the reader should check that
∐
A

Aα works (DX). Therefore, Ab, Mod(R), Mod(G), all have arbitrary

fibred products and coproducts.

We now consider products and coproducts in the category of groups, Gr. There is no difficulty for
products: Use

∏
αAα, the usual cartesian product of the Aα’s, as sets, and make

∏
αAα into a group under

coordinatewise multiplication. The same idea works for fibred products. However, coproducts require a new
idea.

Given the family of groups, {Aα}α∈Λ, write A0
α = Aα − {1}. Let

S =
⋃
·
α

A0
α,

and consider, Sn, the n-fold cartesian product of S. We can view Sn as the set of words of length n over
the alphabet S; each word is an n-tuple, (σα1 , . . . , σαn

), with σβ ∈ Aβ . We call such a word admissible iff
Aαj

�= Aαj+1 , for j = 1, 2, . . . , n− 1. Let Sn∗ denote the set of admissible words of length n, and let

Q =

(⋃
n≥1

Sn∗
)

∪ {∅}.

(The special word, ∅, is the “empty word”.) Multiplication in Q is defined as follows:
Given (σ) = (σα1 , . . . , σαr

) and (τ) = (τβ1 , . . . , τβs
) in Q, set

(σ)(τ) = (σα1 , . . . , σαr
, τβ1 , . . . , τβs

),

the result of concatenating the r-tuple, (σ), with the s-tuple, (τ). In case one of (σ) or (τ) is ∅, the
concatenation is just the non-empty word and ∅∅ is ∅. The word (σ)(τ) is admissible of length r+ s, except
if αr = β1, in which case we need to perform a reduction process to obtain an admissible word:

(1) Form σαr
τβ1 in Aαr

= Aβ1 . There are two cases:

(a) σαr
τβ1 �= 1αr

(= 1β1); then

(σα1 , . . . , σαr−1 , σrτβ1 , τβ2 , . . . , τβs
)

is an admissible word of length r + s− 1, and the reduction process ends with this word as output.

(b) σαr
τβ1 = 1αr

(= 1β1); then, omit σαr
and τβ1 , form

(σα1 , . . . , σαr−1 , τβ2 , . . . , τβs
),

a word of length r + s− 2, and if necessary, go back to (1) above.

Since both step (a) and (b) decrease the length of the current word, the reduction process must end with
some admissible word of length l ≤ r + s, or the empty word.

The set Q with the above multiplication is indeed a group with identity element, ∅ (DX). (The map
iα : Aα → Q sends σ ∈ Aα to the length-one word (σ) if σ �= 1 or to ∅ if σ = 1.) In summary, we get
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Theorem 1.43 The category of groups, Gr, possesses arbitrary coproducts (old fashioned name: “free prod-
uct of the Aα.”)

Definition 1.22 Given any set, S, define the the free group on S to be the group Fr(S) =
∐
S

Z.

We have just shown that coproducts exist in the category Gr. What about coproducts in the category
GrA, where A is any group?

Given a family {(Gα, iα)}α∈Λ in GrA, form G =
∐
αGα, in the category Gr. In G, consider the collection

of elements
{iα(a)i−1

β (a) | a ∈ A, iα : A→ Gα, α and β ∈ Λ};
let N be the normal subgroup of G generated by the above elements. Then, G/N ∈ Ob(GrA), because
the map i : A → G/N given by i(a) = image of iα(a) in G/N (for any fixed α) is well-defined (since image
of iα(a) = image of iβ(a) in G/N). Check that, (DX), (G/N, i) is the fibred coproduct of the Gα’s. (Old
terminology: amalgamated product of the Gα over A.)

Examples of fibred coproducts: (1) Let U and V be two sets. Form the intersection U ∩ V ; we have
inclusion maps iU : U ∩ V → U and iV : U ∩ V → V . We know that U � V = U ∪· V , the disjoint union of U
and V , and then, the set-theoretic union of U and V is given by

U ∪ V = U
∐
U∩V

V.

(2) Consider the category (TOP, ∗) of (“nice”, i.e., connected, locally connected) topological spaces with
a base point. Given two spaces (U, ∗) and (V, ∗) in (TOP, ∗), consider (U ∩ V, ∗). Then, again,

(U ∪ V, ∗) = (U, ∗)
∐

(U∩V,∗)
(V, ∗), in (TOP, ∗).

Van Kampen’s theorem says that

π1(U ∪ V, ∗) = π1(U, ∗)
∐

π1(U∩V,∗)
π1(V, ∗),

which may also be written as

π1

(
(U, ∗)

∐
(U∩V,∗)

(V, ∗)
)

= π1(U, ∗)
∐

π1(U∩V,∗)
π1(V, ∗).

In other words, van Kampen’s theorem says that π1 commutes with fibred coproducts.

Go back to the free group, Fr(S). We have

HomGr(Fr(S), G) = HomGr(
∐
S

Z, G)

∼=
∏
S

HomGr(Z, G)

∼=
∏
S

|G| = HomSets(S, |G|).

Corollary 1.44 The functor, S � Fr(S), from Sets to Gr is the left adjoint to the stripping functor,
G� |G|, from Gr to Sets.
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Corollary 1.45 If S −→ T is surjective, then Fr(S) −→ Fr(T ) is a surjection of groups. Also,
Fr(S) ∼= Fr(T ) iff #(S) = #(T ) (i.e., S and T have the same cardinality).

Proof . If u : S → T is a surjection in Sets, then there is a map v : T → S so that u ◦ v = 1T . Since Fr is a
functor, we get homomorphisms Fr(u) : Fr(S) → Fr(T ) and Fr(v) : Fr(T ) → Fr(S); also, Fr(u)◦Fr(v) = 1Fr(T ),
which shows that Fr(u) is surjective.

If #(S) = #(T ), it is obvious that Fr(S) ∼= Fr(T ). Conversely, assume that Fr(S) ∼= Fr(T ). We know
that

HomGr(Fr(S), G) ∼= HomGr(Fr(T ), G)

for all G. Take G = Z/2Z. Then, the left hand side is isomorphic to HomSets(S, |Z/2Z|) = P(S) (where
P(S) = power set of S) and the righthand side is isomorphic to P(T ). Therefore, #(P(S)) = #(P(T )); and
so, #(S) = #(T ).

Given a group, G, consider its underlying set, |G|, and then the group Fr(|G|). Since

HomGr(Fr(|G|), G) ∼= HomSets(|G|, |G|),
the image of the identity map, idG ∈ HomSets(|G|, |G|), yields a canonical surjection, Fr(|G|) −→ G. If S is
a subset of |G|, then, the inclusion map, S ↪→ |G|, yields a morphism of groups, Fr(S) −→ G.

Definition 1.23 A set, S ⊆ |G|, generates a group, G, iff the canonical map Fr(S) −→ G is surjective.

This definition agrees with our old use of generation of a group in previous sections. Say S generates G.
Then, we have the exact sequence

0 −→ K −→ Fr(S) −→ G −→ 0,

where K is the kernel of the surjective morphism, Fr(S) −→ G (so, K is normal in Fr(S)). There is also a
set, T , so that

Fr(T ) −→ K −→ 0 is exact.

By splicing the two exact sequences, we get an exact sequence

Fr(T ) −→ Fr(S) −→ G −→ 0,

called a presentation of G. Sometimes, a presentation is defined as a sequence

Fr(T ) −→ Fr(S) −→ G −→ 0,

where the smallest normal subgroup containing Im (Fr(T )) is equal to the kernel of Fr(S) −→ G. (Note that
such a sequence is not necessarily exact at the group Fr(S).)

The following fundamental theorem about free groups was proved independently by J. Nielson and O.
Schreier:

Theorem 1.46 (Nielson-Schreier (1929)) Every subgroup of a free group is a free group.

The original proof is quite messy. The theory of group actions on trees yields a more direct and more
transparent proof.

We conclude this section on categories with one more interesting example of adjoint functors from ho-
motopy theory.

Example: Consider the category, h-TOP, whose objects are the same as those of TOP, but whose mor-
phisms, Homh-TOP(X,Y ), are the homotopy classes of maps X −→ Y . Given any space, X, in h-TOP, we
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can form ΣX, the suspension of X: This is the space obtained by taking two new points, say 0 and 1, and
forming the double cone obtained by joining 0 and 1 to every point of X, as illustrated in Figure 1.2.

We also have, ΩY , the loop space on Y , where ΩY consists of all continuous maps, S1 −→ Y , from the
unit circle to Y (say, mapping (1, 0) to the base point of Y ). Then, we have the isomorphism

Homh-TOP(ΣX,Y ) ∼= Homh-TOP(X,ΩY )

i.e., suspension is left-adjoint to loops. For instance, given any θ ∈ Homh-TOP(ΣX,Y ), for any p ∈ X, send
p to the image by θ of the loop l(p) (= (∗, 0, p, 1, ∗) in ΣX), in Y .

0

1

X
ΣX

p∗

Figure 1.2: A suspension of X

1.8 Further Readings

El que anda mucho y lee mucho,
Vee mucho y sabe mucho.
—Miguel Cervantes

Some group theory is covered in every algebra text. Among them, we mention Michael Artin [2], Lang [34],
Hungerford, [27], Jacobson [29], Mac Lane and Birkhoff [37], Dummit and Foote [11], Van Der Waerden [47]
and Bourbaki [4]. More specialized books include Rotman [43], Hall [22], Zassenhaus [52], Rose [42] and
Gorenstein [19]. For group cohomology, see also Cartan and Eilenberg [9], Rotman [44], Mac Lane [36] and
Serre [45]. Mac Lane [35] is a good reference for category theory.


