Chapter 2

Rings and Modules

2.1 Introduction

Linear algebra—meaning vector space theory over a field—is the part of algebra used most often in analysis,
in geometry and in various applied fields. The natural generalization to the case when the base object is
a ring rather than a field is the notion of “module.” The theory of modules both delineates in sharp relief
the elementary and deeper structure of vector spaces (and their linear transformations) and provides the
essential “linear springboard” to areas such as number theory, algebraic geometry and functional analysis.
It turns out to be surprisingly deep because the collection of “all” modules over a fixed ring has a profound
influence on the structure of that ring. For a commutative ring, it even specifies the ring! Just as in analysis,
where the first thing to consider in analyzing the local behavior of a given smooth function is its linear
approximation, so in geometric applications the first idea is to pass to an appropriate linear approximation
and this is generally a module.

2.2 Polynomial Rings, Commutative and Noncommutative

Consider the categories RNG and CR, and pick some ring, A, from each. We also have the category, RNGA,
called the category of rings over A (or category of A-algebras), and similarly, CRA, and we have the stripping
functors RNG# ~ Sets and CR? ~~ Sets.

Is there an adjoint functor to each? We seek a functor, P: Sets ~» C, where C = RNG# or CR4, so that
Home (P(S), B) = Homges (S, | Bl)

for every B € C.
Case 1: CR™.

Theorem 2.1 There ezists a left-adjoint functor to the stripping functor, CR* ~ Sets.
Proof. Given a set, S, let N denote the set of non-negative integers and write N s for
Ng={6: S = N|&(s) =0, except for finitely many s € S}.

Note that Ng consists of the functions S — N with compact support (where S and N are given the discrete
topology).

Remark: We may think of the elements, £, of Igls as finite multisets of elements of S, i.e., finite sets with multiple
occurrences of elements: For any s € S, the number £(s) is the number of occurrences of s in €. If we think of each
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member, s, of S as an “indeterminate,” for any £ € IF\VT& if £(si) =ny > 0fori=1,...,t then £ corresponds to the

monomial si'* - syt

We define a multiplication operation on N s as follows: For &7 € N S5
(&n)(s) = &(s) +n(s).

(This multiplication operation on I,\VIS is associative and has the identity element, &y, with &y(s) = 0 for
all s € S. Thus, If\?s is a monoid. Under the interpretation of elements of Iglg as multisets, multiplication
corresponds to union and under the interpretation as monomials, it corresponds to the intuitive idea of
multiplication of monomials. See below for precise ways of making these intuitions correct.)

Define A[S] by
A[S] ={f: Ng — A | (&) =0, except for finitely many & € f\is}

Remark: We should think of each f € A[S] as a polynomial in the indeterminates, s (s € S), with coefficients from
A; each f(€) is the coefficient of the monomial €. See below where X is defined.

In order to make A[S] into a ring, we define addition and multiplication as follows:

(f+9)(&) = [f(&)+9()
(f9)© = > fmg).
7777”77;5

Multiplication in A[S] is also called the convolution product. The function with constant value, 0 € A, is the
zero element for addition and the function denoted 1, given by

[0 itese
10=1{1 126

is the identity element for multiplication. The reader should check that under our operations, A[S] is a
commutative ring with identity (DX). For example, we check that 1 is an identity for multiplication. We

have
(f-1©) =D fmim)=>_ fn).
¢

nm'=¢ néo=

However, for all s € S, we have n&y(s) = n(s) + &o(s) = n(s), and so, n = £. Consequently, (f-1)(&) = f(§),
for all €.

We have an injection A — A[S] via o € A+ « - 1. Here, o - 1 is given by
. _ _JO ifE# &
@19 =ate) = {0 {78

Therefore, A[S] € CR™. It remains to check the “universal mapping property.”

Say 6 € Homgga (A[S], B). Now, we can define two injections S < Ng and S < A[S] (a map of sets) as
follows: Given any s € S, define Ag € Ng by

_JO ift#s
am={7 57

and define X, € A[S] by
_f0 ife#£A,
Xe(8) = {1 ifE= A,
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Then, if we set 6°(s) = 6(X,), we get a set map 6° € Homgets(S, |B|).
Conversely, let ¢ € Homges(S, |B|). Define @: NS — B via
26 = [[¢(s)*® e B.
ses

Now, set ©!(f), for f € A[S], to be
P (f) =D FOZ(9).
3

(Of course, since B € CR#, we view f (&) as an element of B wvia the corresponding morphism A — B.)
The reader should check (DX) that:
(a) ¢* is a homomorphism and
(b) The operations f and b are mutual inverses. []

The definition of A[S] has the advantage of being perfectly rigorous, but it is quite abstract. We can give
a more intuitive description of A[S]. For this, for any £ € Ng, set

X© =T x5, in A[S],
ses

and call it a monomial. The reader should check (DX) that
X©(n) = b, forall &7 € Ng.

Hence, the map & — X&) is a bijection of Ng to the monomials (c.f. the remark on monomials made earlier).
Moreover, we claim that every f € A[S] can be written as

F=Y_1ox®.
13

This is because
(Z f(é“)X(@) () =D F()den = f(n).
3 £
The usual notation for £(s) is &, and then, X&) = [lecs X& . and our f’s in A[S] are just polynomials in

s

the usual sense, as hinted at already. However, since S may be infinite, our formalism allows us to deal with
polynomials in infinitely many indeterminates. Note that any polynomial involves just a finite number of
the variables.

What happened to |A| in all this? After all, in CRA7 we have rings, B, and maps is: A — B. So, the

commutative diagram
B——m(C
A

would give

Bvc
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sl4l. Given any set, S, make an |A|-set:

Consider the category of |Al-sets, Set
|[A|TIS = |A|US.

This is an |A[-set, since we have the canonical injection, |[A| — |A|IT S. Let T be any |A|-set and look at
Homgggial (|JA| IT.S,T), i.e., maps |A] II S — T such that the diagram

AIS —— 7
Al

commutes. We know that
Homg,ya1(|A| IS, T) € Homgers(|A], T) | [ Homsets(S, T)

and the image is Homgggiai (JA|, T) [[ Homsets (S, T). But Homgyqa1 (|A],T) consists of a single element,
and so,
HomScts‘A‘ (‘A| H S? T) = HomSets(Sy T)

Thus, we have the functorial isomorphism
Homgga (A[S]a B) = Homgeggial (lA‘ s, |B|)
Corollary 2.2 A necessary and sufficient condition that Z[S] = Z[T] (in CR) is that #(S) = #(T).

Proof. If #(S) = #(T), then there exist mutually inverse bijections, ¢: S — T and ¢: T — S. Hence, by
functoriality, Z[S] is isomorphic to Z[T] (via Z[S](¢) and Z[T](y))). Now, take B = Z /27, and assume that
Z[S) 2 Z[T). Then, we know that

Homcg (Z[S], B) = Homcgr (Z[T], B),
and since Homceg (Z[S], B) = Homsets(S,{0,1}) and Homegr (Z[T), B) & Homgets(7,{0,1}), we have
Homges(S, {0, 1}) = Homges (7, {0, 1}).

This implies that 2#(5) = 2#(T) " and thus, #(S) = #(7T). [

Case 2: RNG®, where R is a given ring (not necessarily commutative). For every set, S, and every
R-algebra, B € RNG%, let

Hom{§),, (5. | B]) = {1 € Homsexs(S, | B)) | (Vs € $)(¥¢ € Im (IR))((s)¢ = €(s)}-
Theorem 2.3 There exists a functor, R(S), from Sets to RNG?E, so that

Hompngr(R(S), B) = Homge)ts(S, |B|), functorially.

Sketch of proof. (A better proof via tensor algebras will be given later.) Given S, pick a “symbol”; X, for
each s € S, and map N to the “positive powers of X,” via n — X7 and define X™ - X" = X™+"  Tet
Ny, ={X? |n > 1} 2N (as monoid), and let

S=]][N..

ses



2.2. POLYNOMIAL RINGS, COMMUTATIVE AND NONCOMMUTATIVE o7

Consider S, the cartesian product of p copies of S, with p > 1. An element of S® is a tuple of the form
(Xﬁll,...,XfIf), and is called a monomial. Call a monomial admissible iff r; # r;pq, fori =1,...,p— 1.
Multiplication of admissible monomials is concatenation, with possible one-step reduction, if necessary. Call
S* the union of all the admissible monomials from the various S®), with p > 1, together with the “empty

monomial”, @. Set
R(S)={f:8"— R| f(§) =0, except for finitely many £ € S*}.

There is a map R — R(S) (a — af)). We make R(S) into a ring by defining addition and multiplication
as in the commutative case:

(f+9)(&) = f(&)+9(©)
f9)©) = > fgt)
77737”77;’5

where £, and 1’ are admissible monomials. Then, R(S) is an R-algebra, and it satisfies Theorem 2.3 (DX).
[l

Theorem 2.4 Say T is a subset of S. Then, there exists a canonical injection i: A[T] — A[S], and A[S]
becomes an A[T]-algebra. In the category of A[T|-algebras, we have the isomorphism

AlS) = A[TI[S — T
(Here S — T denotes the complement of T in S, and A is in CR.)
Proof. We have an inclusion, T' < S, and for every B € CR?, restriction to T' gives a surjection
res: Homgets(S, |B|) — Homges(T, | B).

Because we are in the category of sets, there is a map, #, so that res o § = id. Now, the maps 6 and res
induce maps © and Res so that Res o © = id, as shown below:

Homgpa (A[S], B) —— Homgets(S, |B|)

Rl l@ ) l ig

Homgpa (A[T], B) — Homges(T, |B|).

If we let B = A[S], we get a map i = Res(idag)): A[T] — A[S]. If we let B = A[T], then, since Res is
onto, there is a map 7: A[S] — A[T] so that Res(m) = id afy). It follows that 4 is an injection, and thus, A[S]
is an A[T]-algebra.
We have
Homepgam (A[T][S — T, B) = Homges (S — T, | B)).

The given map, |A[T]| — |B|, yields a fixed map, T'— | B|. For any given map, S — T — |B|, therefore,
we get a canonical map, TII (S —T) — |B|, i.e., S — |B|, depending only on the map S — T — |B].
Therefore, there is an injection

Homepam (A[T][S — T], B) — Homcgya (A[S], B),
and the image is just Homggar (A[S], B). By Yoneda’s lemma, A[S] = A[T][S — T, as an A[T]-algebra. []

From now on, we will write Hom 4 (B, C) instead of Homgga (B, C) and similarly for RNGT. If X(© is
a monomial, then we set

deg(X ) =Y "¢(s) € Zo.
seS
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If f € A[S], say f =2 X, then

deg(f) = sup{deg(X¥) | a(g) # 0}.
In particular, note that deg(0) = —oc.

Proposition 2.5 The canonical map, A — AlS], establishes an isomorphism of A with the polynomials of
degree < 0 in A[S]. Any o # 0 in A goes to a polynomial of degree 0, only 0 € A goes to a polynomial of
degree < 0. If f,g € A[S], then

(a) deg(f + g) < max{deg(f),deg(g)}.

(b) deg(fg) < deg(f) + deg(g).
If A is without zero divisors then we have equality in (b) and

(¢) The units of A[S] are exactly the units of A.
(d) The ring A[S] has no zero divisors.

Proof. Since we deal with degrees and each of the two polynomials f, g involves finitely many monomials,
we may assume that S is a finite set. The map A — A[S] is given by o+ « -1 and 1 has degree 0, so it is
trivial that we have an isomorphism of A with the polynomials of degree < 0.

Say S ={1,...,n} and label the X as Xi,...,X,,. The monomials are lexicographically ordered:
X® . X0 < X xhe

iffalzbl,...,aj:bj andaj+1<bj+1 (]:O,/n*l)

(a) If f = Z(f) a(g)X(g) and g = 2(5) b(f)X(g), then f+g = Z(é)(a(f) + b(g))X(g)
If deg(f + g) > max{deg(f),deg(g)}, then there is some n so that

deg(X(”)) > deg(X(f)), for all £ occurring in f and g, and a(,) + by, # 0,

a contradiction.

(b) With f and g as in (a), we have

fg = Z( Z a,(n)b(n/))X(f). (*)
& \nn,
nn'=¢

Now,

deg(X ™) + deg(X)) = Z Zf = deg(X©).
However, a(,) # 0 implies that deg(X (™) < deg(f) and b, # 0 implies that deg(X ")) < deg(g), and this
shows that deg(X(g)) < deg(f) + deg(g), for any X © with nonzero coefficient in ().

When A is a domain, pick 7 to be the first monomial in the lexicographic ordering with X ) of degree
equal to deg(f), and similarly, pick n’ to be the first monomial in the lexicographic ordering with X0 of
degree equal to deg(g). Then (DX), X X (") is the monomial occurring first in the lexicographic ordering
and of degree equal to deg(f) + deg(g) in fg. Its coefficient is a(,) b,y # 0, as A has no nonzero divisors;
so, we have equality in (b).

(c) Say u € A[S] is a unit. Then, there is some v € A[S], so that uv = vu = 1. Consequently, deg(uv) = 0,
but deg(uv) = deg(u) + deg(v). Thus, deg(u) = deg(v) = 0 (as deg(u),deg(v) > 0), i.e., u,v are units of A.

(d) If f,g # 0, then deg(fg) = deg(f) + deg(g) = 0, so fg # 0. ]
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Definition 2.1 Suppose A is a commutative ring and B is a commutative A-algebra. Pick a subset, S C |B|.
The set, S, is called algebraically independent over A (or the elements of S are independent transcendentals
over A) iff the canonical map, A[S] — B, is a monomorphism. The set, S, is algebraically dependent over A
iff the map, A[S] — B, is not a monomorphism. When S = {X}, then X is transcendental, resp. algebraic
over A iff S is algebraically independent (resp. algebraically dependent) over A. The algebra, B, is a finitely
generated A-algebra iff there is a finite subset, S C |B|, so that the canonical map A[S] — B is surjective.

2.3 Operations on Modules; Finiteness Conditions for Rings and
Modules

Let R € RNG, then by an R-module, we always mean a left R-module. Observe that a right R-module is
exactly a left R°P-module. (Here, R°P is the opposite ring, whose multiplication -, is given by z-opy = y-.)
Every ring, R, is a module over itself and over R°P. By ideal, we always mean a left ideal. This is just an
R-submodule of R. If an ideal, J, is both a left and a right ideal, then we call J a two-sided ideal.

Let M be an R-module and {M, }aea be a collection of R-submodules of M.

(0) N, M, is an R-submodule of M.

(1) Note that we have a family of inclusion maps, M, — M; so, we get an element of [[, Homp (M, M).
But then, we have a map

[T Mo — M. (*)
acl

We define )  M,, a new submodule of M called the sum of the M, via any of the following three
equivalent (DX) ways:

(a) Image of (J],cp Mo — M).

(b) N{N|(1) N C M, as R-submodule; (2) M, C N, for all &« € A.}

(©) {2 finite Ma | Ma € Mo}
Clearly, >, M, is the smallest submodule of M containing all the M,.

(2) Let S be a subset of M. For any s € S, the map p — ps, from R to Rs, is a surjection, where
Rs = {ps | p € R}. Thus, we get the submodule ) s Rs (equal to the image of [[¢ R — M) and
called the submodule generated by S; this module is denoted mod(S) or RS. We say that S generates
M iff RS = M and that M is a finitely generated R-module (for short, a f.g. R-module) iff there is a
finite set, S, and a surjection [[¢ R — M.

(3) The free module on a set, S, is just [[¢ R. Observe that (DX) the functor from Sets to Mod(R)
given by S ~ []g R is the left adjoint of the stripping functor from Mod(R) to Sets; i.e., for every
R-module, M, we have the functorial isomorphism

Homp([ [ R, M) = Homses(S, | M]).
S

Remark: An R-module, M, is free over R (i.e., M = ][4 R for some set S) iff M possesses a Hamel
basis over R (DX). The basis is indexed by S. To give a homomorphism of a free module to a module,
M , is the same as giving the images of a Hamel basis in M, and these images may be chosen arbitrarily.
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(4) The transporter of S to N. Let M be an R-module, S be a subset of M and N an R-submodule of
M. The transporter of S to N, denoted (S — N), is given by
(S—=N)={peR|pSC N}

(Old notation: (N :S). Old terminology: residual quotient of N by S.)
When N = (0), then (S — (0)) has a special name: the annihilator of S, denoted Ann(S). Observe:

(a) (S — N) is always an ideal of R.

(b) So, Ann(S) is an ideal of R. But if S is a submodule of M, then Ann(S) is a two-sided ideal of
R. For if p € Ann(S) and £ € R, we have (p€)(s) = p(§s) C pS = (0). Thus, p € Ann(S).

(c) Similarly, if S is a submodule of M, then (S — N) is a two-sided ideal of R.

An R-module, M, is finitely presented (for short, f.p.) iff there are some finite sets, S and T, and an
exact sequence
[[e—]][r— M —o0.
T s

This means that M is finitely generated and that the kernel, K, of the surjection, [[¢ R — M, is also
finitely generated. Note that f.p. implies f.g.

Definition 2.2 An R-module, M, has the ascending chain condition (ACC) (resp. the descending chain
condition (DCC)) iff every ascending chain of submodules

My CM;CM;C---C M, C---,
eventually stabilizes (resp. every descending chain of submodules
My DMy DM D2 My, 2+,

eventually stabilizes.) If M has the ACC it is called noetherian and if it has the DCC it is called artinian. The
module, M, has the mazimal condition (resp. minimal condition) iff every nonempty family of submodules
of M has a maximal (resp. minimal) element.

Proposition 2.6 Given a module, M, over R consider all the statements
(1) M is noetherian (has the ACC).
(2) M has the mazimal property.
(3) Every submodule of M is finitely generated.
(4) M is artinian (has the DCC).
(5) M has the minimal property.

Then, (1)-(3) are equivalent and (4) and (5) are equivalent.

Proof. (1) = (2). Let F be a given nonempty family of submodules of M. If there is no maximal element
of F, given My € F, there is some M in F so that M; < Ms. Repeating the argument, we find there is some
Ms € F so that My < Ms, and by induction, for every n > 1, we find some M,, ;1 € F so that M,, < M, ;.
So, we find an infinite strictly ascending chain

My < My< Mg< o< My < o,

contradicting (1).
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(2) = (3). Observe that the maximal property for M is inherited by every submodule.

Claim: The maximal property for a module implies that it is finitely generated. If so, we are done. Pick
M with the maximal property and let

F={N C M| Nis asubmodule of N and N is f.g.}

The family, F, is nonempty since for every m € M, the module Rm C M is a submodule of M generated
by {m}, and so, Rm € F. Now, F has a maximal element, say T.. If T'# M, then there is some m € M
with m ¢ T. But now, T+ Rm > T and T + Rm is finitely generated by the generators of T' plus the new
generator m, a contradiction. Therefore, M =T € F; and so, M is f.g.

(3) = (1). Take an ascending chain,
MIQMQgngga

and look at N = (J;=; M;. Note that N is a submodule of M. So, by (3), the module N is finitely
generated. Consequently, there is some ¢ so that M; contains all the generators of N, and then we have
N C My C M, C N, for all » > t. Therefore, M; = M, = N for all » > t.

(4) = (5). The proof is obtained from the proof of (1) = (2) mutatis mutandis.

(5) = (4). Say
My DMy D M32--- DM 2---

is a descending chain in M. Let F = {M; | ¢ > 1}. By (5), the family F has a minimal element, say M,..
Then, it is clear that the chain stabilizes at r. []

Proposition 2.7 Let M be a module and write (o), (3) and () for the finiteness properties
(a) finite generation
(B) ACC
(v) bee
Then,
(A) If M has any of («), (8), (), so does every factor module of M.
(B) If M has () or (v), so does every submodule of M.

(C) Say N C M is a submodule and N and M/N have any one of (&), (8), (7). Then, M also has the
same property.

Proof. (A) If M is f.g., then there is a surjection

[IR— M, with #(S) finite.
s
Let M be a factor module of M; there is a surjection M — M. By composition, we get a surjection
H R— M — M,
s

and so, M is f.g. Any ascending (resp. descending) chain in M lifts to a similar chain of M. The rest is
clear.

(B) Any ascending (resp. descending) chain in N C M is a similar chain of M; the rest is clear.
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(C) Say N and M/N have («). Then, there are two finite (disjoint) sets, S and T, and surjections

[[R—N-—0 and J[R— M/N —0.
S T

Consider the diagram:

/|

M M/N 0
l
0

As [], R is free, there exists an arrow, : [[,. R — M, shown above, and the diagram commutes. Now,

consider the diagram:
(p— | — ] [ S— |
s T

ST
o

We obtain the middle vertical arrow by the map 6 and the set map S — M (via S — N — M). By
construction, our diagram commutes. We claim that the middle arrow is surjective. For this, we chase the
diagram: Choose m in M and map m to m € M/N. There is some { € [[, R so that £ — . However,
¢ comes from 1 € [[q ; R. Let 77 be the image in M of 1. Since the diagram is commutative, n = m,
and so, 17 —m maps to 0 in M/N. Consequently, there is some n € N so that 7 —m = n. Yet, n comes
from some p in [[¢ R — [[g,r R (i.e., p = n). Consider n — p € [[g  R. The image of n — p in M is
71— p=m+n—n=m, proving surjectivity. As SUT is finite, the module, M, has («).

Next, assume N and M /N have (). Let
My C My CM3C---C M C---

be an ascending chain in M. Write M for the image of M; in M/N. By the ACC in M/N, there is some
t > 1 so that M; = M, for all j > t. If we let N; = M; N N, we get an ascending chain in N. By the ACC
in N, this chains stabilizes, i.e., there is some s > 1 so that N; = N for all j > s. Let r = max{s,t}. We
claim that M; = M, for all j > r. We have the diagram

0 N, M, M, 0
0 Nj M J Mj Oa

where the rows are exact and the vertical arrows on the left and on the right are surjections. A diagram
chase yields the fact that the middle vertical arrow is also surjective.

Finally, assume N and M/N have (7). The same argument works with the arrows and inclusions reversed.

O
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Corollary 2.8 Say {Mx}xen is a family of R-modules. Then, [, My has one of (o), (8), () iff each My
has the corresponding property and A is finite.

Proof. We have a surjection

HMA — M, — 0, for any fixed p.

A
Consequently, («), (8), (v) for [T, M) implies (), (5), () for My, by the previous proposition. It remains
to prove that A is finite.

First, assume that [, My has («), and further assume that A is infinite. There is some finite set, S, and
a surjection [[¢ R — [], Mx. We may assume that S = {1,...,n}, for some positive integer, n. Then,
we have the canonical basis vectors, eq,. .., ey, of [[¢ R, and their images €, ...,€, generate [[, M. Each
image €; is a finite tuple in [[, My. Yet, the union of the finite index sets so chosen is again finite and for
any f not in this finite set, the image of M, in [, M, is not covered. This contradicts the fact that the €;’s
generate [ [, My, and so, A must be finite.

We treat (5) and () together. Again, assume that A is infinite. Then, there is a countably infinite
subset of A, denote it {\1, A, ...}, and the chains

My, < My, I My, < My, HM)\QHM,\S < v
and

S
HM)\j >HM,\j > H M)\j >
j=1

j#1 J#1,2

are infinite ascending (resp. descending) chains of [ [, My, a contradiction.

Finally, assume that each M) has («) or () or (y) and that A is finite. We use induction on #(A).
Consider the exact sequence
O—>HMj—>HMj—>M1—>0.
J#£1 jeA
Then, («) (resp. (08), (7)) holds for the right end by hypothesis, and it also holds for the left end, by
induction; so, () (resp. (5), (7)) holds in the middle. []

Corollary 2.9 Say R is noetherian (has the ACC on ideals) or artinian (has the DCC on ideals). Then,
(1) Ewvery f.g. free module, |4 R, is noetherian, resp. artinian, as R-module (remember, #(S) < 00).
(2) Every f.g. R-module is noetherian, resp. artinian.

(8) When R is noetherian, every f.g. R-module is f.p. Finitely presented modules are always f.g.

Proof. (1) and (2) are trivial from Corollary 2.8.

As for (3), that f.p. implies f.g. is clear by the definition. Say M is f.g. Then, we have an exact sequence

0—K—]J[R— M—0,
S

with #(S) < oco. By (1), the module [ R is noetherian; by Proposition 2.6, the module K is f.g. Thus,
there is some finite set, T', so that

HR — K — 0 is exact.
T
By splicing the two sequences, we get the exact sequence

[R—]]R— M —o,
T S

which shows that M is f.p. [
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Counter-examples.

A subring of a noetherian ring need not be a noetherian ring. Take A = C[X1, Xs,...,X,,,...] the
polynomial ring in countably many variables, and let K = Frac(A). Every field is noetherian as a ring
(a field only has two ideals, (0) and itself). We have A C K, yet A is not noetherian, for we claim that
we have the ascending chain of ideals

(X1) < (X1, X2) < (X1, X0, X3) < -+

Would this chain stabilize, then we would have (X1,...,X,,) = (X1,..., X, Xs11), for some n > 1.
Now, there would be some polynomials fi,..., f, in A so that

Xn+1 - lel + - +ann

Map A to C wia the unique homomorphism sending X; to 0 for j = 1,...,n, and sending X; to 1 for
7 >mn. We get 1 =0, a contradiction. Therefore, the chain is strictly ascending.

A module which is finitely generated need not be finitely presented. Let A = C[Xy,...,X,,...], the
polynomial algebra over C in countably many variables. Then, C is an A-module because of the exact
sequence

0 —J=(X,....Xp,...) —m A—C—0,

in which the map A — C is given by f — f(0); the ring A acts on C via f -z = f(0)z, where f € A
and z € C. Assume that C is finitely presented. Then, there are some finite sets, S and 7', and an

exact sequence
H A— H A—C—0.
T s

We get the diagram

[ [ B [ —;
T s
S
0 J A C 0
To construct the vertical arrows, let eq,...,es be the usual generators of [[¢ A. If 21,...,2, € C are

their images, there exist A\1,...,\s € A so that

Z)\jej = Z)\J(O)ZJ =1.
j=1 j=1

We have the (C-linear) map, C — A, so our z; lie in A. Then, we have 22:1 Aj(0)z; =1, in A.
If we send ej — z; € A, we get an A-linear map, ©: J[[¢ A — A, and there is some £ € [[4 A with
O(¢) =1 € A. Namely, take

§= Xi(0)e;.
j=1

But then, © is onto, because its image is an ideal which contains 1. A diagram chase implies that there
exists some ¢: [[; A — J rendering the diagram commutative. Another diagram chase gives the fact
that ¢ is surjective. But then, J is finitely generated, a contradiction. Therefore, C is not f.p. (over

A).

Remark: The difficulty is that A is much “bigger” than C, and thus, the surjection A — C has to
“kill” an infinite number of independent elements.
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Consider the category, Mod(R). We can also look at subcategories of Mod(R) having some additional
properties. For example, a subcategory, C, of Mod(R) is a localizing subcategory iff

(a) Whenever M and N € Ob(C) and §: M — N is a morphism of C, then Ker 6 and Coker § = (N/Im 0)
lie in Ob(C) and the morphisms Ker § — M and N — Coker 6 are arrows of C.

(b) Whenever
0— M — M-— M"— 0 isexact (in Mod(R))

and M', M" € Ob(C), then M € Ob(C) and the sequence is exact in C.
Example: Let C = Modfg(R) be the full subcategory of finitely generated R-modules, where R is noetherian.
The reader should check that C is a localizing subcategory.

Recall that an R-module is a simple iff it has no nontrivial submodules; a composition series is a finite
descending chain
M = My > My > My > --- > M,; = (0)

in which all the factors M;/M;, are simple. We know from the Jordan-Holder theorem that the number
of composition factors, ¢, is an invariant and the composition factors are unique (up to isomorphism and
rearrangement). We set Ar(M) = ¢, and call it the length of M; if M does not have a composition series,
set Ag(M) = oc.

Say C is a localizing subcategory of Mod(R) and ¢ is a function on Ob(C) to some fixed abelian group,
A.

Definition 2.3 The function, ¢, is an FEuler function iff whenever
0— M — M — M"— 0 isexact in C,
we have (M) = p(M') + p(M").

Proposition 2.10 A necessary and sufficient condition that a module, M, have finite length is that M has
both ACC and DCC on submodules. The function Ar on the full subcategory of finite-length modules (which
is a localizing subcategory), is an Euler function. If ¢ is an Euler function on some localizing subcategory of
Mod(R) and if

(E) 0— My — My — -+ — My — 0

is an exact sequence in this subcategory, then
t
Xe((B)) = (1) (M;) = 0.
j=1

Proof. First, assume that M has finite length. We prove the ACC and the DCC by induction on Agr(M).
If Ag(M) = 1, then M is simple, so the ACC and the DCC hold trivially. Assume that this is true for
Ar(M) =t, and take Agp(M) =t + 1. We have a composition series

M=M0>M1>M2>"'>Mt+1:(0),
and so, Ag(My) =t and A\g(M/M;) = 1. But the sequence
0— My — M — M/M; — 0 is exact,

and the ACC and DCC hold on the ends, by induction. Therefore, they hold in the middle.
Now, assume that the DCC and the ACC hold for M. Let

F={NCM]|N# M, N is a submodule of M.}



66 CHAPTER 2. RINGS AND MODULES

The family F is nonempty (the trivial module (0) is in F) and by the ACC, it has a maximal element, M;;
so, M/Mj is simple. Apply the same argument to My: We get My < M; with M; /M, simple. By induction,
we get a strictly descending chain

M=My>M; >My>--->M, >---

However, by the DCC, this chain must stabilize. Now, if it stabilizes at M;, we must have M; = (0), since
otherwise we could repeat the first step in the argument for M;. This proves that Ag(M) =t < oc.

Say 0 — M’ — M — M" — 0 is exact in Mod"(R). Pick a composition series for M”. We get a
strictly descending chain
M =Ml >M'> M > > M= (0).

By the second homomorphism theorem, we get a lifted sequence
M:M0>M1>M2>"'>Mt:M/,

and if we pick a composition series for M’, we get the following composition series with
s+t =Ag(M')+ Ar(M") factors, as required:

M=My>M; >My>--->M =M >M >M>-->M.,=(0).
Say

(B)  0— My — My —> - — My_5 —> My_1 —25 M, — 0

is an exact sequence. Then, we have the two exact sequences

(E) 0— M, — My — -+ — M,_ 9 — Ker ) — 0 and
(E") 0— Ker § — M;_1 — M; — 0.

The cases t = 1,2, 3 are trivial (DX). By using induction on ¢, we see that the proposition is true for (E’)
and (E"). Thus, we get

~+
|
]

(=1 o(M;) + (=1)'p(Ker ) = 0 and
1

p(Ker 0) = @o(M;—1) — p(My).

If we add the first equation to (—1)¢ times the second equation we get
(=17 (M) = (—1)'o(Mi-1) = (-1)"¢ (M),

and so,
t—

Xo((B)) = Y (=17 o(M;) + (=)' o (My1) + (1) p(M,) = 0,

Jj=

]

=

as claimed. []

Theorem 2.11 (Hilbert Basis Theorem (1890)) If A is a commutative noetherian ring, then so is the
polynomial ring A[X].
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Proof. Let A, be the submodule of A[X] consisting of the polynomials of degree at most n. The module,
A, is a free module over A (for example, 1, X, X? ... X" is a basis of A,). If 2 is an ideal of A[X], then
AN A, is a submodule of A,,. As A, (being finitely generated over A) is a noetherian module, 20N A,, is
also finitely generated, say by a1, @z, ..., am) (€ A[X]). If f € A and deg(f) < n, then f € A,; so,

f=a1a1 4+ + agn)Qun), Wwith a; € A.

Now, let 2* be the subset of A consisting of all a € A so that either a = 0 or there is some polynomial f in
2 having a as its leading coefficient, i.e., f = aX” + O(X"~!). We claim that * is an ideal of A.
Say a and b are in *. Then, there are some polynomials f,g € 2 so that f = aX” + O(X""1) and
g=0bX?®+O(X* ). Take t = max{r,s}. Then, X' "f € A and X'~%g € 2, since 2 is an ideal. But,
Xrf=aX'+O(X"™Y) and X' g =bX"'+O(X"),

and this implies that ad=b € A*, as a=£b is the leading coefficient of X!~ "f+ X!"*g € A. If A € A and a € A*,
then it is clear that Aa € 2A*. Therefore, 2A* is indeed an ideal in A. Now, A is a noetherian ring, therefore
2A* is finitely generated as an ideal. So, there exist f1,...,03; € 2A* C A, such that for any 5 € 2A*, we have
0 = 2221 Xifi, for some A\; € A. Now, by definition of 2*, for every ; € A*, there is some f;(X) € A
so that f;(X) = 3; X" + O(X™~1). Let n = max{ni,...,n;} and consider the generators ar, ..., Qye(n) Of
A, = A, N2

Claim: The set {a1,...,Qxm), f1,- .-, ft} generates 2.

Pick some g € 2. Then, g(X) = X" + O(X"™ 1), for some 7. If » < n, then g(X) € 2, and thus,
g = A1a1 + -+ Ag(n)Qp(n), With A\; € A. Say r > n. Now, # € 2", so there are elements A;,..., A\ € A
such that § = A1 + -+ A\¢F¢. Consider the polynomial

P(X) =Y NX"Mf(X),
i=1
and examine g(X) — P(X). We have
g(X) = P(X) = BX" = > ANX"" f{(X) + O(X" ) = O(X" 1),

i=1

and thus there is a P(X) € (f1,..., f) so that deg(g(X) — P(X)) < r — 1. By repeating this process, after
finitely many steps, we get

9(X0) = 3" h(XOf(X) = O(X=").

Since this polynomial belongs to 2A, we deduce that it belongs to %,. However, 2, is generated by
a1, ..., 0y, and so, g(X) is an A[X]-linear combination of the f;(X)’s and the a;(X)’s, as desired. []

Remark: The reader should reprove Hilbert’s theorem using the same argument but involving ascending
chains. This is Noether’s argument (DX).

Corollary 2.12 Say R € RNG. If R is noetherian, so is R(X).
Proof. We have R(X) = R[X], and the same proof works. []
Corollary 2.13 If A (in CR) is noetherian, then so is A[X1,..., Xp].

Corollary 2.14 (Hilbert’s original theorem) The polynomial ring Z[X1, . .., X, ] is noetherian. If k is a field
(Hilbert chose C) then k[X1,..., X,] is noetherian.
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Corollary 2.15 (of the proof-(DX)) If k is a field, then k[X] is a PID.

Corollary 2.16 Say A is a noetherian ring (A € CR) and B is a finitely generated A-algebra. Then, B is
a noetherian ring.

Proof. The hypothesis means that B is a homomorphic image of a polynomial ring C' = A[X,..., X,] in

such a way that the diagram
c—" >3
A

commutes, where A — C' is the natural injection of A into C' = A[X},...,X,]. The ring A[X;,...,X,,] is
noetherian, by Corollary 2.13. The map 6 makes B into a C-module and B is finitely generated as C'-module.
Now, C-submodules are exactly the ideals of B (DX). Since B is finitely generated as C-module and C' is
noetherian, this implies that B is a noetherian C-module. Therefore, the ACC on C-submodules holds, and
since these are ideals of B, the ring B is noetherian. []

@ To be finitely generated as A-algebra is very different from being finitely generated as A-module.

Given an exact sequence of modules,
0—M — M-— M —0,

there are situations where it is useful to know that M’ is f.g, given that M and M" satisfy certain finiteness
conditions. We will give below a proposition to this effect. The proof makes use of Schanuel’s lemma. First,
introduce the following terminology: Given a module M, call an exact sequence

0—K-—F—M—0,

a presentation of M if F is free. Note that M is f.p. iff there is a presentation of M in which both F and
K are f.g.

Proposition 2.17 If M is a A-module, then M is f.p. iff every presentation
0—K-—F—M—0, ()
in which F is f.g. has K f.g. and at least one such exists.

Proof. The direction (<) is clear.

(=). Say M is f.p.; we have an exact sequence
0 — K —F — M —0,
where both K’ and F’ are f.g. and F” is free. Pick any presentation, (x), with F' f.g. If we apply Schanuel’s

lemma, we get
FI[rk=F][K"

But, the righthand side is f.g. and K is a quotient of the left hand side, so it must be f.g. []

Remark: The forward implication of Proposition 2.17 also holds even if F' is not free. A simple proof using the
snake lemma will be given at the end of Section 2.5.
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2.4 Projective and Injective Modules
Let F: Mod(R) — Mod(S) be a functor (where R, S € RNG). Say
0—M —M-— M —0 (%)
is exact in Mod(R). What about
0— F(M') — F(M) — F(M") — 0? ()

(1) The sequence (xx) is a complex if F' is an additive functor. (Observe that Hompg(M, N) is an abelian

group, so is Homg(F (M), F(N)). We say I is additive iff Homp(M, N) g Homg(F(M),F(N)) is a
homomorphism, i.e., preserves addition.)

(2) The functor, F, is ezact iff when (x) is exact then (xx) is exact (the definition for cofunctors is identical).
(3) The functor, F, is a left-exzact (resp. right-exact) iff when (x) is exact
0— F(M') — F(M) — F(M") (st )
is still exact (resp.
FM') — F(M) — F(M") —0 (k)
is still exact.)
(4) The functor, F, is half-ezact (same definition for cofunctors) iff when * is exact
F(M') — F(M) — F(M")
is still exact.
(5) The cofunctor, G, is left-exact (resp. right-exact) iff (x)-exact implies
0 — G(M") — G(M) — G(M')

is still exact (resp.
GM") — G(M) — G(M') — 0

is still exact.)

Remark: The chirality of a functor is determined by the image category.

Examples of exact (left-exact, right-exact, etc.) functors:

(1) Let F': Mod(R) — Mod(Z) be given by: F'(M) = underlying abelian group of M. The functor F' is

exact.

(2) Take a set, A, and look at
Mod(R)* = {{M4}acn | each M, € Mod(R)},

together with obvious morphisms. We have two functors from Mod(R)* to Mod(R). They are:

(Mo}~ [[ Mo and {Mo} ~ [ M.

Both are exact functors (this is special to modules). The next proposition is a most important example of
left-exact functors:
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Proposition 2.18 Fiz an R-module, N. The functor from Mod(R) to Ab (resp. cofunctor from Mod(R)
to Ab) given by M ~» Hompg (N, M) (resp. M ~» Hompr(M, N)) is left-exact (N.B.: both are left-exact ).

Proof. Consider the case of a cofunctor (the case of a functor is left to the reader (DX)). Assume that
0—M 2 MM —0
is exact. Look at the sequence obtained by applying Homg(—, V) to the above exact sequence:

0 — Hompg(M",N) -5 Homp (M, N) -2 Homp(M', N) — 0,

where & = —o g and ¥ = — o). Pick a € Hompr(M"”,N) and assume that U(«) = 0. We have the
commutative diagram
M~
W& la
N

and since M %5 M" is surjective, we deduce that @ = 0. Now, pick § € Hompg(M, N) and assume that
®(8) = 0. We have the commutative diagram (see argument below)

M/$ ML M//

B

®(5) l %
N .

Since ®(8) = 0, we have Im ¢ C Ker 3; so, by the first homomorphism theorem, there is a homomorphism

B: M/M' = M" — N, as shown, making the above diagram commute. Thus, ¥(3) = 3o = 3, and so,
felm V.

There may be some modules, N, so that our Hom functors become exact as functors of M. This is the
case for the class of R-modules introduced in the next definition:

Definition 2.4 A module, P, is projective (over R) iff the functor M ~» Hompg(P, M) is exact. A module,
Q, is injective (over R) iff the cofunctor M ~~» Hompg(M, Q) is exact.

Remarks:

(1) Any free R-module is projective over R.

Proof. Say F = [[¢4 R. Consider the functor M ~» Hompg([[g R, M). The righthand side is equal to
[[¢Homg(R, M) =]]s M, but we know that the functor M ~» [[4 M is exact. [J

(2) A functor is left-exact iff it preserves the left-exactness of a short left-exact sequence (resp. a cofunctor
is left-exact iff it transforms a short right-exact sequence into a left-exact sequence), and mutatis
mutandis for right exact functors or cofunctors.

(3) Compositions of left (resp. right) exact functors are left (resp. right) exact. Similarly, compositions of

exact functors are exact.

We say that an exact sequence
i

0— M - M-2 M —0

splits iff there is a map o: M — M so that po o = idy~. Such a map, o, is called a splitting of the
sequence. The following properties are equivalent (DX):
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Proposition 2.19 (1) The sequence
0— M MM —0
splits.
(2) Given our sequence as in (1), _
0— M M- M —0
there is a map w: M — M’ so that woi = idy.
(8) There is an isomorphism M’ 11 M" = M.
Proposition 2.20 Let P be an R-module, then the following are equivalent:
(1) P is projective over R.

(2) Given a diagram
P

ig
M—M"——0,
there exists a map, 0: P — M, lifting £, rendering the diagram commutative (lifting property ).
(8) Any exact sequence 0 — M’ — M — P — 0 splits.
(4) There exists a free module, F, and another module, 15, so that PIIP > F.

Proof. (1) = (2). Given the projective module, P and the diagram

P
|
M——M"——>0,
the exact sequence gives the map
Hompg(P, M) — Hompg (P, M") @)

and the diagram gives an element, ¢, of Homg(P, M"”). But P is projective, and so, (f) is surjective.
Consequently, £ comes from some 7 € Hompg (P, M), proving the lifting property.

(2) = (3). Given an exact sequence
0— M — M— P —0,
we get the diagram
P
M——P——0.
The lifting property gives the backwards map P — M, as required.
(3) = (4). Given P, there is a free module, F. and a surjection, I’ — P. We get the exact sequence

0—>ﬁ—>F—>P—>O,
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where P = Ker (F — P). By hypothesis, this sequence splits. Therefore, by property (3) of Proposition

2.19, we have ' = P11 P.

(4) = (1). We have F = P11 15, for some free R-module, F. Now, F' = [[¢ R, for some set, S, and so,
for any N,

Homp(F,N) = [ [Homp(R, N) =] N.
S S

The functor N ~» Hompg(F, N) is exact; yet, this functor is N ~ Hompg(P, N) [] HomR(ﬁ, N). Assume that
the sequence
0— M — M — M" — 0 is exact,

we need to show that Hompg (P, M) — Hompg(P, M") is surjective. This follows by chasing the diagram
(DX):

Hom (F, M) —— Hom (P, M) [] Hom (P, M)

| |

Hom (F, M") —— Hom (P, M") []Hom (P, M")

|

0
|

Given an R-module, M, a projective resolution (resp. a free resolution) of M is an exact (possibly infinite)
sequence (= acyclic resolution) of modules

-— P, — - — P — P — FPh— M,
with all the P/s projective (resp. free)
Corollary 2.21 Every R-module possesses a projective resolution (even a free resolution,).

Proof. Since free modules are projective, it is enough to show that free resolutions exist. Find a free module,
Fpy, so that there is a surjection, Fy — M. Let M; = Ker (Fy, — M), and repeat the process. We get a
free module, F;, and a surjection, F; — M;. By splicing the two exact sequences

0— My — Fy — M — 0 and F}, — M; — 0, we get the exact sequence F} — Fy — M — 0.
We obtain a free resolution by repeating the above process. []

Proposition 2.22 Given a family, {P,}aca, of modules, the coproduct [[,, Pa is projective iff each P is
projective.

Proof. Assume that each P, is projective. This means that for every «, the functor M ~» Hompg(P,, M) is

exact. As the product functor is exact and composition of exact functors is exact, the functor
M ~» 1], Hompg(P,, M) is exact. But

HHomR(Pa,M) = HomR(H P,,M).

Therefore, [],, P, is projective.

Conversely, assume that [ [, P, is projective. By Proposition 2.20, there is a free module, F', and another

(I12) I1P=F

(projective) module, P, with
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Pick any 3, then

P[] (HPQ)]_[ﬁ ~F

a#fB
Again, by Proposition 2.20, the module P is projective. []

The product of projectives need not be projective. (See, HW Problem V.B.VIL.)

Remark: Projective modules can be viewed as a natural generalization of free modules. The following characteri-
zation of projective modules in terms of linear forms is an another illustration of this fact. Moreover, this proposition
can used to prove that invertible ideals of an integral domain are precisely the projective ideals, a fact that plays an
important role in the theory of Dedekind rings (see Chapter 3, Section 3.6).

Proposition 2.23 An R-module, M, is projective iff there exists a family, {e;}icr, of elements of M and a family,
{pi: M — R}ic1, of R-linear maps such that

(i) For all m € M, we have v;(m) =0, for all but finitely i € I.
(i) For allm € M, we have m =), pi(m)e;.
In particular, M is generated by the family {e;}icr.
Proof. First, assume that M is projective and let ¥»: FF — M be a surjection from a free R-module, F'. The map,

1, splits, we let p: M — F be its splitting. If {f;}ics is a basis of F', we set e; = ¢(f;). Now, for each m € M, the
element p(m) can be written uniquely as

p(m) = rifu,
k

where 7, € R and r, = 0 for all but finitely many k. Define p;: M — R by ¢;(m) = r;; it is clear that ¢; is R-linear
and that (i) holds. For every m € M, we have

m= (Y op)(m)= ¢(Z kak) = er(mer,
k k

which is (ii). Of course, this also shows the ej, generate M.

Conversely, assume (i) and (ii). Consider the free module F' =[], ; R and let {f;}icr be a basis of F. Define
the map ¢: F' — M wvia f; — e;. To prove that M is projective, by Proposition 2.20 (4), it is enough to find a map
p: M — F with 1 o ¢ = 1p. Define ¢ via

o(m) = 3" pr(m) f.
&
The sum on the righthand side is well-defined because of (i), and by (ii),
(Wop)(m) = pr(m)er =m.
k
Therefore, M is a cofactor of a free module, so it is projective. []

We would like to test submodules, L, of M as to whether L = M by testing via surjections M — N.
That is, suppose we know that for every N and every surjection M — N we have L — M — N is also
surjective. How restrictive can we be with the N’s, yet get a viable test?

There may be some superfluous N, e.g., those N for which M — N —— 0 automatically implies that
L — M — N is surjective. There may even be some such N’s that work for all L. Thus, it is preferable
to fix attention on IV and seek small enough M so that N matters in the testing of all L. This yields a piece
of the following definition:
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Definition 2.5 A surjection, M — N, is a minimal (essential, or covering) surjection iff for all L C M,
whenever L — M — N is surjective, we can conclude L = M. A submodule, K, is small (superfluous) iff
for every submodule, L C M, when L + K = M, then L = M. A submodule, K, is large (essential) iff for
all submodules, L C M, when L N K = (0), then L = (0). The injection K — M is essential (minimal) iff
K is large.

Proposition 2.24 The following are equivalent for surjections : M — N :

(1) M %, N is a minimal surjection.

(2) Ker 0 is small.

(3) Coker (L — M — N) = (0) implies Coker (L — M) = (0), for any submodule, L C M.
Proof. (1) = (2). Pick L, and assume L+ Ker § = M. So, (L) = (M) = N. Thus, L = M, by (1), which
shows that Ker 0 is small.

(2) = (3). Say L C M and assume that Coker (L — M — N) = (0). Therefore, N = Im (L — N),
and we deduce that
L+ Ker 6 =M,

by the second homomorphism theorem. By (2), we get L = M; so, Coker (L — M) = (0).
(3) = (1). This is just the definition. ]
Definition 2.6 A surjection P — N is a projective cover iff
(1) The module P is projective

(2) It is a minimal surjection.

@ Projective covers may not exist. For example, Z — 7Z/27 is a surjection and Z is projective. If
P — 7Z/27 is a projective cover, then the lemma below implies that P is torsion-free. Hence, we
can replace P — Z/2Z by Z — 7Z/27Z. However, the following argument now shows that Z/2Z has no
projective cover. We have the surjection 0: Z — 7Z/27. This is not a minimal surjection because 2Z is not
small. (Clearly, Ker 6 = 27Z; so, say L = dZ and dZ + 27 = 7. Then, (d,2) =1, so d is odd. Yet, dZ =7

only when d = 1. Thus, the module 27 is not small.) Now, suppose dZ 4, Z/27 is surjective, then d must
be odd. If kZ C dZ maps onto Z/2Z, then, as Ker 8 = 2dZ, we get (k,2d) = d. Let b = k/d; the integer b
must be odd. Then, the diagram

0 27, 7 7./27 — 0
ld ld id
0 2d7Z dZ Z/272 — 0,

(in which the vertical arrows are isomorphisms: multiply by d) shows that the inclusion kZ C dZ corresponds
to the inclusion bZ C Z. Our previous argument implies b = 1; so, k = d, and dZ — 7Z /27 is not minimal.

Lemma 2.25 If R has no zero divisors and P is a projective R-module then P is torsion-free.

Proof. Since the torsion-free property is inherited by submodules, we may assume that P is a free module.
Moreover, coproducts of torsion-free modules are torsion-free, so we may assume that P = R. But, R has
no zero-divisors; so, it is torsion-free. []
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Proposition 2.26 Say R is a ring and J(R) is its Jacobson radical (i.e., J(R) is equal to the intersection
of all mazimal ideals of R). Then, the surjection R — R/J(R) is a projective cover. In particular, when
R is commutative local, then R — R/mp is a projective cover.

Proof. Pick L C R, a submodule of R, i.e., an ideal of R, such that L + J(R) = R. If L # R, then L C I,
where 9 is some maximal ideal. But, J(R) C 9, and so L + J(R) C 9. The latter inclusion shows that
L+ J(R) # R, a contradiction; so, J(R) is small. []

For injective modules, the situation is nearly dual to the projective case. It is exactly dual as far as
categorical properties are concerned. However, the notion of free module is not categorical, and so, results
about projective modules involving free modules have no counterpart for injective modules. On the other
hand, the situation for injectives is a bit better than for projectives.

Proposition 2.27 The following are equivalent for a module, Q:
(1) The module, Q, is injective.

(2) Given a diagram

0O—M —M

Ci;

there exists an extension, 0: M — Q, of &, making the diagram commute (extension property).

3) Ewvery exact sequence 0 — Q — M — M" — 0 splits.
( Y
Proof. (DX)

Proposition 2.28 Given a family, {Qa}aca, of modules, the product [], Qo is injective iff each Qq is
injective.

Proof. (DX)

Theorem 2.29 (Baer Representation Theorem) An R-module, @, is injective iff it has the extension prop-
erty w.r.t. the sequence

0— A — R, (*)
where A is an ideal of R.

Proof. 1If @ is injective, it is clear that @ has the extension property w.r.t. (x).

Conversely, assume that the extension property holds for (x). What does this mean? We have the
diagram

0——A—R

|4

Q

in which 9 extends ¢; so, for all £ € 2, we have (&) = (¢ [ A)(§). In particular, (1) € @ exists, say
g =1(1). Since £ -1 = ¢ for all £ € A, we have
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Given the diagram
0O——M ——>M

g

define S by
B (1) N is a submodule of M, (2) M’ C N,
S{(N’w)‘ (3)¢: N — @ extends ¢ to N.

Partially order S by inclusion and agreement of extensions. Then, S is inductive (DX). By Zorn’s lemma,
there is a maximal element, (No, %), in S. We claim that Nog = M. If Ny # M, there is some m € M — Nj.
Let 2 be the transporter of m into Ny, i.e.,

(m— No) = {p € R| pm € Ny}.

Define the R-module map, 0: A — @, by 6(p) = vo(pm). Look at the module Ny + Rm, which strictly
contains Ny. If z € Ny + Rm, then z = 2y + pm, for some zg € Ny and some p € R. Set

Q/J(Z) = /(/)O(ZO) + P4,
where ¢ = O(1) and © is an extension of  (guaranteed to exist, by the hypothesis). We must prove that ¢
is a well-defined map, i.e., if 2 = 2o + pm = Zg + pm, then
Yo(20) + pg = o(20) + pg.

Now, if ¥: Nog+ Rm — (@ is indeed well-defined, then it is an extension of 1 to the new module Ny + Rm >
Ny, contradicting the maximality of Ny. Therefore, Ny = M, and we are done.

If z = z0 + pm = 2o + pm, then zo — 2o = (p — p)m; so p — p € A. Consequently,

0(p — p) = vo((p — p)m).

Yet,
0(p—p)=0(p—p)=(p-pOQ)=(p-p,
and so, we get
Yo(z0 — 20) = Yo((p = p)m) = 0(p — p) = (p = p)a.

Therefore, we deduce that

Yo(20) + pg = to(20) + pa,
establishing that v is well-defined. []

Recall that an R-module, M, is divisible iff for every A € R with A # 0, the map M 2 M (multiplication
by M), is surjective.

Corollary 2.30 If R € CR has no zero-divisors, then an injective R-module is automatically divisible.
Moreover, if R is a P.I1.D., a necessary and sufficient condition that Q be injective is that Q be divisible.
Therefore, over P.I1.D.’s, every factor module of an injective is injective.

Proof. Let A € R, with A\ # 0. Since R has no zero divisors, the map R 2 Risa monomorphism. Thus,
the image of this map is an ideal, 2, and the exact sequence

0—A—R
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is just the exact sequence
0— R R

Apply the cofunctor Hompg(—, Q). If @ is injective, this cofunctor is exact, and we get the exact sequence
Hompg(R, Q) 2, Hompg(R, Q) — 0.

So, the sequence @ N Q — 0 is exact, which proves that @ is divisible.

If R is a P.ILD., then every ideal is principal, so, every exact sequence 0 — 24 — R, where 2 is an

ideal, is of the form 0 — R 2, R, for some A € R. If @) is divisible, the sequence @ 2, @ — 0 is exact,
and we get that

Homg(R, Q) N Hompg(R,Q) — 0 is exact;

this means that Homp(—, Q) is exact on sequences
0—A—R— R/UA—0,

where 2 is an ideal, i.e., the extension property holds for ideals, 2, of R. By applying Baer’s theorem we
conclude that @ is injective.

The reader will easily verify that factor modules of divisible modules are divisible (DX). Consequently,
the last statement of the corollary holds. []

Theorem 2.31 (Baer Embedding Theorem) Every R-module is a submodule of an injective module.

Proof. The proof assigned for homework (Problem 57) is based on Eckmann’s proof. Here is Godement’s proof [18]
(probably the shortest proof). The first step is to show that any Z-module, M, can be embedded into M DD where
MP = Homgz(M,Q/Z). Given a Z-module, M, we define a natural Z-linear map, m — m, from M to MPP in the
usual way: For every m € M and every f € Homz(M,Q/Z),

Proposition 2.32 For every Z-module, M, the natural map M — MPP is injective.

Proof. Tt is enough to show that m # 0 implies that there is some f € M” = Homz(M,Q/Z) so that f(m) # 0.

Consider the cyclic subgroup, Zm, of M, generated by m. We define a Z-linear map, f: Zm — Q/Z, as follows: If
m has infinite order, let f(m) = 1/2(modZ); if m has finite order, n, let f(m) =1/n(modZ). Since 0 — Zm — M
is exact and Q/Z is injective, the map f: Zm — Q/Z extends to a map f: M — Q/Z, with f(m) # 0, as claimed. []

Recall that if M is an R-module and N is any Z-module, then Homz (M, N) is an R°?-module under the R°P-action
given by: For any f € Homz(M, N), and all v € R,

(f)(m) = f(ym).
Similarly, if M is an R°®-module and N is any Z-module, then Homz (M, N) is an R-module under the R-action given
by:

(vf)(m) = f(my).

Then, M” = Homgz(M,Q/Z) is an R°*-module if M is an R-module (resp. an R-module if M is an R°P-module). Fur-
thermore, the Z-injection, M — MPP | is an R-injection, The crux of Godement’s proof is the following proposition:

Proposition 2.33 If M is a projective R°P-module, then MP is an injective R-module.
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Proof. Consider the diagram
0——X ——X'

l“o
MD

where the row is exact. To prove that M P is injective, we need to prove that ¢ extends to a map
¢': X’ — MP. The map ¢ yields the map MPP — X and since we have an injection M — MPP we get a
map 0: M — XP. Now, since Q/Z is injective, Homz(—, Q/Z) maps the exact sequence

0— X — X'
to the exact sequence XP —xP —o. So, we have the diagram
M

le

x'P—— xP ——=0,

where the/ row is exact, and since M is projective, the map 6 liftsl toamap 6/: M — xX'P. Consequently, we get
amap X PP — MP, and since we have an injection X’ — X PP we get a map X' — MP extending ¢, as
desired. Therefore, MP is injective. []

We can now prove Theorem 2.31. Consider the R°P-module M”. We know that there is a free R°°-module, F,
so that
F— MP” — 0 is exact.

But, F' being free is projective. We get the exact sequence
0— MPP — FP.

By Proposition 2.33, the module F is injective. Composing the natural injection M — MPP with the injection
MPP — FP | we obtain our injection, M — F, of M into an injective. []

Corollary 2.34 FEvery R-module, M, has an injective resolution
0—M—Qo— Q1 —Qo—

where the Q;’s are injective and the sequence is exact.

How about minimal injections? Recall that N — M is a minimal (essential) injection iff N is large in
M, which means that for any L C M, ift NN L = (0), then L = (0).

We have the following characterization of essential injections, analogous to the characterization of minimal
surjections:

Proposition 2.35 The following are equivalent for injections 6: N — M:
(1) N 5 M is essential.
(2) Given any module, Z, and any map, M 25 Z,if N — M %5 Z is injective, then ¢ is injective.
(8) Ker (N — M — Z) = (0) implies Ker (M — Z) = (0), for any module, Z.

Proof. (DX)

In contradistinction to the case of covering surjections, essential injections always exist.
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Proposition 2.36 Given an injection, N — M, there exists a submodule, K, of M so that
(1) The sequence 0 — N — M /K is exact, and

(2) It is an essential injection.

Proof. Let
S={KCM|KnN=(0)}.

Since (0) € S, the set S is nonempty. Partially order S by inclusion. If {Z, }, is a chain in S, let Z =, Za,
a submodule of M. We have

ZNN = (Uza> NN =J(ZanN)=(0),

since Z, N N) = (0), for all a. Therefore, S is inductive, and by Zorn’s lemma, it has a maximal element, say
K. Since K NN = (0), property (1) is satisfied. For (2), take L C M/K so that LNIm (V) = (0). We must
show that L = (0). By the second homomorphism theorem, L corresponds to Lin M, with K C L C M,
and we are reduced to proving that L=K.

Claim: For every n € L, if n ¢ K, then n ¢ N.

IfpeLandn ¢ K and y € N, then 5j € L N Im (N), and so, 77 = 0, since L N Im (N) = (0). (As usual,
7 — 7, denotes the canonical map M — M/K.) Yet n ¢ K, a contradiction; the claim holds.

Assume that & € L and ¢ ¢ K. Consider K + R¢, a submodule of L strictly containing K. Since K is a
maximal module with K N N = (0), there is some n € (K + R{) N N, with n # 0. Consequently, we have
neLandne N. Now, ifn € K, thenne NNK = (0), contradicting the fact that n # 0; so, we must have
n ¢ K. However, this contradicts the claim. Therefore, £ cannot exist, and L=K. O

Terminology: The module @ is an injective hull of M iff
(1) M — @ is an essential injection, and
(2) The module @ is injective.
Theorem 2.37 (Baer—Eckmann—Schopf) Every R-module has an injective hull.

Proof. By Baer’s embedding theorem (Theorem 2.31), there is an injective module, @, so that
0 — M — @ is exact. Set

S={L|MCLCQ and 0 — M — L is essential}.

Since M € S, the set S is nonempty. The set S is partially ordered by inclusion, and it is inductive (DX).
By Zorn’s lemma, S has a maximal element, say L. I claim that L is injective. Look at the exact sequence
0 — L — @. By the argument in the previous proposition on essential extensions, there is a maximal
K C@Q,sothat KNL=(0)and 0 — L — Q/K is essential. Look at the diagram

0——>L—>Q/K
l@
Q

Since @ is injective, there is a map, ¥: Q/K — @Q, extending ¢; let T = Im . The map ¢ is injective,
because 1 | L is injective and the row is essential. Thus, ¢: Q/K — T is an isomorphism; moreover, L C T
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We contend that T'= L. To see this, we will prove that 0 — M —— T is essential. Now, being essential is
a transitive property (DX); since T is essential over L (because Q/K =T and Q/K is essential over L) and
L is essential over M, we see that T is essential over M. But, L is maximal essential over M (in @) and
L C T; so, we conclude that T'= L. Therefore, L = QQ/K and we have the maps

Q— Q/K=¥L and L— Q.

It follows that the sequence
0—K—Q—L—0

splits. Consequently, L is also injective; so, L is the required injective hull. []

Pr0p051t10n 2.38 (Uniqueness of projective covers and injective hulls.) Say P — M 1is a projective cover
and P — M s another surjection with P projective. Then, there exist P’ P’ C P both projective so that

(a) P=P'1IP".

(b) PP
(¢) In the diagram
P
|7
P—>M—>=0
|

there are maps 7r:~]5 — Pandi: P — P in which 7 is surjective and i s injective, P’ = Ker ,
P'=Imi andp | P': P' — M is a projective cover.
If M and M are isomorphic modules, then every isomorphism, 0: M — M, extends to an isomorphism of
projective covers, P — P. The same statements hold for injective hulls and injections, M — @, where Q
is injective, mutatis mutandis.

Proof. As P is projective, there is a map m: P — P, making the diagram commute. We claim that the
map 7 is surjective. To see this, observe that p(Im 7) = Im p = M. Hence, Im 7 = P, as P is a covering
surjection. As P is projective and 7 is a surjection, 7 splits, i.c., there is a map i: P — Pand moi= idp;
it easily follows that i is injective. Define P” = Ker m and P’ = Im i. We know that i: P — P’ is an

isomorphism, and _ _ _
0—Kerm(=P')— P— P(2P)—0 issplit exact;

so, we deduce that P = P’ II P”. The rest is clear.

For injectives, turn the arrows around, replace coproducts by products, etc. (DX). ]

2.5 The Five Lemma and the Snake Lemma

Proposition 2.39 (The five lemma.) Given a commutative diagram with exact rows

M1 M2 M3 M4 M5
lipl \L@g itpzs \L@(M lws
Ny N, N3 Ny N5,

then
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(a) If o3 and @4 are injective and ¢y is surjective, then @3 is injective.
(b) If w2 and @4 are surjective and s is injective, then s is surjective.
(c) If o1, 2, @4 , ps5 are isomorphisms, then so is 3.
Proof. Obviously, (a) and (b) imply (c). Both (a) and (b) are proved by chasing the diagram (DX). []

Proposition 2.40 (The snake lemma.) Given a commutative diagram with exact rows

M M, M3 0
N
0 Ny Ny N3 J

then there exists a sixz term exract sequence

Ker §; — Ker §, — Ker 03 %, Coker 61 — Coker do — Coker 03,

(where 6 is called the connecting homomorphism) and if My — Ms is injective, so is Ker 6; — Ker da,
while if No — N3 is surjective, so is Coker do — Coker d3.

Proof. Simple diagram chasing shows Ker §; — Ker §; — Ker d3 is exact and
Coker §; — Coker 0o — Coker 43 is also exact (DX). Moreover, it also shows the very last assertions of
the proposition.

We have to construct the connecting homomorphism, §. Consider the commutative diagram:

Ker 1 —— Ker j5 —— Ker 03

M, M, b M; 0
01 d2 03
0 N, : N, Ny

Coker 61 — Coker 6o — Coker 03

Pick ¢ € Ker d3, and consider £ as an element of M3. There is some n € My so that p(n) = €. So, we have
d2(n) € Na, and Im d2(n) in N3 is d5(£) = 0. As the lower row is exact and ¢ is injective, n gives a unique
x € Ny, with i(z) = d2(n). We define our §(§) as the projection of 2z on Coker ¢;. However, we need to check
that this map is well-defined.

If we chose a different element, say 77, from 7, where p(n) = p(77) = £, then the construction is canonical
from there on. Take d2(n) and (7). Since n — 77 goes to zero under p, there is some y € M, so that
n—1 =Im (y) in Ms. Consequently n = 77+Im (y); so, d2(n) = d2(77) +d2(Im (y)). But, d2(Im (y)) = i(d1(y)),
and so,

d2(n) = d2(1) +i(01(y)). (*)

As before, we have some unique elements x and T in Ny, so that i(z) = d2(n) and i(Z) = d2(7); so, by (*),
we get i(z) = i(T) +i(01(y)). As i is injective, we conclude that

z =T+ 01(y);
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so, x and Z have equal projections in Coker d1, and our definition of §(¢§) is independent of the lift, 7, of £
to Ms. The rest is tedious diagram chasing (DX). ]

Remark: As we said in Section 2.3, Proposition 2.17 also holds under slightly more general assumptions and its
proof is a very nice illustration of the snake lemma. Here it is:

Proposition 2.41 Let
0— M “M -2 M —0
be an exact sequence of A-modules. If M is f.g. and M" is f.p., then, M' is f.qg.
Proof. Let
F,—F—M' —0

be a finite presentation of M" (so, Fy, Fi are free and f.g.) Consider the diagram

1 Fo M" 0

0 M’ M M 0.

Now, Fp is free, so there exists a map Fy — M lifting the surjection Fy — M". Call this map 6. From the
commutative diagram which results when 6 is added, we deduce a map v: Fi — M’. Hence, we find the bigger
commutative diagram

0
Fy Fo M 0
0 M’ M M 0

‘L 99 l w l
Coker v —— Coker § —— 0

But, by the snake lemma, Coker v = Coker . However, Coker 0 is f.g. as M is f.g. The image of v is f.g. as F} is
f.g. And now, M’ is caught between the f.g. modules Im  and Coker v; so, M’ is f.g. []
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2.6 Tensor Products and Flat Modules

Let R be a ring (not necessarily commutative). In this section, to simplify the notation, the product of

R-modules, M and N, viewed as sets, will be denoted M x N, instead of M ] N. For any R°P-module,
Sets
M, any R-module, N, and any abelian group, Z, we set

(1) (Ym,m’ € M)(¥n € N)(p(m +m/,n) = p(m,n) + o(m’,n))
Bir(M,N;Z)=<¢¢p: M x N — Z | (2) (Ym € M)(¥Vn,n’ € N)(e(m,n+n') = p(m,n) + o(m,n’))
(3) (Ym € M)(¥n € N)(¥r € R)(¢(mr,n) = ¢(m,rn))

Observe that

(1) The set Big(M, N; Z) is an abelian group under addition; i.e., if ¢,1 € Bir(M, N; Z), then
o+ € Big(M,N; Z).

(2) The map Z ~» Bir(M, N; Z) is a functor from Ab to Sets. Is this functor representable? To be more
explicit, does there exist an abelian group, T'(M, N), and an element, ® € Big(M,N;T(M,N)), so
that the pair (T'(M, N), ®) represents Big(M, N; —), i.e., the map

Homy(T(M,N),Z) — Bir(M, N; Z)
via @ — o @, is a functorial isomorphism?
Theorem 2.42 The functor Z ~ Big(M,N; Z) from Ab to Sets is representable.

Proof. Write F for the free abelian group on the set M x N. Recall that F consists of formal sums

Zga(mwna)v

where &, € Z, with £, = 0 for all but finitely many «a’s, and with m, € M and n, € N. Consider the
subgroup, N, of F generated by the elements
(my +ma,n) — (my,n) — (ma,n)
(m1,n1 +n2) — (m,n1) — (m,nz)
(mr,n) — (m,rn).
Form F/N and write m ®g n for the image of (m,n) in F/N. We have
(@) (m1+m2)@®pn=m1 @rn+mygn.
(B) m®@p (n1+n2) =m g n1 +m &g na.

(v) (mr)®rn =m®g (rn).

Let T(M,N) = F/N and let ® be given by ®(m,n) = m®@gn. Then, («), (8), (7) imply that ® belongs
to Big(M, N;T (M, N)), and the assignment, ¢ — ¢ o ®, gives the functorial map

Homgz(T(M,N), Z) — Big(M, N: Z).

We need to prove that this map is an isomorphism. Pick 6 € Big(M,N;Z); we claim that 6 yields a
homomorphism, T(M,N) — Z. Such a homomorphism is merely a homomorphism, F — Z, that
vanishes on A/. But, F is free; so we just need to know the images of the basis elements, (m,n), in Z. For
this, map (m,n) to (m,n). The induced homomorphism vanishes on the generators of A/, as 6 is bilinear;
thus, 6 yields a map

20): FIN — Z,
and we get our inverse map Bigr(M, N;Z) — Homy (T (M, N), Z). Routine checking shows that the maps
@+ o ® and 0 — Z(0) are functorial and mutual inverses. []
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Definition 2.7 The group, T(M, N) = F /N, constructed in Theorem 2.42, is called the tensor product of
M and N over R and is denoted M ®z N.

Remark: Note that Theorem 2.42 says two things:

(1) For every Z-linear map, f: M ®r N — Z, the map, ¢, given by ¢(m,n) = f(m®mn), forallm € M andn € N,
is bilinear (i.e., ¢ € Bir(M, N;Z)), and

(2) For every bilinear map, ¢ € Bir(M, N; Z), there is a unique Z-linear map, f: M ®r N — Z, with ¢(m,n) =
fm®mn), for all m € M and n € N. In most situations, this is the property to use in order to define a map
from a tensor product to another module.

@ One should avoid “looking inside” a tensor product, especially when defining maps. Indeed, given some
element w € M ®g N, there may be different pairs, (m,n) € M x N and (m/,n’) € M x N, with
w=m®®rn =m @rn'. Worse, one can have m @gn = > mq @r nq. Thus, defining a function as
fim®gn) for all m € M and n € N usually does not make sense; there is no guarantee that f(m ®gn) and
f(im’ @z n’) should agree when m ® g n = m’ @ g n’. The “right way” to define a function on M ®pr N is to
first define a function, ¢, on M x N, and then to check that ¢ is bilinear (i.e., ¢ € Bigr(M, N;Z)). Then,
there is a unique homomorphism, f: M ® g N — Z, so that f(m ®g n) = ¢(m,n). Having shown that f
exists, we now may safely use its description in terms of elements, m ® n, since they generate M ®@r N. We
will have many occasions to use this procedure in what follows.

Basic properties of the tensor product:

Proposition 2.43 The tensor product, M @ g N, is a functor of each variable (from R°P-modules to Ab or
from R-modules to Ab). Moreover, as a functor, it is right-exact.

Proof. Just argue for M, the argument for N being similar. Say f: M — M is an R°P-morphism. Consider
M x N and the map: f(m,n) = f(m) ® n. This is clearly a bilinear map M x N — M ®pr N. By the
defining property of M ®p N, we obtain our map (in Ab) M ® g N — M@R N. Consequently, now that
we know the map is defined, we see that it is given by

men— f(m)®n.
For right-exactness, again vary M (the proof for N being similar). Consider the exact sequence
M - M — M —0. @)
We must prove that
M @r N — M®@r N — M" ®@r N — 0 is exact. (11)
Pick a test abelian group, Z, and write C for Coker (M’ ® g N — M ®p N). We have the exact sequence
M @r N — M®pr N — C — 0. (%)
Now, Hom 41,(—, Z) is left-exact, so we get the exact sequence
0 — Homup(C, Z) — Homup(M ®g N, Z) —— Hom g (M’ ®5 N, Z). (%)

The two terms on the righthand side are isomorphic to Big(M, N; Z) and Big(M’, N; Z), and the map, i*,
is
0 € Big(M,N;Z) — i*p € Big(M',N; Z), where i*o(m/,n) = p(i(m’),n).
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When is i*¢ = 0?7 Observe that i*¢ = 0 iff p(i(m’),n) = 0 for all m" € M’ and all n € N. So,
Hom 41(C, Z) is the subgroup of Big(M, N; Z) given by

{¢ € Bir(M,N; 2) | (Vm' € M")(Vn € N)(g(i(m'),n) = 0)},

and denoted Bix (M, N; Z).

Claim: There is a canonical (functorial in Z) isomorphism
Bij(M,N; Z) = Big(M",N; 7).
Say ¢ € Bix(M,N; Z). Pick m € M"” and n € N, choose any m € M lifting 7 and set
(7, ) = p(m, n).

If m is another lift, then, as (f) is exact, m —m = i(m’) for some m’ € M’'. So, ¢(m —m,n) = 0, as
¢ € BiRr(M,N;Z). But, o(m —m,n) = ¢(m,n) —¢(m,n), and so, p(m,n) = ¢(m,n), which proves
that ¢ is well-defined. Consequently, we have the map ¢ — ¢ from Bij(M,N;Z) to Big(M",N;Z). If
Y € Bir(M",N; Z), pick any m € M and n € N and set ¢(m,n) = ¢ (m,n) (where m is the image of m in
M. These are inverse maps. Therefore, we obtain the isomorphism

BI*R(MvNaz) = BiR(M/,vN;Z)v

functorial in Z, as claimed. However, the righthand side is isomorphic to Hom 45,(M” &g N, Z), and so, by
Yoneda’s lemma, we see that C =~ M” ®g N, and (f1) is exact. []

Proposition 2.44 Consider R as R°P-module. Then, R @r M — M. Similarly, if R is considered as
R-module, then M @ R — M. Say M =[['_, M;, then

t
M@r N = H(Mz ®pr N).
i=1

(Similarly for N.)

Proof. We treat the first case RQ g M — M, the second one being analogous. Pick a test group, Z, and look
at Homap(R ®pr M, Z) = Bip(R,M;Z). Any ¢ € Bigr(R, M; Z) satisfies p(r,m) = ¢(1,rm), by bilinearity.
Now, set @g(m) = ¢(1,m). Then, as ¢ is bilinear, we deduce that ¢o: M — Z is a group homomorphism.
The map ¢ — g is clearly an isomorphism from Big(R, M; Z) to Hompg (M, Z), functorial in Z, and so, we
obtain an isomorphism

Hom (R ®pr M, Z) — HOIH.Ab(]\f7 Z)

functorial in Z. By Yoneda’s lemma, we get the isomorphism R ®pr M — M.

For coproducts, we use an induction on t. The base case, t = 1, is trivial. For the induction step, look at

the exact sequence
t

O—>M1—>M—>HMj—>O.
j=2
This sequence is not only exact, but split exact. Now, from this, tensoring with N on the right and using
the induction hypothesis, we get another split exact sequence (DX)

t
0— My @r N — M@r N — [[(M; @r N) — 0
j=2
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S0,
t
M@ N = [[(M; @r N). O
i=1
In the next section we will prove that tensor product commutes with arbitrary coproducts.

Computation of some tensor products:

(1) Say F' =[]g R, as R°’-module (with S finite). Then,

ForN=([R) @rN=][(RerN)=]]N.
S S S

Similarly, M @r F = [[4 M, if F = ][4 R, as R-module (with S finite).

(1a) Assume G is also free, say G = [[ R (with T finite), as an R-module. Then,

rerG=]le=]]1I2=I] &

S SxT

(2) Say 2 is an R°P-ideal of R. Then (R/2) ®r M = M /AM. Similarly, if 2 is an R-ideal of R, then for
any R°P-module, M, we have M ®@p (R/21) = M/M2. (These are basic results.)
Proof. We have the exact sequence
0—A—R— R/A—0,
where 2 is an R°P-ideal. By tensoring on the right with M, we get the right-exact sequence
ARXrM — Rr M — (R/A) @r M — 0.

Consider the diagram:

ARr M —= RQr M —— (R/A) @gp M ——0

|

0 AM M M/AM ———— 0.

The middle vertical arrow is an isomorphism; we claim that there is a map A ® g M — AM. Such a map
corresponds to a bilinear map in Big(2(, M;AM). But, (o, m) — am is just such a bilinear map. So, we
get our map A Rr M — AM. Now, of course, it is given by o ® m — am. But then, there is induced a
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righthand vertical arrow and we get the commutative diagram:

0 0 0

Ker p—— Ker w ——Ker y

ARXr M — R M —— (R/A) @p M ——0

P w Yy

0 AM M M/AM —— 0

Coker p — Coker w — Coker y

0 0 0

The snake lemma yields an exact sequence

Ker w — Ker y %, Coker p — Coker w — Coker y — 0.

Since p is onto (DX), we have Coker p = 0, and since w is an isomorphism, we have Ker w = Coker w = 0.
Thus, Ker y = 0. As Coker w — Coker y — 0 is exact and Coker w = 0, we deduce that Coker y = 0.
Therefore, y is an isomorphism, as claimed. [] (One can also use the five lemma in the proof.)

(3) Compute Z/r7 &7z 7./ 7.

We claim that the answer is Z/tZ, where t = g.c.d.(r, s).

We know (DX) that ® g is an additive functor. From the exact sequence

0 —Z-"5Z—7Z/rZ — 0,
we get the exact sequence
7Rz (Z)sZ) —— 7 @7 (Z/sZ) — (Z/rZ) ®z (Z/sZ) — 0.
Write X for (Z/rZ) @z (Z/sZ). Hence,
7/sT - 7)s7. — X — 0 is exact.
Pick z € Z/sZ, and say 7z = 0, i.e., rz = 0 (mod s). We have r = pt and s = ot, with g.c.d.(p,0) = 1.
Now, rz =0 (mod s) means that rz = sk, for some k; so, we have ptz = otk, for some k, and so, pz = ok,
for some k. We see that o | pz, and since g.c.d.(p,o) = 1, we conclude that o | z. As a consequence, ot | tz;
so, s (= ot) | tz and we conclude that ¢tz = 0 in Z/sZ. Conversely, if tZ = 0, we get ptzZ = 0, i.e., r7Z =0 in
7./sZ. Therefore, we have shown that
Ker (mult. by r) = Ker (mult. by t) in Z/sZ;

consequently (as this holds for no further divisor of ¢)

Im (mult. by 7) = Im (mult. by ¢) in Z/sZ.
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Thus,
X = (Z/sZ)](tZ]sZ) = ZtZ.

(4) Say M is an S-module and an R°P-module. If
(sm)r = s(mr), forallse SandallreR,

then M is called an (S, R°P)-bimodule, or simply a bimodule when reference to S and R are clear. We will
always assume that if M is an S-module and an R°P-module, then it is a bimodule.

If M is a (S, R°?)-bimodule and N is an R-module, we claim that M ®pr N has a natural structure of
S-module.

@ Illegal procedure: s(m Qg n) = (sm) Qg n.

The correct way to proceed is to pick any s € S and to consider the map, ys, from M x N to M ®r N
defined by
ws(m,n) = (sm) @n.

It is obvious that this map is bilinear (in m and n).

Remark: (The reader should realize that the bimodule structure of M is used here to check property (3) of
bilinearity. We have
ps(mr,n) = (s(mr)) @n = ((sm)r @ n = (sm) @ rn = @s(m,rn).)

So, we get a map M ®r N — M ®p N, corresponding to s. Check that this gives the (left) action of S on M ®r N.
Of course, it is

s(m®rn) =(sm)@r n.
Similarly, if M is an R°P-module and N is a (R, S°P)-bimodule, then M ®r N is an S°P-module; the (right) action
of S is

(m®rn)s =m®g (ns).

Remark: If M is an R-module, N is an (R, S°P?)-bimodule, and Z is an S°°’-module, then any S°P-linear map
f: M ®r N — Z satisfies the property:

f(m ®rg (ns)) = f(m®rn)s, forallses,

since f(m ®r (ns)) = f((m ®r n)s) = f(m ®r n)s. Thus, the corresponding bilinear map ¢: M x N — Z defined
by
¢(m,n) = f(m®r n)
satisfies the property:
p(m,ns) = ¢(m,n)s, forall ses.
This suggests defining a set, S°P-Bir(M, N; Z), by

(1) (Ym,m' € M)(Vn € N)
(p(m+m',n) = p(m,n) +(m’, n))
(2) (Ym € M)(Vn,n' € N)
(p(m,n+n') =p(m,n) + e(m,n’))
(3) (Ym € M)(¥n € N)(Vr € R)(p(mr,n) = ¢(m,rn))
(4) (Ym € M)(¥n € N)(Vs € S)(p(m,ns) = ¢(m,n)s)

SP-Bir(M,N;Z)=<¢¢o: M x N — Z

Then, we have

Theorem 2.45 Let M be an R-module and N be an (R, S°P)-bimodule. The functor Z ~~ S°P-Bir(M,N;Z) from
Mod(S°P) to Sets is representable by (M @r N, ®), where ® is given by ®(m,n) =m Qg n.



2.6. TENSOR PRODUCTS AND FLAT MODULES 89

Note that the above statement includes the fact that M ®r N is an S°?-module.

Similarly, if M is an (S, R°?)-bimodule, N is an R-module and Z is an S-module, then we can define the set,
S-Bir(M, N; Z), in an analogous way (replace (4) by p(sm,n) = s¢(m,n)), and we find

Theorem 2.46 Let M be an (S, R°P)-bimodule and N be an R-module. The functor Z ~» S-Bir(M,N;Z) from
Mod(S) to Sets is representable by (M ®@r N, D), where ® is given by ®(m,n) = m Qg n.

Associativity of tensor: Let M be an R°P-module, N an (R, S°P)-bimodule, and Z an S-module. Then,
(M ®rN)®sZ=MQ®gr(N®s Z).
For any test group, T, the left hand side represents the functor
T ~ Big(M ®r N, Z;T)
and the righthand side represents the functor
T ~~ Big(M,N ®g Z;T).

We easily check that both these are just the trilinear maps, “Trig s(M, N, Z;T);” so, by the uniqueness of
objects representing functors, we get our isomorphism. In particular,

(A) (M RrS)®s Z2M Qg (S®sZ) 2 M®gZ.

(B) Say S — R is a given surjective ring map and say M is an R°P-module and N is an R-module. Then,
M is an S°P-module, N is an S-module and

M ®s N =M®grN.
To see this, look at /N and see that the same elements are identified.

(C) Say S — R is a ring map. Then, M ®g N is a homomorphic image of M ®g N.

Remark: Adjointness Properties of tensor: We observed that when M is an (S, R°?)-bimodule and N is an R-
module, then M ®g N is an S-module (resp. when M is an R°’-module and N is an (R, S°?)-bimodule, then
M ®gr N is an S°P-module.) The abelian group Hom (M, N) also acquires various module structures depending on
the bimodule structures of M and N. There are four possible module structures:

(a) The module M is an (R, S°?)-bimodule and N is an R-module. Define an S-action on
Hompg (M, N) as follows: For every f € Hompg(M, N) and every s € S,

(sf)(m) = f(ms), forallme M.

(b) The module M is an (R, S°?)-bimodule and N is an S°P-module. Define an R°P-action on
Homger (M, N) as follows: For every f € Homgor (M, N) and every r € R,

(fr)(m) = f(rm), forallm e M.

(¢) The module M is an R°’-module and N is an (S, R°?)-bimodule. Define an S-action on
Hompgor (M, N) as follows: For every f € Hompgor (M, N) and every s € S,

(sf)(m) = s(f(m)), forallme M.

(d) The module M is an S-module and N is an (S, R°?)-bimodule. Define an R°P-action on
Homg(M, N) as follows: For every f € Homgs(M,N) and every r € R,

(fr)(m) = (f(m))r, for all m € M.
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The reader should check that the actions defined in (a), (b), (c), (d) actually give corresponding module structures.
Note how the contravariance in the left argument, M, of Hom (M, N) flips a left action into a right action, and
conversely. As an example, let us check (a). For all r,t € S,

((st)f)(m) = f(m(st)) = f((ms)t) = (tf)(ms) = (s(tf))(m).

We also need to check that sf is R-linear. This is where we use the bimodule structure of M. We have
(sf)(rm) = f((rm)s) = f(r(ms)) = rf(ms) = r((sf)(m)).
We are now ready to state an important adjointness relationship between Hom and ®.

Proposition 2.47 If M is an R°®-module, N is an (R, S°P)-bimodule, and Z is an S°®-module, then there is a
natural functorial isomorphism

Homgor (M ®r N, Z) = Hompgor (M, Homger (N, Z)).

When M is an R-module, N is an (S, R°P)-bimodule, and Z is an S-module, then there is a natural functorial
isomorphism
Homgs(N ®r M, Z) = Homg(M,Homs (N, Z)).

Proof. Using Theorem 2.45, it is enough to prove that
S°P-Bir(M, N; Z) = Hompor (M, Homger (N, Z))
and using Theorem 2.46, to prove that
S-Bir(N, M; Z) 2 Homg(M,Homs(N, Z)).
We leave this as a (DX). [

Proposition 2.47 states that the functor — @z N is left adjoint to the functor Homgor (N, —) when N is an
(R, S°P)-bimodule (resp. N ®pr — is left adjoint to Homg(N, —) when N is an (S, R°?)-bimodule).

Commutativity of tensor: If R is commutative, then M ®r N =2 N ®@gr M. The easy proof is just to
consider (m,n) — n @ m. It is bilinear; so, we get a map M ® gk N — N ®r M. Interchange M and N,
then check the maps are mutually inverse.

(5) Let G be a torsion abelian group and @ a divisible abelian group. Then,
Q ®z G = (0).

Look at Homz(Q ®7z G, T) = Biz(Q, G; T), for any test group, T. Take ¢ € Biz(Q, G;T) and look at ¢(q, o).
Since @ is torsion, there is some n so that no = 0. But, @ is divisible, so ¢ = ng, for some ¢ € Q. Thus,

o(q,0) = p(ng,0) = (gn, o) = ¢(g,no) = 0.
As this holds for all ¢ and o, we have ¢ = 0, and so, Q ®z G = (0).

(6) Free modules (again). Let F' = []4 R, an R°P-module and G = [[, R, an R-module (with both S
and T finite). We know that
ForG= H R.
SxT

We want to look at this tensor product more closely. Pick a basis, ey, ..., es, in F and a basis, f1,..., [, in
G, so that

s t
F=]]e;R and G=]]Rf
=1

Jj=1
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Then, we get
s,t

FerG= ][ (¢jR) @r (Rf).

j=1,1=1

Thus, we get copies of R indexed by elements e; ® f;. Suppose that F' is also an R-module. This means
that pe; € F' makes sense. We assume pe; € e; R, that is the left action of R commutes with the coproduct
decomposition. Then F' ®r G is an R-module and it is free of rank st if the left action, pe;, has obvious
properties (and similarly if G is also an R°P-module).

@ It is not true in general that pe; = ejp. Call a free module a good free module iff it possesses a basis
e1,...,es so that pe; = e;p, for all p € R. (This is not standard terminology.)

g% It is not generally true even here, that
pm=mp (meF).
Say m = >7_, e;A;. Then, we have

pm = Zp(eﬁ\j) = 2_r0ed) = D_(pXi)es:

=1 Jj=1
and . . .
mp =Y (e;\)p =D e;(Nip) = D (Ajp)e;.
j=1 j=1 j=1
In general, pA; # Ajp, and so, pm # mp.

Consider the special example in which R = k = a field. Then, all modules are free and good. Let V be
a k-vector space of dimension d, and let eq,...,eq be some basis for V. We know that the dual space, V7,
has the dual basis, f1,..., f4, characterized by

file;) = bij.

Every v € V can be uniquely written as v = _ \;e;, and every f € VP can be uniquely written as f = 3~ u; fi.
Consider the space
Vor @ VarVP @p - @, VP.

a b

Elements of this space, called (a,b)-tensors, have the unique form

..... Qg

11,-la
Ci e Okt Qk €5, @k [, Qk -+ @k [,

2

i1
J1s--:00

So, V @k @ V@ VP @4 -+ @ VP may be identified with tuples (ci!*"'¢), of elements of k, doubly-
multiply indexed. They transform as ... (change of basis). A tensor in V @y -+ @5 V @, VP @ - @5, VP
is cogredient of rank (or degree) a and contragredient of rank (or degree) b. A tensor field on a space, X,
is a function (of some class, C>°, C*, holomorphic, etc.) from X to a tensor vector space, as above. More

generally, it is a section of a tensor bundle over X. Also, we can apply f;,, to e;, and reduce the cogredient

and contragredient ranks by one each. This gives a map V®? ®p yPE L yel-1) g, VD®(b_1), called
contraction.
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Remark: Let M be an R-module, N be an S-module, and Z be an (R, S°P)-bimodule. Then, we know that
Homg (M, Z) is an S°’-module and that Z ®s N is an R-module. We can define a canonical homomorphism of

Z-modules,
0: Hompr(M,Z) ®s N — Homgr(M,Z ®s N).

For this, for every n € N and u € Homg (M, Z), consider the map from M to Z ®g N given by
0 (u,n): m— u(m) @ n.

The reader will check (DX) that 6’ (u,n) is R-linear and that 6’ € Big(Hompg(M, Z), N; Homg(M, Z®sN)). Therefore,
we get the desired homomorphism, 6, such that §(u®n) is the R-linear map ¢’ (u,n). The following proposition holds:

Proposition 2.48

(i) If N is a projective S-module (resp. a f.g. projective S-module), then the Z-homomorphism,
0: Hompr(M, Z) s N — Hompg(M,Z ®s N), is injective (resp. bijective).

(i) If M is a f.g. projective R-module, then the Z-homomorphism, 0, is bijective.
Proof. In both cases, the proof reduces to the case where M (resp. N) is a free module, and it proceeds by induction
on the number of basis vectors in the case where the free module is f.g. (DX). ]

The following special case is of special interest: R = S and Z = R. In this case, Homg(M, R) = M?| the dual
of M, and the Z-homomorphism, 6, becomes

0: M” @ N — Hompg (M, N),
where f(u ® n) is the R-linear map, m — u(m)n.

Corollary 2.49 Assume that M and N are R-modules.

(i) If N is a projective R-module (resp. a f.g. projective R-module), then the Z-homomorphism,
0: MP @r N — Hompg(M, N), is injective (resp. bijective).

(i) If M is a f.g. projective R-module, then the Z-homomorphism, 0, is bijective.

If the R-module, N, is also an S°P-module, then 6 is S°P-linear. Similarly, if the R-module, M, is also an S°P-
module, then 6 is S-linear. Furthermore, if M is an R°’-module (and N is an R-module), then we obtain a canonical
Z-homomorphism,

0: MPP @ N — Homg(M"”, N).

Using the canonical homomorphism, M — MPP | we get a canonical homomorphism
0': M ®r N — Hompg(MP”, N).

Again, if M is a f.g. projective R°?-module, then the map 6’ is bijective (DX).

Some (very) important algebras:

Suppose that M is both an R and an R°P-module, and that R € RNG. We also assume, as usual, that
M is a bimodule, i.e., (pm)o = p(mo). Then, M @ M is again a bimodule, so we can form M ® p M @ M,
etc. Define 7;(M) (also denoted M®7) by To(M) = R, T;(M) = M, and
%(M):M(X)R"'@RM, if j > 2.
—_—————
J
Then, form

T(M) =[] 7;() = ] Mm%

=0 Jj=0

We can make 7 (M) into a ring, by concatenation. Define the map M" x M*® — T, (M), by

((my,...,mp),(n1,...,ng)) > M@ - @My ANy R -+ ® N
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This map is bilinear in the pair ((r—tuple), (s—tuple)) and so, it is multilinear in all the variables. Thus, we
get a map 7,.(M) @ g Ts(M) — T,4+s(M). Therefore, 7 (M) is an R, R°P-algebra called the tensor algebra
of M.

If Z is an R-algebra, denote by (Z) the object Z considered just as an R-module (i.e., Z ~ (Z) is the
partial stripping functor from R-alg to Mod(R).)

Proposition 2.50 There is a natural, functorial isomorphism
HomR_alg(’T(M), Z) = HomMod(R)(M, (Z)),
for every R-algebra, Z. That is, the functor M ~ T (M) is the left-adjoint of Z ~ (Z).

Proof. Given ¢ € Homp_as(7 (M), Z), look at ¢ [ 71(M) = ¢ | M. Observe that

@ [ M € Hompoq(ry (M, (Z)), and clearly, as M generates 7 (M), the map ¢ is determined by ¢ [ M. We
get a functorial and injective map Homp-a1g(7 (M), Z) — Hompoq(r)(M,(Z)). Say 1: M — (Z), pick
(m1,...,mq) € M¢ and form

Pma,. . yma) = G(ma) - (my).

This map is R-multilinear in the m;’s and has values in Z; it gives a map

i) M@p--@r M — Z,
——— —
d

[1]

and so, we get a map
functorial maps. []

(¥): T(M) — Z. Tt is easy to check that ¢ — ¢ | M and @ — Z(1) are inverse

In 7 (M), look at the two-sided ideal generated by elements
(m®grn)—(n®gm),

call it 3. Now, 7 is a graded ring, i.e., it is a coproduct, ]_[j>0’]}(M), of R-modules and multiplication
obeys: B
T;(M) ®@r Tu(M) C Tj1(M).

The ideal, J, is a homogeneous ideal, which means that

J=[[3nT0Mm).
j=0

To see this, we will in fact prove more:

Proposition 2.51 Suppose R =[], ., Ry is a graded ring and J is a two-sided ideal generated by homoge-
neous elements {rqaca (i-€., 7o € Rjia, for some d, ). Then, J is a homogeneous ideal. Moreover, the ring,
R/3J, is again graded and R — R/J preserves degrees.

Proof. Pick £ € J, then £ = )" para and each p, is of the form

(o)
Po = Z Pa,n, Where pon € Ry,

n=0

all the sums involved being, of course, finite. So, we have

= Z Z Pa,nTas

a n=0
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MOTEOVeT, Po.nla € Rntd, and panrea € J. As Jis a 2-sided ideal, the same argument works for { = Za TaPa-
It follows that
3=J]3nR.,

n>0
and J is homogeneous.

Write R for R/J, and let R,, be the image of R,, under the homomorphism p — 5. Then,
R= (]_[Rn)/(]_[m Rn) =[] Ra/(3 N Ry).
n n

But, R, = R,/(JNR,,), so we are done. []

In 7 (M), which is graded by the 7,,(M), we have the two 2-sided ideals: J, the 2-sided ideal generated
by the homogeneous elements (of degree 2)

m®n—nm,
and KC, the 2-sided ideal generated by the homogeneous elements
m®@m and mMn+nQm.

Both J and K are homogeneous ideals, and by the proposition, 7(M)/J and 7 (M)/K are graded rings.

Remark: For K, look at
(m+n)@(m+n)=mm+n@n+men+nem.

We deduce that if m ® m € I for all m, then m ® n +n ® m € I for all m and n. The converse is true if 2
is invertible.

We define Sym(M), the symmetric algebra of M to be 7 /J and set m -n = image of m ® n in Sym(M).
The module Sym;(M) is called the j-th symmetric power of M. Similarly, A\(M) = 7 /K is the exterior
algebra of M, and we set m A n = image of m @ n in A(M). The module A?(M) is called the j-th exterior
power of M.

Observe that m -n = n-m in Sym(M) and m An = —n Am in A(M), for all m,n € M. Of course,
m A m =0, for all m € M. Further, Sym(M) is a commutative ring. However, we can have w Aw # 0 in
N\ M; for this, see the remark before Definition 2.8.

g% The algebras Sym (M) and A\(M) are Z-algebras only, even if M is an R-bimodule, unless R is commu-
tative, and then they are R-algebras.

Why?
We know that r(m®n) = (rm®n) in 7 (M). But in Sym(M), we would have (writing = for equivalence
mod J)
rtm®n) = (rm)®n
= n®(rm)
= (nr)®@m
= m® (nr)

= (m®n)r.
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Then, for any r,s € R, we would have

(rs)(me@n) = r(s(men)

Il
<
—~ o~
B
®
3
~—
V)
~— — ~—

Il
3
®

£}
&
=

But, (sr)(m ®@n) = (m ®@n)(sr), and so, we would get
(rs)(m@n) = (sr)(m®mn), forallrse R.

So, if we insist that Sym(M) and A(M) be R-algebras, then R must act as if it were commutative, i.e., the
2-sided ideal, 2, generated by the elements rs — sr (= [r, s]) annihilates both our algebras. Yet R/9% might
be the O-ring. However, in the commutative case, no problem arises.

Proposition 2.52 Suppose M is an R-bimodule and as R-module it is finitely generated by eq, ..., e.. Then,
N M =(0)ifs>r.

Proof. Note that for any p € M and any e;, we have e;p € M, and so,

ejp = E Aie;, for some \;’s,
i

. . . N 2
in other words, e;p is some linear combination of the e;’s. Elements of A” M are sums

Somgnmy, = S (A A (Y uies)
By J

By i

= Y2 M enuey)

By 1.3

= Y3 A en) ney)

By i3

= Zplm(el /\em)7
Lm

for some py,. An obvious induction shows that A® M is generated by elements of the form e;; A--- Ae;,.
There are only r distinct e;’s and there are s of the e;’s in our wedge generators; thus, some e; occurs twice,
that is, we have

e, N Nej, =¢e;, N Neg N Neg N+ Nej,.

However, we can repeatedly permute the second occurrence of e; with the term on its left (switching sign
each time), until we get two consecutive occurrences of e;:

e, Ao Nej, ==Fey N Neg ANeg A--- Neg,.

Ase; Ne; =0, we get e;, A--- Ae;, =0, and this for every generator. Therefore, A* M = (0). []
Let us now assume that M is a free R-module with basis eq,...,e,. What are 7 (M), Sym(M) and

AM)?

The elements of 7,.(M) are sums of terms of the form m; ® - - - @ m,.. Now, each m; is expressed uniquely
as m; = ) Ajej. Therefore, in 7,.(M), elements are unique sums of terms of the form

(mei,) ® (p2eiy) @ -+ @ (pres, ),
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where e;, might be equal to e;, with ¢; # ix. Let X; be the image of e; in 7 (M). Then, we see that the
elements of 7 (M) are sums of “funny monomials”

w1 Xy 2 Xy - 1aXiy,
and in these monomials, we do not have Xu = pX (in general). In conclusion, the general polynomial
ring over R in n variables is equal to T(]_[?Zl R). If our free module is good (i.e., there exists a basis
€1,...,6n and Ae; = ¢;\ for all A € R and all ¢;), then we get our simplified noncommutative polynomial
ring R(Xy,...,X,), as in Section 2.2.
For Sym (H;Zl R)7 where H;Zl R is good, we just get our polynomial ring R[ X1, ..., X,].

All this presumed that the rank of a free finitely-generated R-module made sense. There are rings where
this is false. However, if a ring possesses a homomorphism into a field, then ranks do make sense (DX).
Under this assumption and assuming that the free module M = ]_[;:1 R has a good basis, we can determine

the ranks of 73(M), Sym, (M) and A“(M). Since elements of the form
e, ®--®e;,, where {i1,...,iq} is any subset of {1,...,r}

form a basis of 7y(M), we get rk(7 (M)) = r¢. Linear independence is reduced to the case where R is a field
in virtue of our assumption. Here, it is not very difficult linear algebra to prove linear independence. For
example, M ®; N is isomorphic to Homy (M, N), say by Corollary 2.49.

Elements of the form
€, ®: X ey, where 11 <119 < ... <1y

form a basis of Sym (M), so we get rk(Sym,(M)) = (TJ”;*l) (DX-The linear algebra is the same as before,
only the counting is different). Let us check this formula in some simple cases. For r = d = 2, the formula
predicts dimension 3; indeed, we have the basis of 3 monomials: X2, X2, X; X. For 7 = d = 3, the formula

predicts dimension 10; we have the basis of 10 monomials:

X3, X3, X3, X?Xo, X7X3, X2X1, X3X3, X2X1, X3 X0, X1X2X5.

Finally, elements of the form
ei, N Nej,, Wwhere i) <ip <...<ig

form a basis of A*(M), so we get dim(A\%(M)) = (7). Again, linear independence follows from the field case.

Here, it will be instructive to make a filtration of /\dM in terms of lower wedges of M and M, where M
has rank r — 1. Then, induction can be used. All this will be left to the reader.

And now, an application to a bit of geometry. Let M be a (smooth) manifold of dimension r. For every
x € M, we have the tangent space to M at x, denoted T'(M),, a rank r vector space. A basis of this vector
space is

0 0
X, oX,’
where X1,..., X, are local coordinates at x € M. A tangent vector is just
S0 0
19X,
Jj=1
the directional derivative w.r.t. the vector ©" = (ay,...,a,). The dual space, T(M)P | is called the cotangent

space at x or the space of 1-forms at x, and has the dual basis: dX1,...,dX,, where

(dX;) (a?g) =5,



2.6. TENSOR PRODUCTS AND FLAT MODULES 97

x

families (J, ¢y T(M)g and U, ¢y, T(M)E. These vector space families are in fact vector bundles (DX), called
the tangent bundle, T(M), and the cotangent bundle, T(M)P respectively.

Every element of T'(M)P is a 1-form at z, i.e., an expression Z;:1 b;jdX;. We have the two vector space

Say ¢: M — N is a map of manifolds, then we get a vector space map,
Dyoy: T(M)y — T(N)y(z)-

This map can be defined as follows: For any tangent vector, £ € T'(M),, at z, pick a curve through = (defined
near ), say z: I — M, and having our chosen ¢ as tangent vector at ¢ = 0 (with = 2(0)). Here, I is a
small open interval about 0. Then,

I M-*% N

is a curve in N through ¢(x), and we take the derivative of p(z(t)) at ¢ = 0 to be our tangent vector
By duality, there is a corresponding map (D, )*: T(N)g(x) — T(M)P called pull-back of differential

x
forms. Given any open subset, V', of N, for any section, w € I'(V, /\d T(N)P), by pullback we get the section
p*w e (e~ Y(V), /\d T(M)P). The reader should explicate this map in terms of the local coordinates on V
and p=1(V).

Now, consider some section, w € T'(U, /\d T(M)P), where U is an open in M. In local coordinates, w
looks like
Z a(z)dz,, N---Ndx;,; x€U.

i1 < <ig

Here, U is a piece of a chart, i.e., there is a diffeomorphism ¢: V (CR") == U. If 2: I (CR?) — Vis a
map of a D-disk to V', the composition ¢ o z is called an elementary d-chain in U C M, and a d-chain is a
formal Z-combination of elementary d-chains. Then, we have (¢ o z)*w, a d-form on I. Hence, by elementary
real calculus in several variables,
/ (po2)w
I

makes sense. ((DX), compute (¢oz)*w in local coordinates.) We define the integral of w over the elementary

d-chain ¢(z(I)) by
[ o feer
e(=(1)) 1

[ oe=x] w.
d—chain elem. pieces

An elaboration of these simple ideas gives the theory of integration of forms on manifolds.

and for d-chains, let

We also have the theory of determinants. Suppose R is a commutative ring and M is a free module of
rank d over R with basis eq,...,eq. So,

d
M = [ Re;.
j=1

Let N be another free module of the same rank with basis f1,..., fq. Then, a linear map ¢ € Hompg (M, N)
gives a matrix in the usual way (¢(e;) as linear combination of the f;’s is the j-th column). By functoriality,

we get a linear map /\dga: /\dM — /\d N. Now, each of /\d M and /\d N is free of rank 1, and their bases
are e; A --- ANeqg and fi A--- A fg, respectively. Therefore,

d

(A@)(ern - Aea) =AU A A fa),
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for some unique A € R. This unique A is the determinant of y, by definition. Now,
(/\d gp) (es A+ Neg) =p(er) A Ap(eq), and so det(ip) is an alternating multilinear map on the columns

of the matrix of ¢. If @ is yet a third free module of rank d and if ¢»: N — @ is an R-linear map and
J1,---,9q a chosen basis for the module @, then we find that /\dw takes f1 A - A fg to u(gr A+ A ga),
where p = det(t). Since /\dw is R-linear, it takes A(f1 A -+ A fq) to Au(g1 A -+ A ga), and it follows that

det(v o ) = puA = det(yp) det(ip).

It might appear that det(¢) depends upon our choice of basis, but this is not entirely so. If one has two
choices of bases in each of M and N, say {e;} and {e;}; {f;} and {f;}, and if the matrices of the identity
transformations M — M and N — N in the basis pairs are the same, then det(y) is the same whether
computed with e’s and f’s or with €’s and f’s. This situation holds when we identify M and N as same
rank free modules, then we have just one pair of bases: The {e;} and the {€;}. The determinant of the
endomomorphism ¢: M — M is then independent of the choice of basis.

If M and N have different ranks, say M has rank r with chosen basis e1, ..., e, while N has rank s with
chosen basis f1,..., fs, then for any R-linear ¢: M — N, we have the induced map

d d d
/\ p: /\ M — /\ N.
Consider e;, A --- Aej,, an element of the induced basis for /\d M. We apply the map /\d ¢ and find
d . .
(/\tp)(ejl/\-.-/\ejd): Z )\leljjfh/\/\fw

1<i1 < <iqg<s

The element )\lefj € R is exactly the d x d minor from the rows iy,...,ig and columns ji,...,jq of the

matrix of ¢ in the given bases. So, the d x d minors form the entries for /\d . Projectives being cofactors of
free modules allow the definition of determinants of their endomorphisms as well. For this, one must study
A (P11 P). (DX)

For the next two remarks, assume that R € CR.

Remarks:

(1) Let Z be a commutative R-algebra. Then, the functor, Z ~» (Z) (= Z as R-module), has as left-adjoint
in CR the functor M ~» Sym(M):

Hompg-a1(Symp (M), Z) — Hompg (M, (Z))
is a functorial isomorphism (in M and Z).

(2) An alternating R-algebra is a Z/2Z-graded R-algebra (which means that Z = Zeyen I Zoqqa = Zo I Z4,
with Z; Z; C Z;1j (mod 2)), together with the commutativity rule

&n = (—1)deatdeanye,

The left-adjoint property for A\ M is this: The functor Z ~~ (Z1) (= Z; as R-module, where Z is an
alternating R-algebra) has M ~» A\ M as left adjoint, i.e.,

Homalt‘ R—alg(/\ ‘1\47 Z) = }IOHIR(J\47 (Z1))

is a functorial isomorphism (in M and Z).
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Remark: If w € (A\ M)eyen, then w A w need not be zero. In fact, if £ € A’ M and n € A\? M, then (DX)
EAn= (=1 AE.
Example: M =R*, w = dx; A dxs + des A dzy (w is the standard symplectic form on R4). We have
wAw = (dzry Adxe + drs A dxy) A (dey Adeg + deg A dey) = 2dxy A dxe A dxs A dxy # 0.
Flat Modules. As with the functor Hom, we single out those modules rendering ® an exact functor.

Actually, before we study right limits, little of consequence can be done. So, here is an introduction and
some first properties; we’ll return to flatness in Section 2.8.

Definition 2.8 An R°P-module, M, is flat (over R) iff the functor N ~~ M ®pg N is exact. If M is an
R-module then M is flat (over R) iff the functor (on R°P-modules) N ~» N ®@r M is exact. The module,
M, is faithfully flat iff M is flat and M @ g N = (0) (resp. N @r M = (0)) implies N = (0).

Proposition 2.53 Say M is an R-module (resp. R°P-module) and there is another R-module (resp. R°P-

module), M, so that M 11 M is flat. Then M is flat. Finitely generated free modules are faithfully flat.
Finitely generated projective modules are flat. Finite coproducts of flat modules are flat. (The finiteness
hypotheses will be removed in Section 2.8, but the proofs require the notion of right limit.)

Proof. Let 0 — N’ — N — N" — 0 be an exact sequence; we treat the case where M is an R°P-module.
Let F = MII M. As F is flat, the sequence

0— Fr N — F®rN is exact.

We have the diagram

M ®g N’ M ®r N

l l

FOrN —= M@r NNIIMopr N —> M@y NIIM @y N<— F @ N.

The bottom horizontal arrow is injective and the vertical arrows are injective too, as we see by tensoring the
split exact sequence ~
00— M -—F—M-—70

on the right with N and N’. A trivial diagram chase shows that 6 is injective, as contended.

Assume F is free and f.g., that is, F = [[4 R, where S # () and S is finite. Since F @gr N = [[4 N, we
have F @ N = (0) iff N = (0). If we knew that finite coproducts of flats were flat, all we would need to
show is that R itself is flat. But, R®r N = N, and so, R ® — is exact.

Let M and M be flat and consider their coproduct, F' = M 11 M. Then, for any exact sequence
0— N —N-—N'"—0

the maps f: M ®r N’ — M ®r N and g: M@R N — M@RN are injective, as M and M are flat. Since
the coproduct functor is exact, f II g is injective and so

(M@r NYII(M@r N)2FRr N — F®r N = (M ®z N)II (M @g N)
is injective as well, which proves that F' is flat.

If P is projective and f.g., then P II P F', for some module P and some f.g. free module, F'. The first
part of the proof shows that P is flat. []
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Proposition 2.54 If R € CR is an integral domain (or R € RNG has no zero divisors) then every flat
module is torsion-free. The converse is true if R is a P.I.D. (the proof will be given in Section 2.8).

Proof. If £ € R, then 0 — R L Risan injective R°P-homomorphism ((§m)p = &(mp)). The diagram

04>R®RM4£>R®RM

L

M M

commutes, the vertical arrows are isomorphisms, and the upper row is exact, since M is flat. This shows
that m — &m is injective; so, if &m = 0, then m = 0. [

Remark: The module Q is a flat Z-module. However, Q is not free, not projective (DX) and not faithfully
flat (Q ®z Z/27 = (0)).

2.7 Limit Processes in Algebra

Let A be a partially ordered set (with partial order <) and assume A has the Moore-Smith property (A is a
directed set), which means that for all o, § € A, there is some v € A so that o <~ and § < ~.

Examples of Directed Sets: (1) Let X be a topological space, and pick = € X; take
A={U|(1)Uopenin X;(2)x € U}, with U <V it V C U.

(2) A=N, and n < m iff n | m (Artin ordering).

To introduce right and left limits, we consider the following set-up: We have a category, C, a collection
of objects of C indexed by A, say C,,. Consider the two conditions (R) and (L) stated below:

(R) For all a < f3, there is a morphism, ¢2: C, — Cp, and there is compatibility: For all o < 8 <+, the

diagram

C, %Cﬁ

a

commutes and ¢% = id¢, .

(L) For all a < 3, there is a morphism, 95 : Cs — C,, and there is compatibility: For all « < 8 <, the

diagram
Cy
C
« w5

Cs
commutes and ¥ = id¢,, .
Definition 2.9 A right (direct, inductive) mapping family, (Cy,¢2), of C is a family of objects, C,, and

morphisms, 2, satisfying axiom (R). Mutatis mutandis for a left (inverse, projective) mapping family,
(Ca,¥g) and axiom (L).
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Examples of Right and Left Mapping Families:

(IL) Let A = N with the usual ordering, C = Ab and C,, = Z. Pick a prime, p; for m < n, define
Yt Z — Z as multiplication by p™~"".

n—m

(1R) Same A, same C, same C,,, and ¢, : Z — Z is multiplication by p

(2L) Same A, Artin ordering, same C, same C,,. If n < m, then n | m, so mZ C nZ, define
Y Z/mZ — Z/nZ as the projection map.

(2R) Same A, Artin ordering, same C, C,, = Z/nZ. If n < m, then r = m/n € Z, define ¢7": Z/nZ —
Z/mZ as multiplication by 7.

Look at the functor (from C to Sets)

fa fﬂ
T~ (fa: Co — Ty / \ commutes whenever a < 3 3,

denoted Lim (Ca, ©2)(T), and the cofunctor (from C to Sets)

[e3

T~ < (go: T — Cy)a / \ commutes whenever o < /3 5,

denoted Lim (Cp,¥5)(T).
B
Question: Are either (or both) of these representable?

Definition 2.10 The right (direct, inductive) limit of a right mapping family, (Cy, ), is the pair, (C, {ca}),
representing the functor Lim (Cq,¢B) and is denoted lim (Cay2). The left (inverse, projective) limit of

a left mapping family, (Cp,§), is the pair, (C,{cg}), representing the functor Lim (Cp,v53), denoted
B
lim (Cp,15).
B

Let us explicate this definition. First, consider right mapping families. The tuple {c, }4 is to lie in
Li_r)n (Cq, ©2)(C), the set of tuples of morphisms, c,: C,, — C, so that the diagram

T
> N
Ca Cs

o

commutes whenever a < 3. We seek an object, C' € C, and a family of morphisms, ¢, : C, — C, so that

HOHlC (Oa T) = I_i)l’l (Caa @g)(T)v

[e3
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for every T € C, via the isomorphism u — {u 0 ¢, }4. Thus, the above functorial isomorphism says that for

every family of morphisms, {fo: Cq — T}q € Lﬂ)l (Ca, ©2)(T), there is a unique morphism, u: C' — T, so

07

that
fa=uoc,, forallaeA.

This is the universal mapping property of h_m) Cy.

[e%

Next, consider left mapping families. This time, the tuple {c3}s is to lie in Lim (Cp,¥5)(C), the set of

B
tuples of morphisms, c¢g: C — Cpg, so that the diagram
C
7\
C C
« wg B

commutes whenever a < 3. We seek an object, C' € C, and a family of morphisms, cg: C — Cjg, so that

Home(T, C) = Lim (Cy, ) (1),
B

for every T € C, via the isomorphism u — {cg o u}z. The universal mapping property of (hﬂ C, is that for

every family of morphisms, {go: T — Ca}a € I_(in (Cg,z/Jg)(T), there is a unique morphism, u: 7' — C, so

B
that

Jo = Cq0ou, forall e A.

Remark: A right (resp. left) mapping family in C is the same as a left (resp. right) mapping family in the
dual category CP. Thus, lim (C,) exists in C iff lim (C,) exists in CP.
o o
Let us examine Example (1L). If we assume that its inverse limit exists, then we can find out what this
is. By definition, whenever n < m, the map ¢}, : Z — Z is multiplication by p”*~". Pick £ € C, hold n fixed
and look at ¢, (£) € Z. For all m > n, the commutativity of the diagram

7<——17Z

w ”!’;’L

shows that p™ "¢, (&) = ¢ (), and so, p™ " divides ¢, (§) for all m > n. This can only be true if ¢, = 0.

Therefore, all the maps, ¢,, are the zero map. As there is a unique homomorphism from any abelian group,
T, to (0) and as the tuple of maps, {¢s}a, is the tuple of zero maps, the group (0) with the zero maps is
(h_m Cy. In fact, this argument with 7" replacing C proves the existence of the left limit for the family (1L)

and exhibits it as (0).

Theorem 2.55 (Existence Theorem) If C is any one of the categories: Sets, Q-groups (includes R-modules,
vector spaces, Ab, Gr), topological spaces, topological groups, CR, RNG, then both Iﬂ} and Iﬂl are

«@ (0%
representable (we say that C possesses arbitrary right and left limits).
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Proof. We give a complete proof for Sets and indicate the necessary modifications for the other categories.
Let A be a directed index set.

(1) Right limits: For every a € A, we have a set, S,, and we have set maps, ¢2: S, — S, whenever
a < 8. Let § = | Sa, the coproduct of the S,’s in Sets (their disjoint union). Define an equivalence
relation on S as follows: For all z,y € S,

if €Sy andy € Sgthen z~y iff (3yecA)(a<y, B<7)(Pd(x) = ¢iy)

We need to check that ~ is an equivalence relation. It is obvious that ~ is reflexive and symmetric.

Say x ~y and y ~ z. This means that x € S,, y € S, z € S, and there exist J;,02 € A so that o < dy;
B <615 B < d2; 7 < 02, and
©o () = 0% (1); % (y) = ¥7 (2).
As A is directed, there is some § € A, with §; < § and d5 < d; so, we may replace §; and o by §. Therefore,
@0 (x) = ©9(2), and transitivity holds. Let S = &/ ~. We have the maps

Sai 8o — JHh =88/~ =5,
A

and the pair (S, {sq}) represents Lim S, as is easily checked.

«

(2) Left Limits: We have sets, S, for every o € A, and maps, ¢§: S — S,. Let
P={(&) € I 5a | (Yo < A)(05(0) = &) },

be the collection of consistent tuples from the product. The set P might be empty.

We have the maps
Po: P — HSO‘ e g,

The pair (P, {p.}) represents the cofunctor Lim S, (DX).

[e3

Modifications: Look first at the category of groups (this also works for 2-groups and rings).
(1') Right limits. Write G, for each group (o € A). We claim that G = lim Gq (in Sets) is already a

«
group (etc., in a natural way) and as a group, it represents our functor. All we need to do is to define the
group operation on  lim Gy Ifz,y e G= lim Ga, then z = ¢4 (€) and y = c(n), for some ¢ € G, and

« [e%
some 1) € Gig. Since A is directed, there is some v € A with a, 5 < ; consider £ = ¢2(§) and 7’ = 5023(77)-
(Obviously, ¢y (¢') = z and ¢, (') =y.) So, we have ¢, 7' € G, and we set

zy = ¢y (§').
Check (DX) that such a product is well-defined and that G is a group. Also, the maps ¢, are group
homomorphisms.
The existence of right limits now holds for all the algebraic categories.

Now, consider the category, TOP, of topological spaces. Observe that when each S, is a topological
space, then the disjoint union, S = ) Sa, is also a topological space (using the disjoint union topology); in
fact, it is the coproduct in TOP. Give S = §/ ~ the quotient topology, and then check that the maps s,
are continuous and that (S, {s,}) represents Iﬂ)n S, in TOP.

(03
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For the category of topological groups, TOPGR, check that G = th> G, is also a topological space as

above and (DX) that the group operations are continuous. Thus, (G, {sq}«) represents Lim G in TOPGR.

«
(2') Left Limits. Again, first assume each G, is a group and the ¥ are homomorphisms. Check that
P (= consistent tuples) is a group (in particular, note that (1,1,...,1,...) is consistent so that P # )) and
that the p,’s are homomorphisms (DX); hence, (P, {p,}) represents Lim (. Now, similar reasoning shows

left limits exist for all the algebraic categories. “

For TOP, we make [, S, into a topological space with the product topology. Check (DX) that the

continuity of the ¢§’s implies that P is closed in [1., Sa- Then, the p,’s are also continuous and (P, {pa})
represents I_(ﬂl S, in TOP.

(e

For TOPGR, similar remarks, as above for TOP and as in the discussion for groups, imply that (P, {ps})
represents I(A_rnGa in TOPGR. [J

[e3

Remark: Say A is a directed index set. We can make A a category as follows: Ob(A) = A, and

_J0 ifagp
Hom(a,ﬂ){{} ifagﬂ.

(Here, {-} denotes a one-point set.) Given a right mapping family, (C., ¢2), where ¢ € Home(Cy, Cj), we
define the functor, RF, by

RF(a) = C,
RF(:a—f8) = b

Similarly, there is a one-to-one correspondence between left-mapping families, (Clg, wg), and cofunctors, LF,
defined by

LF(a) = C,
LF(-:a— ) = 3.

If we now think of RF and LF as “functions” on A and view the Moore-Smith property as saying that the a’s
“grow without bound”, then we can interpret h_m) C, and <h_rn C, as: “limits, as a — oo, of our ‘functions’

RF and LF”, “ “
lim C, = lim RF(a) and lim C, = lim LF(a).
i a— 00 — a— 00

Indeed, there is a closer analogy. Namely, we are taking the limit of RF(«) and LF(«) as nets in the sense
of general topology.

Say I' C A is a subset of our index set, A. We say that T' is final in A (old terminology, cofinal) iff for
every a € A, there is some 8 € T' with « < 8. Check (DX),

lim ¢, = lim C,; limC, = limC,.
acl acA acl’ acA

Examples of Right and Left Limits:
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(IR) Recall that A = N with the ordinary ordering, C,, = Z and for m > n, ¢! is multiplication by
p™~". Consider the isomorphism, 6,,: Z — (1/p")Z C Q, defined by 6,,(1) = 1/p"™. The diagram

commutes, and so, the direct limit on the left is equal to the direct limit in the middle. There, the direct

limit is I
fainiinird p

m

kEZ,pXk}CQ.

1
This subgroup, lim Ci,, of Q is usually denoted —Z.
poo

m

Generalization: A = N, Artin ordering (n < m iff n | m), C, = Z, and for n < m, define, I =
multiplication by m/n. We get

lim C,, = Q. (*)

n

(2R) What is lim Z/nZ? 1If we observe that Z/nZ = L7,/7, by (x), we get

n|lm

lim Z/nZ = Q/Z.

n|lm
Say X and Y are topological spaces and pick = € X. Let
A, ={U | Uopenin X and x € U},

Partially order A, so that U <V iff V' C U (usual ordering on A,). Clearly, A, has Moore-Smith. Let

cw)={1] G F e }

f is continuous on U (or perhaps has better properties)

Look at hin> C(U), denoted temporarily C,. We have £ € C, iff there is some open subset, U, of X, with

Ay
x € U, some continuous function, f: U — Y, and £ is the class of f.

Two functions, f: U — Y and g: V — Y, where U,V C X are open and contain x, give the same ¢ iff
there is some open, W C U NV, with x € W, so that f [ W = g [ W. Therefore, C, is the set of germs of
continuous functions on X at z. (The usual notation for C, is Ox ;.)

(2L) Consider the left limit, lim Z/nZ, where ¢}, : Z/mZ — Z/nZ is projection. The elements of
n|lm
lim Z/nZ are tuples, (&,), with &, € Z, such that

n|lm

(1) (&) = (nn) iff (Vn)(& = 7, (mod n)) and

(2) (conmsistency): If n | m, then &, = &, (mod n).
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We obtain a new object, denoted Z. We have an injective map, Z — Z given by n — (n,n,...,n,...).
You should check that the following two statements are equivalent:

(1) Chinese Remainder Theorem.
(2) Z is dense in Z.

Proposition 2.56 Say C' = lim Cy and let x € Co and y € Cg, with co(z) = cg(y). Then, there is some
(0%
v > o, B, so that ) (x) = gog(y). In particular, if all the ©° are injections, so are the canonical maps, cq-

Proof. Clear. []

Corollary 2.57 Say C = Q-modules and each Cy, is Q-torsion-free. Then, h_m> C,, is torsion-free.

[e3

Proof. Pick z € C' = h4m) Cyo; A € Q, with A # 0. Then, Az = ¢y (24), for some « and some x,, € C,. So,
0= =co(Axq) implic(;s that there is some v > «, with ¢ (Az,) = 0. Consequently, Ap2(z,) = Az, = 0.

But C, is torsion-free, so z, = 0. Therefore, x = ¢, (24) = ¢y(2,) = 0. This proves that C is torsion-free. []

Corollary 2.58 Say C = Q-modules and each Cy, is Q-torsion. Then, h_m) C, is torsion.

«
Proof. If © € C, then there is some « and some z,, € C,, with c¢,(z,) = x. But, there is some A\ € Q, with

A # 0, so that Az, = 0, since C,, is torsion. So, Az = Acq(24) = co(A2o) = 0. [0

Proposition 2.59 Let A be an index set and C = Sets. Then, every set is the right-limit of its finite subsets
(under inclusion). The same conclusion holds if C = Gr, Q-groups, RNG, then each object of C is equal to
the right limit of its finitely generated subobjects.

Proof. Let A = {T C S | T finite}. Order A, via T < W iff T C W. Clearly, A has Moore-Smith. Let
= lim T.

—

TeA

For a given T' € A, we have an injective map, ip: T" <— S. Hence, by the universal mapping property,
these maps factor through the canonical maps, vp: T — X, via a fixed map, p: ¥ — S:

»—F 5
T

Pick some £ € S. Then, {{} € A; so we get a map, ygey: {{} — 2. Let ¢(§) = vi¢3(§) € . This gives a
map, ¢: S — 3. Check (DX), ¢ and 1 are inverse maps.

Modifications: A = {T' C S| T'is a finitely generated subobject of S} and proceed analogously. []
Corollary 2.60 An abelian group is torsion iff it is a right-limit of finite abelian groups.

Corollary 2.61 Say C is a category with finite coproducts (or finite products). If C has right limits (resp.
left limits) then C has arbitrary coproducts (resp. arbitrary products).

Proof. Cf. Problem 62. []



2.8. FLAT MODULES (AGAIN) 107

Proposition 2.62 Say {G,}. is a left-mapping family of finite groups (not necessarily abelian). Then, the
left limat, (h_m G = G, is a compact topological group. (Such a G is called a profinite group.) Similarly,

if the G, are compact topological groups and form a left-mapping family with continuous homomorphisms,
then (h_m Go = G is a compact topological group.

«

Proof. Observe that the second statement implies the first. Now, G is the group of consistent tuples in
[I., Ga. By Tychonov’s theorem, [[, G4 is compact. As the ¥ are continuous, the subgroup of consistent
tuples is closed; therefore, this subgroup is compact. []

It follows from Proposition 2.62 that 7 is compact.

2.8 Flat Modules (Again)

Proposition 2.63 Say {Qu}a is a right-mapping family of rings, {Ma}a, {Na}ta are “right-mapping fam-
ilies” of Q% (resp. Qg )-modules, then {My ®q, Nata forms a right-mapping family (in Ab) and

(0 ©, No) = ((lim Ma) © gy (lim N,
«@ — «

«

lim
j—
«

Proof. The hypothesis (within quotes) means that for all « < 3, we have
VE(Nana) = 05 (Na)bB (ny), for all A, € Q, and all n, € N,,
where wg: N, — Ng and ng Qo — Qg, and similarly with the M, ’s.
Let M = lim My; N = lim N,; Q = lim Q4 and G = lim (M, ®q, N,). Write c¢q: M, — M;
— — —_— —_—
do: No — N and t,: Q. — £, for the canonical maps. We have the maps
Ca ®dy: My Rq, No — M ®@q N,

hence, by the universal mapping property of right limits, there is a unique map, ®: G — M ®q N, so that
the following diagram commutes for every a:

G q) M ®q N
Ma ®Qa Na

We also need a map, M ®q N — G. Pick m € M and n € N, since the index set is directed we may assume
that there is some a so that m = ¢, (my) and n = d,(ns). Thus, we have m, ®q,_ no € M, ®q, N, and so,
cangy (my, ®q, Na) € G. Define ¥ by

U(m,n) = cang (mq, ®q,, Na)-
Check (DX) that
(1) ¥ is well-defined,
(2) W is bilinear; thus, by the universal mapping property of tensor, there is a map, ¥: M ®q N — G,

(3) ® and ¥ are inverse homomorphisms. []
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Proposition 2.64 Suppose C = Mod(Q) and N!,, N, N/, are all right-mapping families of Q-modules. If
for every «, the sequence
0— N, — N, — N/ — 0 s ezact,
then the sequence
0— hin>N(; — liLn>Na — h_m)N(;’ — 0 s again evact.

«@ (0% (o7
Proof. (DX) [
Corollary 2.65 The right-limit of flat modules is flat.
Proof. The operation h_m> commutes with tensor and preserves exactness, as shown above. []
«@
Corollary 2.66 Tensor product commutes with arbitrary coproducts. An arbitrary coproduct of flat modules

is flat.

Proof. Look at [] M. We know from the Problems that [, .g Mo = h_rn> My, where T C S, with T'

T

a€eS

finite and Mp = H/BeT Mg. So, given N, we have

N ®q (HMQ) = N®q lim Mz
s T
= lim (N ®q Mr)
T
= lim JT(V&q M)
T BeT
= H(N ®q Mp).
BeS

The second statement follows from Corollary 2.65 and the fact that finite coproducts of flat modules are flat
(Proposition 2.53). []

Remark: Corollary 2.66 extends the last part of Proposition 2.44 that only asserts that tensor commutes with
finite coproducts. It also proves that Proposition 2.53 holds for arbitrary modules, not just f.g. modules. Thus, free
modules are flat and so, projective modules are flat, too.

Proposition 2.67 Say Q is a ring and M is an Q°P-module (resp. Q-module). Then, M is flat iff for every

exact sequence
00— N —N-—N'"—0

of Q (resp. Q°P )-modules in which all three modules are f.g., the induced sequence

0— Mo N — Moo N — Mg N —0
(resp. 0— N ®aM-— N®qgM — N"®q M — 0)

remains exact.

Proof. Given
0— N — N—N"—0,

an arbitrary exact sequence of 2-modules, write N = h_m) N,, where the N,’s are f.g. submodules of N.

(e}
Let N be the image of N, in N”. So, N is f.g., too. We get the exact sequence

0— NNN, — N, — N —0. (%)
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Now, N'N N, = lim ./\f[ga), where N[ga) ranges over the f.g. submodules of N’ N N,. We get the exact
—

B
sequence

0—>N()—>N — Ny 53 —0, (1)

where N”,B = N, /N'(a , and all the modules in (f) are f.g. The right limit of (f) is (x). By hypothesis,
M ®q (1) is still exact and the right limit of an exact sequence is exact; so

0— M®q(N'NN,) — M®qg N, — M ®q N/ — 0 is exact.
Now, if we pass to the right limit, this time over «, we get
0— Mo N — MxqN — M®qgN'"— 0 is exact. O
Theorem 2.68 (FGI-Test)' An Q-module, M, is flat iff for all sequences
0—A— QP —Q%/A—0
in which A is a finitely generated Q°P-ideal, the sequence
0 —ARq M — QP @q M — (QP/A) @q M — 0 is still exact.

Proof. (=) is trivial.
(«). We proceed in two steps.

Step 1. I claim: For every exact sequence of Q°P-modules of the form

OHKHHQOPHNHO, ()

in which #(S) is finite, we have an exact sequence

0— K@g M — ([]0) @0 M — N g M — 0.
S

We prove this by induction on the minimal number, r, of generators of N. (Note that #(S) > r.) The case
r = 1 has all the ingredients of the general proof as we will see. When r = 1, look first at the base case:
#(5) =1, too. Sequence (x) is then:

00— K— Q% — N —0. ()1

This means that K is an ideal of Q°P and we know K = h_m) K, where the K, ’s are f.g. Q°P-ideals. Then,

«

()7 is the right limit of
0— K, — Q% — N, — 0, (*)a
where N, = Q°P/K,. Our hypothesis shows that
00— K, oM — Qg M — N, @ M — 0 is exact.
Pass the latter sequence to the limit over v and obtain

0 — KoM — QP M — N®qM — 0 isexact.

1FGI stands for finitely generated ideal.
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Thus, the base case #(S) = r =1 is proved.

We now use induction on #(S) to establish the case #(S) > r = 1. (So, our claim involves an induction
inside an induction.) The induction hypothesis is: For all exact sequences

O—>K—>]_[Q°p—>N—>O7
s
in which #(5) = s and r (= minimal number of generators of N) = 1, tensoring with M leaves the sequence
exact. Say it is true for all sequences with #(S5) < s. Given
0— K —J[QP—N-—0, #(S)=s,
S

pick some o € S and let ¥ = S — {o}. We have the map Q°° = QP — [[,Q°® — N, and we let N, be
the image of this map in N. This gives the commutative diagram

0 K 159 N 0
0 K" HE 0O N 0
0 0 0

(where N = N/N,) with exact rows and columns and the middle column split-exact. Note that N” and
N, have r < 1 and when r = 0 the above argument is trivial. Tensor the diagram on the right with M. So,
the top and bottom rows remain exact (by the induction hypothesis and the base case), the middle column
remains exact (in fact, split) and all other rows and columns are exact:

K @0 M —"> (II32) @0 M —— N @q M —0

We must show that « is an injection. Take z € K ®q M. If a(z) = 0, then 6(a(z)) = 0, which implies that
m(x) goes to zero under the injection (K" ®q M — (]_[E Q) ®q M), and so, w(z) = 0. Then, there is some
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y € Ky, ®q M with v(y) = x. But the map K, o M — Q®q M — (Hs Q) ®q M is injective and y goes

to zero under it. So, we must have y = 0, and thus, = 0. This proves that « is injective, and completes
the interior induction (case: r = 1). By the way, « is injective by the five lemma with the two left vertical
sequences considered horizontal and read backwards!

There remains the induction on r. The case r = 1 is proved. If the statement is true for modules N with
< r minimal generators, we take an N with exactly r as its number of minimal generators. Then, for any
finite S, and any sequence

0—>K'—>]_[Q°p—>N—>07
S

we choose, as above, 0 € S and set ¥ = S — {0} and let N,, N” be as before. Now redo the argument
involving the 9 term diagram; it shows « is, once again, injective and the claim is proved.

Step 2. 1 claim that for every sequence
0— N — N-—N"'"—0
of 2°P-modules, all of which are f.g., the sequence
0—N&@ M —NqgM — N'"®q M — 0
remains exact. By the previous proposition, this will finish the proof.

Since N’, N and N” are all f.g., we have the commutative diagram

in which the middle column is split-exact. By tensoring this diagram with M (on the right), we get the
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following commutative diagram with all exact rows (by Step 1) and columns:

0 Ker «

()*>K’®QM*><HSQ> RO M — N @M ——0

[e3

()4>K®QM4><HSUTQ> ®o M ——> N @q M —>

04>K”®QM4,6>(HTQ)®QM4>N//®QM4>O

0 0 0
We must show that « is injective. Apply the snake lemma to the first two rows: We get

0 — Ker a - K" @g M -2 (HQ) ®q M s exact.
T

But, Ker 3 = (0) implies that Im ¢ = (0), and so, Ker a = (0). []
The second (unproven) assertion of Proposition 2.54 now follows from Theorem 2.68.

Corollary 2.69 If Q is a P.I.D., more generally, a nonzero-divisor ring all of whose f.g. Q°P-ideals are
principal, then M is flat over Q iff M is Q-torsion-free.

Proof. The implication (=) is always true when 2 has no zero divisors.
(«). By the previous theorem, we only need to test against exact sequences of the form
0—2A— QP — Q%/A — 0,

where 20 is a f.g. (hence, principal) Q°P-ideal. So, there is some A € Q with 2 = AQ2. We have the
commutative diagram
A

0 0 Q Q/AQ 0
|
0 IS 0 Q/2 0

(with 2( considered as right ideal and where 6(u) = Ap) and all the vertical maps are isomorphisms. Conse-
quently, we may assume that our exact sequence is

0—Q-250-—Q/A0 —0.
By tensoring with M, we get the exact sequence
Qg M 25 Qoo M — (/AQ) ®q M — 0,
which, in view of the isomorphisms Q ®q M = M and (2/AQ) ®q M = M/AM, is equivalent to
M 25 M — M/AM — 0.

Since M has no torsion, multiplication by A is injective and the sequence is exact. []
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The corollary is false if €2 is not a P.I.D. Here is an example:

Consider the ring, A = C[X,Y] (A € CR). The ring A is a domain; so, it is torsion-free. (It’s even a
UFD.) Let 9 be the ideal of A generated by X and Y. We can write

Mm = {feCX,)Y]|f(X,Y)=g(X, V)X +h(X,Y)Y, withg(X,Y),h(X,Y) € C[X,Y]}
= {feC[X,Y]| f(0,0) =0, ie., f has no constant term}.
Since M C A, we see that 91 is torsion-free.
Claim: 9 is not flat.
Now, A/ = C, so C is an A-module; how?
The A-module structure on C is as follows: For any f(X,Y) € A and any \ € C,
FX,Y) - A= f(0,0)\.

Note that X - A=Y - A = 0. When we consider 9t as an A-module, write its generators as e; and e;. Under
the map 9 — A, we have e; — X and ey — Y. There is a unique nontrivial relation:

Y'el—X~62:O.
We claim that e; ® es # es ® e in M ® 4 M. To see this, define a map, B: M x M — C.
(a) First, define B on the generators eg, ea, by setting

B(ei,e1) = B(ea,e2) =0, B(er,ea) =1, Bles,eq) = —1.

(b) We need to check that B is well-defined. Let’s check it for the left hand side argument:

B(voe-xe(2)) =y ()58 (=(2)

In the case of e, we get X -1 = 0, and in the case of ez, we get Y - 1 = 0. The reader should check
similarly that there is no problem for the righthand side argument.

Consequently, we get a linear map, 6: 9t ® 9t — C. For this linear map,
0(61@61) :9(62®62) :0, 9(61@62) :17 0(62@61) = —1.

So, e1 ® es # es ® eq, as contended. Now we will see that 91 is not flat as A-module. Look at the exact

sequence
0—M—A—C—0

and tensor it with 9. We get
MAIAM — AR M — C® M — 0 is exact.

However, M ®4 M — A @4 M is not injective. To see this, use the isomorphism p: A @4 M = M, via
a ®m +— «-m and examine the composed homomorphism

P: M@ M — A®s M- M.
Since p is an isomorphism, all we must prove is that ¢ is not injective. But,
pleg ®er) = (X ®eg) =X - e
plea®er) =u(Y ®er) =Y -ey.
Yet, X -ea =Y -e1 and e; ® es # e5 ® e, 0 ¢ is not injective and 97 is not flat.

Say Q is a A-algebra and M is a A°P-module, then M ®, Q is an Q2°P-module. The module M ®, € is
called the base extension of M to €.
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Proposition 2.70 Say M is a flat A-module, then its base extension, 2@ M, is again a flat Q-module. If
N is a flat Q-module and 2 is a flat A-algebra, then N considered as A-module (via A — Q), is again flat
over A.

Proof. Assume M is flat as A-module. Then, we know that for any exact sequence of A°P-modules,
0— N — N —N"—0,

the sequence
0— N @Ax M — N®y M is exact.

Now, take any exact sequence of 2-modules, say
0— N —N-—N"—0, )
it is still exact as a sequence of A-modules. Hence,
0— N @Ax M — N®jy M is exact.
Tensoring (1) with Q @4 M over Q, we get
N' @q Qs M) — N ®q (Q@4 M) — --- . (1)

We want to show that (f1) is exact on the left. But Z @q (2 @ M) = Z @5 M, for any 2°P-module, Z.
Hence, (11) becomes
NI®AM—>N®AM—>--~ R

and we already observed that this sequence is exact on the left.
For the second part, take an exact sequence of A°°-modules,

0—M —M—M'—D0. ()

We need to show that
0— M @A N — M s N is exact.

Tensor (x) over A with 2. The resulting sequence
0— M @\ Q — M)y Q— - ()
is still exact as € is flat. Tensor () with N over §; again, as N is flat over Q, we get
0— (M'@pQ)@a N — (M@ Q)@q N — -+ is exact.
But the latter exact sequence is just
0— M yN — M@\ N — -,

as required. []

Harder question: Let P(A) be a property of A-modules. Say Q) is a A-algebra and M is a A-module.
Then, we get the Q-module,  ®, M, the base extension of M to Q. Suppose, Q ®x M has P(2). Does M
have P(A)?

If so, one says that P descends in the extension Q over A. This matter is a question of descent.

A more realistic question is: Given P, or a collection of interesting P’s, for which A-algebras, 2, does
(do) P(Q) descend?

Ezamples:
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1. Pi(A): M is a torsion-free A-module.

2. Py(A): M is a flat A-module.

3. P3(A): M is a free A-module.

4. Py(A): M is an injective A-module.
()

e
o

: M is a torsion A-module.

Take A = Z (a very good ring: commutative, P.I.D), Q = Q (a field, a great ring), Q is flat over Z (and
Z— Q). Let M = Z11(Z/2Z). (The module M is f.p.) The module M, has, none of P;(Z) for j = 1,2,3, 4.
On the other hand, Q ®z M = Q, and Q has all of P;(Q) for j = 1,2,3,4. However, P5 descends in the
extension QQ over Z. This follows from

Proposition 2.71 The module, M, is a torsion Z-module iff Q ®z M = (0).

Proof. (=). This has already been proved.
(«<). First, let M be f.g. We know that there is an exact sequence

0—t(M)— M — M/t(M) — 0 )

where ¢(M) is the torsion submodule of M and M/t(M) is torsion-free; hence (since M is f.g.), M/t(M) is
free. If we tensor (f) with Q, we get

QezM — Q®z (M/t(M)) — 0.

Since Q ®z M = (0), by hypothesis, we get Q ®z (M/t(M)) = (0). Yet, M/t(M) = IIgZ where S is finite;
consequently, S = @) and so, M/t(M) = (0), i.e., M = t(M). Therefore, M is torsion.

For an arbitrary M, we can write M = hLI% M,,, where M, ranges over the f.g. submodules of M. We

«
have an exact sequence

0— M, — M, forall a,

and Q is flat; so,
00— Q®z M, — Q®yz M is still exact.

But, Q ®z M = (0) implies Q ®z M, = (0). As the M,’s are f.g., the previous argument shows that M, is
torsion. Then, M = hin> M., is torsion as the right limit of torsion modules is torsion. []

We now go back to the question. Given the Z-module M, we assume that Q ®z M is torsion. Since Q is
a field, Q ®z M = (0). Proposition 2.71 implies that M is torsion and P5 descends in the extension Q over
Z.

2.9 Further Readings

Rings and modules are covered in most algebra texts, so we shall nor repeat the references given in Section
1.8. Other references include Atiyah MacDonald [3], Lafon [32, 33|, Eisenbud [13], Matsumura [39], Malliavin
[38] and Bourbaki [8].
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