
Chapter 2

Rings and Modules

2.1 Introduction

Linear algebra—meaning vector space theory over a field—is the part of algebra used most often in analysis,
in geometry and in various applied fields. The natural generalization to the case when the base object is
a ring rather than a field is the notion of “module.” The theory of modules both delineates in sharp relief
the elementary and deeper structure of vector spaces (and their linear transformations) and provides the
essential “linear springboard” to areas such as number theory, algebraic geometry and functional analysis.
It turns out to be surprisingly deep because the collection of “all” modules over a fixed ring has a profound
influence on the structure of that ring. For a commutative ring, it even specifies the ring! Just as in analysis,
where the first thing to consider in analyzing the local behavior of a given smooth function is its linear
approximation, so in geometric applications the first idea is to pass to an appropriate linear approximation
and this is generally a module.

2.2 Polynomial Rings, Commutative and Noncommutative

Consider the categories RNG and CR, and pick some ring, A, from each. We also have the category, RNGA,
called the category of rings over A (or category of A-algebras), and similarly, CRA, and we have the stripping
functors RNGA � Sets and CRA � Sets.

Is there an adjoint functor to each? We seek a functor, P : Sets� C, where C = RNGA or CRA, so that

HomC(P (S), B) ∼= HomSets(S, |B|)

for every B ∈ C.
Case 1: CRA.

Theorem 2.1 There exists a left-adjoint functor to the stripping functor, CRA � Sets.

Proof . Given a set, S, let Ñ denote the set of non-negative integers and write ÑS for

ÑS = {ξ : S → Ñ | ξ(s) = 0, except for finitely many s ∈ S}.

Note that NS consists of the functions S −→ Ñ with compact support (where S and Ñ are given the discrete
topology).

Remark: We may think of the elements, ξ, of eNS as finite multisets of elements of S, i.e., finite sets with multiple

occurrences of elements: For any s ∈ S, the number ξ(s) is the number of occurrences of s in ξ. If we think of each

53



54 CHAPTER 2. RINGS AND MODULES

member, s, of S as an “indeterminate,” for any ξ ∈ eNS , if ξ(si) = ni > 0 for i = 1, . . . , t, then ξ corresponds to the

monomial sn1
1 · · · snt

t .

We define a multiplication operation on ÑS as follows: For ξ, η ∈ ÑS ,

(ξη)(s) = ξ(s) + η(s).

(This multiplication operation on ÑS is associative and has the identity element, ξ0, with ξ0(s) = 0 for
all s ∈ S. Thus, ÑS is a monoid . Under the interpretation of elements of ÑS as multisets, multiplication
corresponds to union and under the interpretation as monomials, it corresponds to the intuitive idea of
multiplication of monomials. See below for precise ways of making these intuitions correct.)

Define A[S] by

A[S] = {f : ÑS → A | f(ξ) = 0, except for finitely many ξ ∈ ÑS}.

Remark: We should think of each f ∈ A[S] as a polynomial in the indeterminates, s (s ∈ S), with coefficients from

A; each f(ξ) is the coefficient of the monomial ξ. See below where Xs is defined.

In order to make A[S] into a ring, we define addition and multiplication as follows:

(f + g)(ξ) = f(ξ) + g(ξ)

(fg)(ξ) =
∑
η,η′,
ηη′=ξ

f(η)g(η′).

Multiplication in A[S] is also called the convolution product . The function with constant value, 0 ∈ A, is the
zero element for addition and the function denoted 1, given by

1(ξ) =
{

0 if ξ �= ξ0
1 if ξ = ξ0,

is the identity element for multiplication. The reader should check that under our operations, A[S] is a
commutative ring with identity (DX). For example, we check that 1 is an identity for multiplication. We
have

(f · 1)(ξ) =
∑
ηη′=ξ

f(η)1(η′) =
∑
ηξ0=ξ

f(η).

However, for all s ∈ S, we have ηξ0(s) = η(s) + ξ0(s) = η(s), and so, η = ξ. Consequently, (f · 1)(ξ) = f(ξ),
for all ξ.

We have an injection A −→ A[S] via α ∈ A �→ α · 1. Here, α · 1 is given by

α · 1(ξ) = α(1(ξ)) =
{

0 if ξ �= ξ0
α if ξ = ξ0.

Therefore, A[S] ∈ CRA. It remains to check the “universal mapping property.”

Say θ ∈ HomCRA(A[S], B). Now, we can define two injections S ↪→ ÑS and S ↪→ A[S] (a map of sets) as
follows: Given any s ∈ S, define ∆s ∈ ÑS by

∆s(t) =
{

0 if t �= s
1 if t = s,

and define Xs ∈ A[S] by

Xs(ξ) =
{

0 if ξ �= ∆s

1 if ξ = ∆s.
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Then, if we set θ�(s) = θ(Xs), we get a set map θ� ∈ HomSets(S, |B|).

Conversely, let ϕ ∈ HomSets(S, |B|). Define ϕ̃ : ÑS → B via

ϕ̃(ξ) =
∏
s∈S

ϕ(s)ξ(s) ∈ B.

Now, set ϕ�(f), for f ∈ A[S], to be
ϕ�(f) =

∑
ξ

f(ξ)ϕ̃(ξ).

(Of course, since B ∈ CRA, we view f(ξ) as an element of B via the corresponding morphism A −→ B.)

The reader should check (DX) that:

(a) ϕ� is a homomorphism and

(b) The operations � and � are mutual inverses.

The definition of A[S] has the advantage of being perfectly rigorous, but it is quite abstract. We can give
a more intuitive description of A[S]. For this, for any ξ ∈ ÑS , set

X(ξ) =
∏
s∈S

Xξ(s)
s , in A[S],

and call it a monomial . The reader should check (DX) that

X(ξ)(η) = δξη, for all ξ, η ∈ ÑS .

Hence, the map ξ �→ X(ξ) is a bijection of ÑS to the monomials (c.f. the remark on monomials made earlier).
Moreover, we claim that every f ∈ A[S] can be written as

f =
∑
ξ

f(ξ)X(ξ).

This is because (∑
ξ

f(ξ)X(ξ)

)
(η) =

∑
ξ

f(ξ)δξη = f(η).

The usual notation for ξ(s) is ξs, and then, X(ξ) =
∏
s∈S X

ξs
s , and our f ’s in A[S] are just polynomials in

the usual sense, as hinted at already. However, since S may be infinite, our formalism allows us to deal with
polynomials in infinitely many indeterminates. Note that any polynomial involves just a finite number of
the variables.

What happened to |A| in all this? After all, in CRA, we have rings, B, and maps iA : A → B. So, the
commutative diagram

B �� C

A

���������

���������

would give
|B| �� |C|

|A|.

����������

����������
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Consider the category of |A|-sets, Sets|A|. Given any set, S, make an |A|-set:

|A| � S = |A| ∪· S.

This is an |A|-set, since we have the canonical injection, |A| −→ |A| � S. Let T be any |A|-set and look at
HomSets|A|(|A| � S, T ), i.e., maps |A| � S −→ T such that the diagram

|A| � S �� T

|A|

�����������

����������

commutes. We know that

HomSets|A|(|A| � S, T ) ⊆ HomSets(|A|, T )
∏

HomSets(S, T )

and the image is HomSets|A|(|A|, T )
∏

HomSets(S, T ). But HomSets|A|(|A|, T ) consists of a single element,
and so,

HomSets|A|(|A| � S, T ) ∼= HomSets(S, T ).

Thus, we have the functorial isomorphism

HomCRA(A[S], B) ∼= HomSets|A|(|A| � S, |B|).

Corollary 2.2 A necessary and sufficient condition that Z[S] ∼= Z[T ] (in CR) is that #(S) = #(T ).

Proof . If #(S) = #(T ), then there exist mutually inverse bijections, ϕ : S → T and ψ : T → S. Hence, by
functoriality, Z[S] is isomorphic to Z[T ] (via Z[S](ϕ) and Z[T ](ψ)). Now, take B = Z/2Z, and assume that
Z[S] ∼= Z[T ]. Then, we know that

HomCR(Z[S], B) ∼= HomCR(Z[T ], B),

and since HomCR(Z[S], B) ∼= HomSets(S, {0, 1}) and HomCR(Z[T ], B) ∼= HomSets(T, {0, 1}), we have

HomSets(S, {0, 1}) ∼= HomSets(T, {0, 1}).

This implies that 2#(S) = 2#(T ), and thus, #(S) = #(T ).

Case 2: RNGR, where R is a given ring (not necessarily commutative). For every set, S, and every
R-algebra, B ∈ RNGR, let

Hom(c)
Sets(S, |B|) = {ϕ ∈ HomSets(S, |B|) | (∀s ∈ S)(∀ξ ∈ Im (|R|))(ϕ(s)ξ = ξϕ(s))}.

Theorem 2.3 There exists a functor, R〈S〉, from Sets to RNGR, so that

HomRNGR(R〈S〉, B) ∼= Hom(c)
Sets(S, |B|), functorially.

Sketch of proof . (A better proof via tensor algebras will be given later.) Given S, pick a “symbol”, Xs, for
each s ∈ S, and map N to the “positive powers of Xs,” via n �→ Xn

s , and define Xm
s · Xn

s = Xm+n
s . Let

Ns = {Xn
s | n ≥ 1} ∼= N (as monoid), and let

S =
∐
s∈S

Ns.
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Consider S(p), the cartesian product of p copies of S, with p ≥ 1. An element of S(p) is a tuple of the form
(Xa1

r1 , . . . , X
ap
rp ), and is called a monomial . Call a monomial admissible iff ri �= ri+1, for i = 1, . . . , p − 1.

Multiplication of admissible monomials is concatenation, with possible one-step reduction, if necessary. Call
S∗ the union of all the admissible monomials from the various S(p), with p ≥ 1, together with the “empty
monomial”, ∅. Set

R〈S〉 = {f : S∗ → R | f(ξ) = 0, except for finitely many ξ ∈ S∗}.

There is a map R −→ R〈S〉 (α �→ α∅). We make R〈S〉 into a ring by defining addition and multiplication
as in the commutative case:

(f + g)(ξ) = f(ξ) + g(ξ)

(fg)(ξ) =
∑
η,η′,
ηη′=ξ

f(η)g(η′),

where ξ, η and η′ are admissible monomials. Then, R〈S〉 is an R-algebra, and it satisfies Theorem 2.3 (DX).

Theorem 2.4 Say T is a subset of S. Then, there exists a canonical injection i : A[T ] → A[S], and A[S]
becomes an A[T ]-algebra. In the category of A[T ]-algebras, we have the isomorphism

A[S] ∼= A[T ][S − T ]

(Here S − T denotes the complement of T in S, and A is in CR.)

Proof . We have an inclusion, T ↪→ S, and for every B ∈ CRA, restriction to T gives a surjection

res : HomSets(S, |B|) −→ HomSets(T, |B|).

Because we are in the category of sets, there is a map, θ, so that res ◦ θ = id. Now, the maps θ and res
induce maps Θ and Res so that Res ◦Θ = id, as shown below:

HomCRA(A[S], B)
∼= ��

Res

��
Θ

��

HomSets(S, |B|)

res

��
θ

��
HomCRA(A[T ], B)

∼= �� HomSets(T, |B|).

If we let B = A[S], we get a map i = Res(idA[S]) : A[T ] −→ A[S]. If we let B = A[T ], then, since Res is
onto, there is a map π : A[S]→ A[T ] so that Res(π) = idA[T ]. It follows that i is an injection, and thus, A[S]
is an A[T ]-algebra.

We have
HomCRA[T ](A[T ][S − T ], B) ∼= HomSets(S − T, |B|).

The given map, |A[T ]| −→ |B|, yields a fixed map, T −→ |B|. For any given map, S − T −→ |B|, therefore,
we get a canonical map, T � (S − T ) −→ |B|, i.e., S −→ |B|, depending only on the map S − T −→ |B|.
Therefore, there is an injection

HomCRA[T ](A[T ][S − T ], B) ↪→ HomCRA(A[S], B),

and the image is just HomCRA[T ](A[S], B). By Yoneda’s lemma, A[S] ∼= A[T ][S − T ], as an A[T ]-algebra.

From now on, we will write HomA(B,C) instead of HomCRA(B,C) and similarly for RNGR. If X(ξ) is
a monomial, then we set

deg(X(ξ)) =
∑
s∈S

ξ(s) ∈ Z≥0.
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If f ∈ A[S], say f =
∑

(ξ) a(ξ)X
(ξ), then

deg(f) = sup{deg(X(ξ)) | a(ξ) �= 0}.

In particular, note that deg(0) = −∞.

Proposition 2.5 The canonical map, A −→ A[S], establishes an isomorphism of A with the polynomials of
degree ≤ 0 in A[S]. Any α �= 0 in A goes to a polynomial of degree 0, only 0 ∈ A goes to a polynomial of
degree < 0. If f, g ∈ A[S], then

(a) deg(f + g) ≤ max{deg(f),deg(g)}.

(b) deg(fg) ≤ deg(f) + deg(g).
If A is without zero divisors then we have equality in (b) and

(c) The units of A[S] are exactly the units of A.

(d) The ring A[S] has no zero divisors.

Proof . Since we deal with degrees and each of the two polynomials f, g involves finitely many monomials,
we may assume that S is a finite set. The map A −→ A[S] is given by α �→ α · 1 and 1 has degree 0, so it is
trivial that we have an isomorphism of A with the polynomials of degree ≤ 0.

Say S = {1, . . . , n} and label the Xs as X1, . . . , Xn. The monomials are lexicographically ordered:

Xa1
1 · · ·Xan

n < Xb1
1 · · ·Xbn

n

iff a1 = b1, . . . , aj = bj and aj+1 < bj+1 (j = 0, . . . , n− 1).

(a) If f =
∑

(ξ) a(ξ)X
(ξ) and g =

∑
(ξ) b(ξ)X

(ξ), then f + g =
∑

(ξ)(a(ξ) + b(ξ))X(ξ).
If deg(f + g) > max{deg(f),deg(g)}, then there is some η so that

deg(X(η)) > deg(X(ξ)), for all ξ occurring in f and g, and a(η) + b(η) �= 0,

a contradiction.

(b) With f and g as in (a), we have

fg =
∑
ξ

( ∑
η,η′,
ηη′=ξ

a(η)b(η′)

)
X(ξ). (∗)

Now,
deg(X(η)) + deg(X(η′)) =

∑
s

(ηη′)(s) =
∑
s

ξ(s) = deg(X(ξ)).

However, a(η) �= 0 implies that deg(X(η)) ≤ deg(f) and b(η′) �= 0 implies that deg(X(η′)) ≤ deg(g), and this
shows that deg(X(ξ)) ≤ deg(f) + deg(g), for any X(ξ) with nonzero coefficient in (∗).

When A is a domain, pick η to be the first monomial in the lexicographic ordering with X(η) of degree
equal to deg(f), and similarly, pick η′ to be the first monomial in the lexicographic ordering with X(η′) of
degree equal to deg(g). Then (DX), X(η)X(η′) is the monomial occurring first in the lexicographic ordering
and of degree equal to deg(f) + deg(g) in fg. Its coefficient is a(η)b(η′) �= 0, as A has no nonzero divisors;
so, we have equality in (b).

(c) Say u ∈ A[S] is a unit. Then, there is some v ∈ A[S], so that uv = vu = 1. Consequently, deg(uv) = 0,
but deg(uv) = deg(u) + deg(v). Thus, deg(u) = deg(v) = 0 (as deg(u),deg(v) ≥ 0), i.e., u, v are units of A.

(d) If f, g �= 0, then deg(fg) = deg(f) + deg(g) ≥ 0, so fg �= 0.
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Definition 2.1 Suppose A is a commutative ring and B is a commutative A-algebra. Pick a subset, S ⊆ |B|.
The set, S, is called algebraically independent over A (or the elements of S are independent transcendentals
over A) iff the canonical map, A[S] −→ B, is a monomorphism. The set, S, is algebraically dependent over A
iff the map, A[S] −→ B, is not a monomorphism. When S = {X}, then X is transcendental , resp. algebraic
over A iff S is algebraically independent (resp. algebraically dependent) over A. The algebra, B, is a finitely
generated A-algebra iff there is a finite subset, S ⊆ |B|, so that the canonical map A[S] −→ B is surjective.

2.3 Operations on Modules; Finiteness Conditions for Rings and
Modules

Let R ∈ RNG, then by an R-module, we always mean a left R-module. Observe that a right R-module is
exactly a left Rop-module. (Here, Rop is the opposite ring, whose multiplication ·op is given by x ·op y = y ·x.)
Every ring, R, is a module over itself and over Rop. By ideal, we always mean a left ideal. This is just an
R-submodule of R. If an ideal, I, is both a left and a right ideal, then we call I a two-sided ideal .

Let M be an R-module and {Mα}α∈Λ be a collection of R-submodules of M .

(0)
⋂
αMα is an R-submodule of M .

(1) Note that we have a family of inclusion maps, Mα ↪→M ; so, we get an element of
∏
α HomR(Mα,M).

But then, we have a map ∐
α∈Λ

Mα −→M. (∗)

We define
∑
αMα, a new submodule of M called the sum of the Mα, via any of the following three

equivalent (DX) ways:

(a) Image of (
∐
α∈ΛMα −→M).

(b)
⋂
{N | (1)N ⊆M, as R-submodule; (2)Mα ⊆ N, for all α ∈ Λ.}

(c) {
∑

finitemα | mα ∈Mα}.

Clearly,
∑
αMα is the smallest submodule of M containing all the Mα.

(2) Let S be a subset of M . For any s ∈ S, the map ρ �→ ρs, from R to Rs, is a surjection, where
Rs = {ρs | ρ ∈ R}. Thus, we get the submodule

∑
s∈S Rs (equal to the image of

∐
S R −→ M) and

called the submodule generated by S; this module is denoted mod(S) or RS. We say that S generates
M iff RS = M and that M is a finitely generated R-module (for short, a f.g. R-module) iff there is a
finite set, S, and a surjection

∐
S R −→M .

(3) The free module on a set, S, is just
∐
S R. Observe that (DX) the functor from Sets to Mod(R)

given by S �
∐
S R is the left adjoint of the stripping functor from Mod(R) to Sets; i.e., for every

R-module, M , we have the functorial isomorphism

HomR(
∐
S

R,M) ∼= HomSets(S, |M |).

Remark: An R-module, M , is free over R (i.e., M ∼=
∐
S R for some set S) iff M possesses a Hamel

basis over R (DX). The basis is indexed by S. To give a homomorphism of a free module to a module,
M , is the same as giving the images of a Hamel basis in M , and these images may be chosen arbitrarily.
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(4) The transporter of S to N . Let M be an R-module, S be a subset of M and N an R-submodule of
M . The transporter of S to N , denoted (S → N), is given by

(S → N) = {ρ ∈ R | ρS ⊆ N}.

(Old notation: (N : S). Old terminology: residual quotient of N by S.)
When N = (0), then (S → (0)) has a special name: the annihilator of S, denoted Ann(S). Observe:

(a) (S → N) is always an ideal of R.

(b) So, Ann(S) is an ideal of R. But if S is a submodule of M , then Ann(S) is a two-sided ideal of
R. For if ρ ∈ Ann(S) and ξ ∈ R, we have (ρξ)(s) = ρ(ξs) ⊆ ρS = (0). Thus, ρξ ∈ Ann(S).

(c) Similarly, if S is a submodule of M , then (S → N) is a two-sided ideal of R.

An R-module, M , is finitely presented (for short, f.p.) iff there are some finite sets, S and T , and an
exact sequence ∐

T

R −→
∐
S

R −→M −→ 0.

This means that M is finitely generated and that the kernel, K, of the surjection,
∐
S R −→ M , is also

finitely generated. Note that f.p. implies f.g.

Definition 2.2 An R-module, M , has the ascending chain condition (ACC) (resp. the descending chain
condition (DCC)) iff every ascending chain of submodules

M1 ⊆M2 ⊆M3 ⊆ · · · ⊆Mn ⊆ · · · ,

eventually stabilizes (resp. every descending chain of submodules

M1 ⊇M2 ⊇M3 ⊇ · · · ⊇Mn ⊇ · · · ,

eventually stabilizes.) IfM has the ACC it is called noetherian and if it has the DCC it is called artinian. The
module, M , has the maximal condition (resp. minimal condition) iff every nonempty family of submodules
of M has a maximal (resp. minimal) element.

Proposition 2.6 Given a module, M , over R consider all the statements

(1) M is noetherian (has the ACC).

(2) M has the maximal property.

(3) Every submodule of M is finitely generated.

(4) M is artinian (has the DCC).

(5) M has the minimal property.

Then, (1)–(3) are equivalent and (4) and (5) are equivalent.

Proof . (1) =⇒ (2). Let F be a given nonempty family of submodules of M . If there is no maximal element
of F , given M1 ∈ F , there is some M2 in F so that M1 < M2. Repeating the argument, we find there is some
M3 ∈ F so that M2 < M3, and by induction, for every n ≥ 1, we find some Mn+1 ∈ F so that Mn < Mn+1.
So, we find an infinite strictly ascending chain

M1 < M2 < M3 < · · · < Mt < · · · ,

contradicting (1).
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(2) =⇒ (3). Observe that the maximal property for M is inherited by every submodule.

Claim: The maximal property for a module implies that it is finitely generated. If so, we are done. Pick
M with the maximal property and let

F = {N ⊆M | N is a submodule of N and N is f.g.}

The family, F , is nonempty since for every m ∈ M , the module Rm ⊆ M is a submodule of M generated
by {m}, and so, Rm ∈ F . Now, F has a maximal element, say T . If T �= M , then there is some m ∈ M
with m /∈ T . But now, T + Rm > T and T + Rm is finitely generated by the generators of T plus the new
generator m, a contradiction. Therefore, M = T ∈ F ; and so, M is f.g.

(3) =⇒ (1). Take an ascending chain,

M1 ⊆M2 ⊆ · · · ⊆Mr ⊆ · · · ,

and look at N =
⋃∞
i=1Mi. Note that N is a submodule of M . So, by (3), the module N is finitely

generated. Consequently, there is some t so that Mt contains all the generators of N , and then we have
N ⊆Mt ⊆Mr ⊆ N , for all r ≥ t. Therefore, Mt = Mr = N for all r ≥ t.

(4) =⇒ (5). The proof is obtained from the proof of (1) =⇒ (2) mutatis mutandis.

(5) =⇒ (4). Say
M1 ⊇M2 ⊇M3 ⊇ · · · ⊇Mr ⊇ · · ·

is a descending chain in M . Let F = {Mi | i ≥ 1}. By (5), the family F has a minimal element, say Mr.
Then, it is clear that the chain stabilizes at r.

Proposition 2.7 Let M be a module and write (α), (β) and (γ) for the finiteness properties

(α) finite generation

(β) ACC

(γ) DCC

Then,

(A) If M has any of (α), (β), (γ), so does every factor module of M .

(B) If M has (β) or (γ), so does every submodule of M .

(C) Say N ⊆ M is a submodule and N and M/N have any one of (α), (β), (γ). Then, M also has the
same property.

Proof . (A) If M is f.g., then there is a surjection∐
S

R −→M, with #(S) finite.

Let M be a factor module of M ; there is a surjection M −→M . By composition, we get a surjection∐
S

R −→M −→M,

and so, M is f.g. Any ascending (resp. descending) chain in M lifts to a similar chain of M . The rest is
clear.

(B) Any ascending (resp. descending) chain in N ⊆M is a similar chain of M ; the rest is clear.
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(C) Say N and M/N have (α). Then, there are two finite (disjoint) sets, S and T , and surjections∐
S

R −→ N −→ 0 and
∐
T

R −→M/N −→ 0.

Consider the diagram: ∐
T

R

θ

		��
��

��
��

��
M �� M/N ��

��

0

0 .

As
∐
T R is free, there exists an arrow, θ :

∐
T R −→ M , shown above, and the diagram commutes. Now,

consider the diagram:

0 ��
∐
S

R ��

��

∐
S∪T

R ��

��

∐
T

R ��

��

0

0 �� N ��

��

M �� M/N ��

��

0

0 0 .

We obtain the middle vertical arrow by the map θ and the set map S −→ M (via S −→ N ↪→ M). By
construction, our diagram commutes. We claim that the middle arrow is surjective. For this, we chase the
diagram: Choose m in M and map m to m ∈ M/N . There is some ξ ∈

∐
T R so that ξ �→ m. However,

ξ comes from η ∈
∐
S∪T R. Let η̃ be the image in M of η. Since the diagram is commutative, η̃ = m,

and so, η̃ −m maps to 0 in M/N . Consequently, there is some n ∈ N so that η̃ −m = n. Yet, n comes
from some ρ in

∐
S R ↪→

∐
S∪T R (i.e., ρ̃ = n). Consider η − ρ ∈

∐
S∪T R. The image of η − ρ in M is

η̃ − ρ̃ = m+ n− n = m, proving surjectivity. As S ∪ T is finite, the module, M , has (α).

Next, assume N and M/N have (β). Let

M1 ⊆M2 ⊆M3 ⊆ · · · ⊆Mr ⊆ · · ·

be an ascending chain in M . Write M j for the image of Mj in M/N . By the ACC in M/N , there is some
t ≥ 1 so that M j = M t for all j ≥ t. If we let Nj = Mj ∩N , we get an ascending chain in N . By the ACC
in N , this chains stabilizes, i.e., there is some s ≥ 1 so that Nj = Ns for all j ≥ s. Let r = max{s, t}. We
claim that Mj = Mr for all j ≥ r. We have the diagram

0 �� Nr ��

��

Mr
��

��

Mr
��

��

0

0 �� Nj �� Mj �� M j
�� 0,

where the rows are exact and the vertical arrows on the left and on the right are surjections. A diagram
chase yields the fact that the middle vertical arrow is also surjective.

Finally, assume N and M/N have (γ). The same argument works with the arrows and inclusions reversed.
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Corollary 2.8 Say {Mλ}λ∈Λ is a family of R-modules. Then,
∐
λMλ has one of (α), (β), (γ) iff each Mλ

has the corresponding property and Λ is finite.

Proof . We have a surjection ∐
λ

Mλ −→Mµ −→ 0, for any fixed µ.

Consequently, (α), (β), (γ) for
∐
λMλ implies (α), (β), (γ) for Mµ, by the previous proposition. It remains

to prove that Λ is finite.

First, assume that
∐
λMλ has (α), and further assume that Λ is infinite. There is some finite set, S, and

a surjection
∐
S R −→

∐
λMλ. We may assume that S = {1, . . . , n}, for some positive integer, n. Then,

we have the canonical basis vectors, e1, . . . , en, of
∐
S R, and their images e1, . . . , en generate

∐
λMλ. Each

image ei is a finite tuple in
∐
λMλ. Yet, the union of the finite index sets so chosen is again finite and for

any µ not in this finite set, the image of Mµ in
∐
λMλ is not covered. This contradicts the fact that the ei’s

generate
∐
λMλ, and so, Λ must be finite.

We treat (β) and (γ) together. Again, assume that Λ is infinite. Then, there is a countably infinite
subset of Λ, denote it {λ1, λ2, . . .}, and the chains

Mλ1 < Mλ1 �Mλ2 < Mλ1 �Mλ2 �Mλ3 < · · ·
and ∞∐

j=1

Mλj
>

∐
j �=1

Mλj
>

∐
j �=1,2

Mλj
> · · ·

are infinite ascending (resp. descending) chains of
∐
λMλ, a contradiction.

Finally, assume that each Mλ has (α) or (β) or (γ) and that Λ is finite. We use induction on #(Λ).
Consider the exact sequence

0 −→
∐
j �=1

Mj −→
∐
j∈Λ

Mj −→M1 −→ 0.

Then, (α) (resp. (β), (γ)) holds for the right end by hypothesis, and it also holds for the left end, by
induction; so, (α) (resp. (β), (γ)) holds in the middle.

Corollary 2.9 Say R is noetherian (has the ACC on ideals) or artinian (has the DCC on ideals). Then,

(1) Every f.g. free module,
∐
S R, is noetherian, resp. artinian, as R-module (remember, #(S) <∞).

(2) Every f.g. R-module is noetherian, resp. artinian.

(3) When R is noetherian, every f.g. R-module is f.p. Finitely presented modules are always f.g.

Proof . (1) and (2) are trivial from Corollary 2.8.

As for (3), that f.p. implies f.g. is clear by the definition. Say M is f.g. Then, we have an exact sequence

0 −→ K −→
∐
S

R −→M −→ 0,

with #(S) < ∞. By (1), the module
∐
S R is noetherian; by Proposition 2.6, the module K is f.g. Thus,

there is some finite set, T , so that ∐
T

R −→ K −→ 0 is exact.

By splicing the two sequences, we get the exact sequence∐
T

R −→
∐
S

R −→M −→ 0,

which shows that M is f.p.
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� Counter-examples.

(1) A subring of a noetherian ring need not be a noetherian ring. Take A = C[X1,X2, . . . , Xn, . . .] the
polynomial ring in countably many variables, and let K = Frac(A). Every field is noetherian as a ring
(a field only has two ideals, (0) and itself). We have A ⊆ K, yet A is not noetherian, for we claim that
we have the ascending chain of ideals

(X1) < (X1,X2) < (X1,X2,X3) < · · ·

Would this chain stabilize, then we would have (X1, . . . , Xn) = (X1, . . . , Xn,Xn+1), for some n ≥ 1.
Now, there would be some polynomials f1, . . . , fn in A so that

Xn+1 = f1X1 + · · ·+ fnXn.

Map A to C via the unique homomorphism sending Xj to 0 for j = 1, . . . , n, and sending Xj to 1 for
j > n. We get 1 = 0, a contradiction. Therefore, the chain is strictly ascending.

(2) A module which is finitely generated need not be finitely presented. Let A = C[X1, . . . , Xn, . . .], the
polynomial algebra over C in countably many variables. Then, C is an A-module because of the exact
sequence

0 −→ I = (X1, . . . , Xn, . . .) −→ A −→ C −→ 0,

in which the map A −→ C is given by f �→ f(0); the ring A acts on C via f · z = f(0)z, where f ∈ A
and z ∈ C. Assume that C is finitely presented. Then, there are some finite sets, S and T , and an
exact sequence ∐

T

A −→
∐
S

A −→ C −→ 0.

We get the diagram ∐
T

A ��

ϕ

��

∐
S

A ��

Θ

��

C �� 0

0 �� I �� A �� C �� 0

To construct the vertical arrows, let e1, . . . , es be the usual generators of
∐
S A. If z1, . . . , zs ∈ C are

their images, there exist λ1, . . . , λs ∈ A so that

s∑
j=1

λjej �→
s∑
j=1

λj(0)zj = 1.

We have the (C-linear) map, C −→ A, so our zj lie in A. Then, we have
∑s
j=1 λj(0)zj = 1, in A.

If we send ej �→ zj ∈ A, we get an A-linear map, Θ:
∐
S A → A, and there is some ξ ∈

∐
S A with

Θ(ξ) = 1 ∈ A. Namely, take

ξ =
s∑
j=1

λj(0)ej .

But then, Θ is onto, because its image is an ideal which contains 1. A diagram chase implies that there
exists some ϕ :

∐
T A→ I rendering the diagram commutative. Another diagram chase gives the fact

that ϕ is surjective. But then, I is finitely generated, a contradiction. Therefore, C is not f.p. (over
A).

Remark: The difficulty is that A is much “bigger” than C, and thus, the surjection A −→ C has to
“kill” an infinite number of independent elements.
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Consider the category, Mod(R). We can also look at subcategories of Mod(R) having some additional
properties. For example, a subcategory, C, of Mod(R) is a localizing subcategory iff

(a) Whenever M and N ∈ Ob(C) and θ : M → N is a morphism of C, then Ker θ and Coker θ = (N/Im θ)
lie in Ob(C) and the morphisms Ker θ −→M and N −→ Coker θ are arrows of C.

(b) Whenever
0 −→M ′ −→M −→M ′′ −→ 0 is exact (in Mod(R))

and M ′,M ′′ ∈ Ob(C), then M ∈ Ob(C) and the sequence is exact in C.

Example: Let C =Modfg(R) be the full subcategory of finitely generated R-modules, where R is noetherian.
The reader should check that C is a localizing subcategory.

Recall that an R-module is a simple iff it has no nontrivial submodules; a composition series is a finite
descending chain

M = M0 > M1 > M2 > · · · > Mt = (0)

in which all the factors Mj/Mj+1 are simple. We know from the Jordan–Hölder theorem that the number
of composition factors, t, is an invariant and the composition factors are unique (up to isomorphism and
rearrangement). We set λR(M) = t, and call it the length of M ; if M does not have a composition series,
set λR(M) =∞.

Say C is a localizing subcategory ofMod(R) and ϕ is a function on Ob(C) to some fixed abelian group,
A.

Definition 2.3 The function, ϕ, is an Euler function iff whenever

0 −→M ′ −→M −→M ′′ −→ 0 is exact in C,

we have ϕ(M) = ϕ(M ′) + ϕ(M ′′).

Proposition 2.10 A necessary and sufficient condition that a module, M , have finite length is that M has
both ACC and DCC on submodules. The function λR on the full subcategory of finite-length modules (which
is a localizing subcategory), is an Euler function. If ϕ is an Euler function on some localizing subcategory of
Mod(R) and if

(E) 0 −→M1 −→M2 −→ · · · −→Mt −→ 0

is an exact sequence in this subcategory, then

χϕ((E)) =
t∑

j=1

(−1)jϕ(Mj) = 0.

Proof . First, assume that M has finite length. We prove the ACC and the DCC by induction on λR(M).
If λR(M) = 1, then M is simple, so the ACC and the DCC hold trivially. Assume that this is true for
λR(M) = t, and take λR(M) = t+ 1. We have a composition series

M = M0 > M1 > M2 > · · · > Mt+1 = (0),

and so, λR(M1) = t and λR(M/M1) = 1. But the sequence

0 −→M1 −→M −→M/M1 −→ 0 is exact,

and the ACC and DCC hold on the ends, by induction. Therefore, they hold in the middle.

Now, assume that the DCC and the ACC hold for M . Let

F = {N ⊆M | N �= M, N is a submodule of M.}
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The family F is nonempty (the trivial module (0) is in F) and by the ACC, it has a maximal element, M1;
so, M/M1 is simple. Apply the same argument to M1: We get M2 < M1 with M1/M2 simple. By induction,
we get a strictly descending chain

M = M0 > M1 > M2 > · · · > Mt > · · ·

However, by the DCC, this chain must stabilize. Now, if it stabilizes at Mt, we must have Mt = (0), since
otherwise we could repeat the first step in the argument for Mt. This proves that λR(M) = t <∞.

Say 0 −→ M ′ −→ M −→ M ′′ −→ 0 is exact in Modfl(R). Pick a composition series for M ′′. We get a
strictly descending chain

M ′′ = M ′′
0 > M ′′

1 > M ′′
2 > · · · > M ′′

t = (0).

By the second homomorphism theorem, we get a lifted sequence

M = M0 > M1 > M2 > · · · > Mt = M ′,

and if we pick a composition series for M ′, we get the following composition series with
s+ t = λR(M ′) + λR(M ′′) factors, as required:

M = M0 > M1 > M2 > · · · > Mt = M ′ > M ′
1 > M ′

2 > · · · > M ′
s = (0).

Say

(E) 0 −→M1 −→M2 −→ · · · −→Mt−2 −→Mt−1
θ−→Mt −→ 0

is an exact sequence. Then, we have the two exact sequences

(E′) 0 −→M1 −→M2 −→ · · · −→Mt−2 −→ Ker θ −→ 0 and
(E′′) 0 −→ Ker θ −→Mt−1 −→Mt −→ 0.

The cases t = 1, 2, 3 are trivial (DX). By using induction on t, we see that the proposition is true for (E′)
and (E′′). Thus, we get

t−2∑
j=1

(−1)jϕ(Mj) + (−1)t−1ϕ(Ker θ) = 0 and

ϕ(Ker θ) = ϕ(Mt−1)− ϕ(Mt).

If we add the first equation to (−1)t times the second equation we get

t−2∑
j=1

(−1)jϕ(Mj) = (−1)tϕ(Mt−1)− (−1)tϕ(Mt),

and so,

χϕ((E)) =
t−2∑
j=1

(−1)jϕ(Mj) + (−1)t−1ϕ(Mt−1) + (−1)tϕ(Mt) = 0,

as claimed.

Theorem 2.11 (Hilbert Basis Theorem (1890)) If A is a commutative noetherian ring, then so is the
polynomial ring A[X].
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Proof . Let An be the submodule of A[X] consisting of the polynomials of degree at most n. The module,
An, is a free module over A (for example, 1,X,X2, . . . , Xn is a basis of An). If A is an ideal of A[X], then
A ∩ An is a submodule of An. As An (being finitely generated over A) is a noetherian module, A ∩ An is
also finitely generated, say by α1, α2, . . . , ακ(n) (∈ A[X]). If f ∈ A and deg(f) ≤ n, then f ∈ An; so,

f = a1α1 + · · ·+ aκ(n)ακ(n), with aj ∈ A.

Now, let A∗ be the subset of A consisting of all a ∈ A so that either a = 0 or there is some polynomial f in
A having a as its leading coefficient, i.e., f = aXr +O(Xr−1). We claim that A∗ is an ideal of A.

Say a and b are in A∗. Then, there are some polynomials f, g ∈ A so that f = aXr + O(Xr−1) and
g = bXs +O(Xs−1). Take t = max{r, s}. Then, Xt−rf ∈ A and Xt−sg ∈ A, since A is an ideal. But,

Xt−rf = aXt +O(Xt−1) and Xt−sg = bXt +O(Xt−1),

and this implies that a±b ∈ A∗, as a±b is the leading coefficient of Xt−rf±Xt−sg ∈ A. If λ ∈ A and a ∈ A∗,
then it is clear that λa ∈ A∗. Therefore, A∗ is indeed an ideal in A. Now, A is a noetherian ring, therefore
A∗ is finitely generated as an ideal. So, there exist β1, . . . , βt ∈ A∗ ⊆ A, such that for any β ∈ A∗, we have
β =

∑t
i=1 λiβi, for some λi ∈ A. Now, by definition of A∗, for every βi ∈ A∗, there is some fi(X) ∈ A

so that fi(X) = βiX
ni + O(Xni−1). Let n = max{n1, . . . , nt} and consider the generators α1, . . . , ακ(n) of

An = An ∩ A.

Claim: The set {α1, . . . , ακ(n), f1, . . . , ft} generates A.

Pick some g ∈ A. Then, g(X) = βXr + O(Xr−1), for some r. If r ≤ n, then g(X) ∈ An, and thus,
g = λ1α1 + · · · + λκ(n)ακ(n), with λi ∈ A. Say r > n. Now, β ∈ A∗, so there are elements λ1, . . . , λt ∈ A
such that β = λ1β1 + · · ·+ λtβt. Consider the polynomial

P (X) =
t∑
i=1

λiX
r−nifi(X),

and examine g(X)− P (X). We have

g(X)− P (X) = βXr −
t∑
i=1

λiX
r−nifi(X) +O(Xr−1) = O(Xr−1),

and thus there is a P (X) ∈ (f1, . . . , ft) so that deg(g(X)− P (X)) ≤ r − 1. By repeating this process, after
finitely many steps, we get

g(X)−
t∑
i=1

hi(X)fi(X) = O(X≤n).

Since this polynomial belongs to A, we deduce that it belongs to An. However, An is generated by
α1, . . . , ακ(n), and so, g(X) is an A[X]-linear combination of the fi(X)’s and the αj(X)’s, as desired.

Remark: The reader should reprove Hilbert’s theorem using the same argument but involving ascending
chains. This is Noether’s argument (DX).

Corollary 2.12 Say R ∈ RNG. If R is noetherian, so is R〈X〉.

Proof . We have R〈X〉 = R[X], and the same proof works.

Corollary 2.13 If A (in CR) is noetherian, then so is A[X1, . . . , Xn].

Corollary 2.14 (Hilbert’s original theorem) The polynomial ring Z[X1, . . . , Xn] is noetherian. If k is a field
(Hilbert chose C) then k[X1, . . . , Xn] is noetherian.
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Corollary 2.15 (of the proof–(DX)) If k is a field, then k[X] is a PID.

Corollary 2.16 Say A is a noetherian ring (A ∈ CR) and B is a finitely generated A-algebra. Then, B is
a noetherian ring.

Proof . The hypothesis means that B is a homomorphic image of a polynomial ring C = A[X1, . . . , Xn] in
such a way that the diagram

C
θ �� B

A

���������

���������

commutes, where A −→ C is the natural injection of A into C = A[X1, . . . , Xn]. The ring A[X1, . . . , Xn] is
noetherian, by Corollary 2.13. The map θ makes B into a C-module and B is finitely generated as C-module.
Now, C-submodules are exactly the ideals of B (DX). Since B is finitely generated as C-module and C is
noetherian, this implies that B is a noetherian C-module. Therefore, the ACC on C-submodules holds, and
since these are ideals of B, the ring B is noetherian.

� To be finitely generated as A-algebra is very different from being finitely generated as A-module.

Given an exact sequence of modules,

0 −→M ′ −→M −→M ′′ −→ 0,

there are situations where it is useful to know that M ′ is f.g, given that M and M ′′ satisfy certain finiteness
conditions. We will give below a proposition to this effect. The proof makes use of Schanuel’s lemma. First,
introduce the following terminology: Given a module M , call an exact sequence

0 −→ K −→ F −→M −→ 0,

a presentation of M if F is free. Note that M is f.p. iff there is a presentation of M in which both F and
K are f.g.

Proposition 2.17 If M is a Λ-module, then M is f.p. iff every presentation

0 −→ K −→ F −→M −→ 0, (∗)

in which F is f.g. has K f.g. and at least one such exists.

Proof . The direction (⇐) is clear.

(⇒). Say M is f.p.; we have an exact sequence

0 −→ K ′ −→ F ′ −→M −→ 0,

where both K ′ and F ′ are f.g. and F ′ is free. Pick any presentation, (∗), with F f.g. If we apply Schanuel’s
lemma, we get

F ′ ∐K ∼= F
∐

K ′,

But, the righthand side is f.g. and K is a quotient of the left hand side, so it must be f.g.

Remark: The forward implication of Proposition 2.17 also holds even if F is not free. A simple proof using the

snake lemma will be given at the end of Section 2.5.
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2.4 Projective and Injective Modules

Let F :Mod(R)→Mod(S) be a functor (where R,S ∈ RNG). Say

0 −→M ′ −→M −→M ′′ −→ 0 (∗)

is exact in Mod(R). What about

0 −→ F (M ′) −→ F (M) −→ F (M ′′) −→ 0? (∗∗)

(1) The sequence (∗∗) is a complex if F is an additive functor. (Observe that HomR(M,N) is an abelian

group, so is HomS(F (M), F (N)). We say F is additive iff HomR(M,N)
F (·)−→ HomS(F (M), F (N)) is a

homomorphism, i.e., preserves addition.)

(2) The functor, F , is exact iff when (∗) is exact then (∗∗) is exact (the definition for cofunctors is identical).

(3) The functor, F , is a left-exact (resp. right-exact) iff when (∗) is exact

0 −→ F (M ′) −→ F (M) −→ F (M ′′) (∗∗∗)

is still exact (resp.

F (M ′) −→ F (M) −→ F (M ′′) −→ 0 (∗∗∗∗)

is still exact.)

(4) The functor, F , is half-exact (same definition for cofunctors) iff when ∗ is exact

F (M ′) −→ F (M) −→ F (M ′′)

is still exact.

(5) The cofunctor, G, is left-exact (resp. right-exact) iff (∗)-exact implies

0 −→ G(M ′′) −→ G(M) −→ G(M ′)

is still exact (resp.
G(M ′′) −→ G(M) −→ G(M ′) −→ 0

is still exact.)

Remark: The chirality of a functor is determined by the image category .

Examples of exact (left-exact, right-exact, etc.) functors:

(1) Let F : Mod(R)→Mod(Z) be given by: F (M) = underlying abelian group of M . The functor F is
exact.

(2) Take a set, Λ, and look at

Mod(R)Λ = {{Mα}α∈Λ | each Mα ∈Mod(R)},

together with obvious morphisms. We have two functors fromMod(R)Λ to Mod(R). They are:

{Mα}�
∏
α

Mα and {Mα}�
∐
α

Mα.

Both are exact functors (this is special to modules). The next proposition is a most important example of
left-exact functors:
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Proposition 2.18 Fix an R-module, N . The functor from Mod(R) to Ab (resp. cofunctor from Mod(R)
to Ab) given by M � HomR(N,M) (resp. M � HomR(M,N)) is left-exact (N.B.: both are left-exact).

Proof . Consider the case of a cofunctor (the case of a functor is left to the reader (DX)). Assume that

0 −→M ′ ϕ−→M
ψ−→M ′′ −→ 0

is exact. Look at the sequence obtained by applying HomR(−, N) to the above exact sequence:

0 −→ HomR(M ′′, N) Ψ−→ HomR(M,N) Φ−→ HomR(M ′, N) −→ 0,

where Φ = − ◦ ϕ and Ψ = − ◦ ψ. Pick α ∈ HomR(M ′′, N) and assume that Ψ(α) = 0. We have the
commutative diagram

M
ψ ��

Ψ(α) 

�
��

��
��

� M ′′

α

��
N

and since M
ψ−→ M ′′ is surjective, we deduce that α = 0. Now, pick β ∈ HomR(M,N) and assume that

Φ(β) = 0. We have the commutative diagram (see argument below)

M ′ ϕ ��

Φ(β) ���
��

��
��

� M
ψ ��

β

��

M ′′

β��		
		

		
		

N .

Since Φ(β) = 0, we have Im ϕ ⊆ Ker β; so, by the first homomorphism theorem, there is a homomorphism
β : M/M ′ = M ′′ → N , as shown, making the above diagram commute. Thus, Ψ(β) = β ◦ ψ = β, and so,
β ∈ Im Ψ.

There may be some modules, N , so that our Hom functors become exact as functors of M . This is the
case for the class of R-modules introduced in the next definition:

Definition 2.4 A module, P , is projective (over R) iff the functor M � HomR(P,M) is exact. A module,
Q, is injective (over R) iff the cofunctor M � HomR(M,Q) is exact.

Remarks:

(1) Any free R-module is projective over R.

Proof . Say F =
∐
S R. Consider the functor M � HomR(

∐
S R,M). The righthand side is equal to∏

S HomR(R,M) =
∏
SM , but we know that the functor M �

∏
SM is exact.

(2) A functor is left-exact iff it preserves the left-exactness of a short left-exact sequence (resp. a cofunctor
is left-exact iff it transforms a short right-exact sequence into a left-exact sequence), and mutatis
mutandis for right exact functors or cofunctors.

(3) Compositions of left (resp. right) exact functors are left (resp. right) exact. Similarly, compositions of
exact functors are exact.

We say that an exact sequence

0 −→M ′ i−→M
p−→M ′′ −→ 0

splits iff there is a map σ : M ′′ → M so that p ◦ σ = idM ′′ . Such a map, σ, is called a splitting of the
sequence. The following properties are equivalent (DX):
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Proposition 2.19 (1) The sequence

0 −→M ′ i−→M
p−→M ′′ −→ 0

splits.

(2) Given our sequence as in (1),
0 −→M ′ i−→M

p−→M ′′ −→ 0

there is a map π : M →M ′ so that π ◦ i = idM ′ .

(3) There is an isomorphism M ′ �M ′′ ∼= M .

Proposition 2.20 Let P be an R-module, then the following are equivalent:

(1) P is projective over R.

(2) Given a diagram
P

ξ

��
M �� M ′′ �� 0,

there exists a map, θ : P →M , lifting ξ, rendering the diagram commutative (lifting property).

(3) Any exact sequence 0 −→M ′ −→M −→ P −→ 0 splits.

(4) There exists a free module, F , and another module, P̃ , so that P � P̃ ∼= F .

Proof . (1)⇒ (2). Given the projective module, P and the diagram

P

ξ

��
M �� M ′′ �� 0,

the exact sequence gives the map

HomR(P,M) −→ HomR(P,M ′′) (†)

and the diagram gives an element, ξ, of HomR(P,M ′′). But P is projective, and so, (†) is surjective.
Consequently, ξ comes from some η ∈ HomR(P,M), proving the lifting property.

(2)⇒ (3). Given an exact sequence

0 −→M ′ −→M −→ P −→ 0,

we get the diagram
P

M �� P �� 0.

The lifting property gives the backwards map P −→M , as required.

(3)⇒ (4). Given P , there is a free module, F . and a surjection, F −→ P . We get the exact sequence

0 −→ P̃ −→ F −→ P −→ 0,
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where P̃ = Ker (F −→ P ). By hypothesis, this sequence splits. Therefore, by property (3) of Proposition
2.19, we have F ∼= P � P̃ .

(4) ⇒ (1). We have F ∼= P � P̃ , for some free R-module, F . Now, F =
∐
S R, for some set, S, and so,

for any N ,
HomR(F,N) =

∏
S

HomR(R,N) =
∏
S

N.

The functor N � HomR(F,N) is exact; yet, this functor is N � HomR(P,N)
∏

HomR(P̃ , N). Assume that
the sequence

0 −→M ′ −→M −→M ′′ −→ 0 is exact,

we need to show that HomR(P,M) −→ HomR(P,M ′′) is surjective. This follows by chasing the diagram
(DX):

Hom(F,M)
∼= ��

��

Hom(P,M)
∏

Hom(P̃ ,M)

��
Hom(F,M ′′)

∼= ��

��

Hom(P,M ′′)
∏

Hom(P̃ ,M ′′)

0 .

Given an R-module, M , a projective resolution (resp. a free resolution) of M is an exact (possibly infinite)
sequence (= acyclic resolution) of modules

· · · −→ Pn −→ · · · −→ P2 −→ P1 −→ P0 −→M,

with all the P ′
is projective (resp. free)

Corollary 2.21 Every R-module possesses a projective resolution (even a free resolution).

Proof . Since free modules are projective, it is enough to show that free resolutions exist. Find a free module,
F0, so that there is a surjection, F0 −→ M . Let M1 = Ker (F0 −→ M), and repeat the process. We get a
free module, F1, and a surjection, F1 −→M1. By splicing the two exact sequences
0 −→ M1 −→ F0 −→ M −→ 0 and F1 −→ M1 −→ 0, we get the exact sequence F1 −→ F0 −→ M −→ 0.
We obtain a free resolution by repeating the above process.

Proposition 2.22 Given a family, {Pα}α∈Λ, of modules, the coproduct
∐
α Pα is projective iff each Pα is

projective.

Proof . Assume that each Pα is projective. This means that for every α, the functor M � HomR(Pα,M) is
exact. As the product functor is exact and composition of exact functors is exact, the functor
M �

∏
α HomR(Pα,M) is exact. But∏

α

HomR(Pα,M) = HomR(
∐
α

Pα,M).

Therefore,
∐
α Pα is projective.

Conversely, assume that
∐
α Pα is projective. By Proposition 2.20, there is a free module, F , and another

(projective) module, P̃ , with (∐
α

Pα

)∐
P̃ ∼= F.
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Pick any β, then

Pβ
∐(∐

α�=β
Pα

)∐
P̃

 ∼= F.

Again, by Proposition 2.20, the module Pβ is projective.

� The product of projectives need not be projective. (See, HW Problem V.B.VI.)

Remark: Projective modules can be viewed as a natural generalization of free modules. The following characteri-
zation of projective modules in terms of linear forms is an another illustration of this fact. Moreover, this proposition
can used to prove that invertible ideals of an integral domain are precisely the projective ideals, a fact that plays an
important role in the theory of Dedekind rings (see Chapter 3, Section 3.6).

Proposition 2.23 An R-module, M , is projective iff there exists a family, {ei}i∈I , of elements of M and a family,
{ϕi : M → R}i∈I , of R-linear maps such that

(i) For all m ∈M , we have ϕi(m) = 0, for all but finitely i ∈ I.

(ii) For all m ∈M , we have m =
P
i ϕi(m)ei.

In particular, M is generated by the family {ei}i∈I .

Proof . First, assume that M is projective and let ψ : F → M be a surjection from a free R-module, F . The map,
ψ, splits, we let ϕ : M → F be its splitting. If {fi}i∈I is a basis of F , we set ei = ψ(fi). Now, for each m ∈ M , the
element ϕ(m) can be written uniquely as

ϕ(m) =
X
k

rkfk,

where rk ∈ R and rk = 0 for all but finitely many k. Define ϕi : M → R by ϕi(m) = ri; it is clear that ϕi is R-linear
and that (i) holds. For every m ∈M , we have

m = (ψ ◦ ϕ)(m) = ψ
“X

k

rkfk
”

=
X
k

ϕk(m)ek,

which is (ii). Of course, this also shows the ek generate M .

Conversely, assume (i) and (ii). Consider the free module F =
‘
i∈I R and let {fi}i∈I be a basis of F . Define

the map ψ : F → M via fi �→ ei. To prove that M is projective, by Proposition 2.20 (4), it is enough to find a map
ϕ : M → F with ψ ◦ ϕ = 1M . Define ϕ via

ϕ(m) =
X
k

ϕk(m)fk.

The sum on the righthand side is well-defined because of (i), and by (ii),

(ψ ◦ ϕ)(m) =
X
k

ϕk(m)ek = m.

Therefore, M is a cofactor of a free module, so it is projective.

We would like to test submodules, L, of M as to whether L = M by testing via surjections M −→ N .
That is, suppose we know that for every N and every surjection M −→ N we have L ↪→ M −→ N is also
surjective. How restrictive can we be with the N ’s, yet get a viable test?

There may be some superfluous N , e.g., those N for which M −→ N −→ 0 automatically implies that
L −→M −→ N is surjective. There may even be some such N ’s that work for all L. Thus, it is preferable
to fix attention on N and seek small enough M so that N matters in the testing of all L. This yields a piece
of the following definition:
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Definition 2.5 A surjection, M −→ N , is a minimal (essential , or covering) surjection iff for all L ⊆ M ,
whenever L −→M −→ N is surjective, we can conclude L = M . A submodule, K, is small (superfluous) iff
for every submodule, L ⊆ M , when L+K = M , then L = M . A submodule, K, is large (essential) iff for
all submodules, L ⊆M , when L ∩K = (0), then L = (0). The injection K −→M is essential (minimal) iff
K is large.

Proposition 2.24 The following are equivalent for surjections θ : M → N :

(1) M
θ−→ N is a minimal surjection.

(2) Ker θ is small.

(3) Coker (L −→M −→ N) = (0) implies Coker (L −→M) = (0), for any submodule, L ⊆M .

Proof . (1)⇒ (2). Pick L, and assume L+ Ker θ = M . So, θ(L) = θ(M) = N . Thus, L = M , by (1), which
shows that Ker θ is small.

(2) ⇒ (3). Say L ⊆ M and assume that Coker (L −→ M −→ N) = (0). Therefore, N = Im (L −→ N),
and we deduce that

L+ Ker θ = M,

by the second homomorphism theorem. By (2), we get L = M ; so, Coker (L −→M) = (0).

(3)⇒ (1). This is just the definition.

Definition 2.6 A surjection P −→ N is a projective cover iff

(1) The module P is projective

(2) It is a minimal surjection.

� Projective covers may not exist. For example, Z −→ Z/2Z is a surjection and Z is projective. If
P −→ Z/2Z is a projective cover, then the lemma below implies that P is torsion-free. Hence, we

can replace P −→ Z/2Z by Z −→ Z/2Z. However, the following argument now shows that Z/2Z has no
projective cover. We have the surjection θ : Z −→ Z/2Z. This is not a minimal surjection because 2Z is not
small. (Clearly, Ker θ = 2Z; so, say L = dZ and dZ + 2Z = Z. Then, (d, 2) = 1, so d is odd. Yet, dZ = Z

only when d = 1. Thus, the module 2Z is not small.) Now, suppose dZ θ−→ Z/2Z is surjective, then d must
be odd. If kZ ⊆ dZ maps onto Z/2Z, then, as Ker θ = 2dZ, we get (k, 2d) = d. Let b = k/d; the integer b
must be odd. Then, the diagram

0 �� 2Z ��

d

��

Z ��

d

��

Z/2Z ��

d

��

0

0 �� 2dZ �� dZ �� Z/2Z �� 0,

(in which the vertical arrows are isomorphisms: multiply by d) shows that the inclusion kZ ⊆ dZ corresponds
to the inclusion bZ ⊆ Z. Our previous argument implies b = 1; so, k = d, and dZ −→ Z/2Z is not minimal.

Lemma 2.25 If R has no zero divisors and P is a projective R-module then P is torsion-free.

Proof . Since the torsion-free property is inherited by submodules, we may assume that P is a free module.
Moreover, coproducts of torsion-free modules are torsion-free, so we may assume that P = R. But, R has
no zero-divisors; so, it is torsion-free.
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Proposition 2.26 Say R is a ring and J (R) is its Jacobson radical (i.e., J (R) is equal to the intersection
of all maximal ideals of R). Then, the surjection R −→ R/J (R) is a projective cover. In particular, when
R is commutative local, then R −→ R/mR is a projective cover.

Proof . Pick L ⊆ R, a submodule of R, i.e., an ideal of R, such that L+ J (R) = R. If L �= R, then L ⊆M,
where M is some maximal ideal. But, J (R) ⊆M, and so L+ J (R) ⊆M. The latter inclusion shows that
L+ J (R) �= R, a contradiction; so, J (R) is small.

For injective modules, the situation is nearly dual to the projective case. It is exactly dual as far as
categorical properties are concerned. However, the notion of free module is not categorical, and so, results
about projective modules involving free modules have no counterpart for injective modules. On the other
hand, the situation for injectives is a bit better than for projectives.

Proposition 2.27 The following are equivalent for a module, Q:

(1) The module, Q, is injective.

(2) Given a diagram
0 �� M ′ ��

ξ

��

M

Q

there exists an extension, θ : M → Q, of ξ, making the diagram commute (extension property).

(3) Every exact sequence 0 −→ Q −→M −→M ′′ −→ 0 splits.

Proof . (DX)

Proposition 2.28 Given a family, {Qα}α∈Λ, of modules, the product
∏
αQα is injective iff each Qα is

injective.

Proof . (DX)

Theorem 2.29 (Baer Representation Theorem) An R-module, Q, is injective iff it has the extension prop-
erty w.r.t. the sequence

0 −→ A −→ R, (∗)

where A is an ideal of R.

Proof . If Q is injective, it is clear that Q has the extension property w.r.t. (∗).

Conversely, assume that the extension property holds for (∗). What does this mean? We have the
diagram

0 �� A ��

ϕ

��

R

ψ		��
��

��
�

Q

in which ψ extends ϕ; so, for all ξ ∈ A, we have ϕ(ξ) = (ψ � A)(ξ). In particular, ψ(1) ∈ Q exists, say
q = ψ(1). Since ξ · 1 = ξ for all ξ ∈ A, we have

ϕ(ξ) = ψ(ξ) = ξψ(1) = ξq.
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Given the diagram
0 �� M ′ ��

ϕ

��

M

Q

define S by

S =
{

(N,ψ)
∣∣∣∣ (1)N is a submodule of M, (2)M ′ ⊆ N,

(3) ψ : N → Q extends ϕ to N.

}
Partially order S by inclusion and agreement of extensions. Then, S is inductive (DX). By Zorn’s lemma,
there is a maximal element, (N0, ψ0), in S. We claim that N0 = M . If N0 �= M , there is some m ∈M −N0.
Let A be the transporter of m into N0, i.e.,

(m −→ N0) = {ρ ∈ R | ρm ∈ N0}.

Define the R-module map, θ : A → Q, by θ(ρ) = ψ0(ρm). Look at the module N0 + Rm, which strictly
contains N0. If z ∈ N0 +Rm, then z = z0 + ρm, for some z0 ∈ N0 and some ρ ∈ R. Set

ψ(z) = ψ0(z0) + ρq,

where q = Θ(1) and Θ is an extension of θ (guaranteed to exist, by the hypothesis). We must prove that ψ
is a well-defined map, i.e., if z = z0 + ρm = z̃0 + ρ̃m, then

ψ0(z0) + ρq = ψ0(z̃0) + ρ̃q.

Now, if ψ : N0 +Rm→ Q is indeed well-defined, then it is an extension of ψ0 to the new module N0 +Rm >
N0, contradicting the maximality of N0. Therefore, N0 = M , and we are done.

If z = z0 + ρm = z̃0 + ρ̃m, then z0 − z̃0 = (ρ̃− ρ)m; so ρ̃− ρ ∈ A. Consequently,

θ(ρ̃− ρ) = ψ0((ρ̃− ρ)m).

Yet,
θ(ρ̃− ρ) = Θ(ρ̃− ρ) = (ρ̃− ρ)Θ(1) = (ρ̃− ρ)q,

and so, we get
ψ0(z0 − z̃0) = ψ0((ρ̃− ρ)m) = θ(ρ̃− ρ) = (ρ̃− ρ)q.

Therefore, we deduce that
ψ0(z0) + ρq = ψ0(z̃0) + ρ̃q,

establishing that ψ is well-defined.

Recall that an R-module, M , is divisible iff for every λ ∈ R with λ �= 0, the map M λ−→M (multiplication
by λ), is surjective.

Corollary 2.30 If R ∈ CR has no zero-divisors, then an injective R-module is automatically divisible.
Moreover, if R is a P.I.D., a necessary and sufficient condition that Q be injective is that Q be divisible.
Therefore, over P.I.D.’s, every factor module of an injective is injective.

Proof . Let λ ∈ R, with λ �= 0. Since R has no zero divisors, the map R
λ−→ R is a monomorphism. Thus,

the image of this map is an ideal, A, and the exact sequence

0 −→ A −→ R
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is just the exact sequence

0 −→ R
λ−→ R.

Apply the cofunctor HomR(−, Q). If Q is injective, this cofunctor is exact, and we get the exact sequence

HomR(R,Q) λ−→ HomR(R,Q) −→ 0.

So, the sequence Q λ−→ Q −→ 0 is exact, which proves that Q is divisible.

If R is a P.I.D., then every ideal is principal, so, every exact sequence 0 −→ A −→ R, where A is an
ideal, is of the form 0 −→ R

λ−→ R, for some λ ∈ R. If Q is divisible, the sequence Q λ−→ Q −→ 0 is exact,
and we get that

HomR(R,Q) λ−→ HomR(R,Q) −→ 0 is exact;

this means that HomR(−, Q) is exact on sequences

0 −→ A −→ R −→ R/A −→ 0,

where A is an ideal, i.e., the extension property holds for ideals, A, of R. By applying Baer’s theorem we
conclude that Q is injective.

The reader will easily verify that factor modules of divisible modules are divisible (DX). Consequently,
the last statement of the corollary holds.

Theorem 2.31 (Baer Embedding Theorem) Every R-module is a submodule of an injective module.

Proof . The proof assigned for homework (Problem 57) is based on Eckmann’s proof. Here is Godement’s proof [18]
(probably the shortest proof). The first step is to show that any Z-module, M , can be embedded into MDD, where
MD = HomZ(M,Q/Z). Given a Z-module, M , we define a natural Z-linear map, m �→ bm, from M to MDD, in the
usual way: For every m ∈M and every f ∈ HomZ(M,Q/Z),

bm(f) = f(m).

Proposition 2.32 For every Z-module, M , the natural map M −→MDD is injective.

Proof . It is enough to show that m �= 0 implies that there is some f ∈MD = HomZ(M,Q/Z) so that f(m) �= 0.

Consider the cyclic subgroup, Zm, of M , generated by m. We define a Z-linear map, f : Zm→ Q/Z, as follows: If
m has infinite order, let f(m) = 1/2(modZ); if m has finite order, n, let f(m) = 1/n(modZ). Since 0 −→ Zm −→M
is exact and Q/Z is injective, the map f : Zm→ Q/Z extends to a map f : M → Q/Z, with f(m) �= 0, as claimed.

Recall that if M is an R-module and N is any Z-module, then HomZ(M,N) is an Rop-module under the Rop-action
given by: For any f ∈ HomZ(M,N), and all γ ∈ R,

(fγ)(m) = f(γm).

Similarly, if M is an Rop-module and N is any Z-module, then HomZ(M,N) is an R-module under the R-action given
by:

(γf)(m) = f(mγ).

Then, MD = HomZ(M,Q/Z) is an Rop-module if M is an R-module (resp. an R-module if M is an Rop-module). Fur-
thermore, the Z-injection, M −→MDD, is an R-injection, The crux of Godement’s proof is the following proposition:

Proposition 2.33 If M is a projective Rop-module, then MD is an injective R-module.
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Proof . Consider the diagram

0 �� X ��

ϕ

��

X ′

MD

where the row is exact. To prove that MD is injective, we need to prove that ϕ extends to a map
ϕ′ : X ′ → MD. The map ϕ yields the map MDD −→ XD, and since we have an injection M −→ MDD, we get a
map θ : M → XD. Now, since Q/Z is injective, HomZ(−,Q/Z) maps the exact sequence

0 −→ X −→ X ′

to the exact sequence X
′D −→ XD −→ 0. So, we have the diagram

M

θ

��
X

′D �� XD �� 0,

where the row is exact, and since M is projective, the map θ lifts to a map θ′ : M → X
′D. Consequently, we get

a map X
′DD −→ MD, and since we have an injection X ′ −→ X

′DD, we get a map X ′ −→ MD extending ϕ, as
desired. Therefore, MD is injective.

We can now prove Theorem 2.31. Consider the Rop-module MD. We know that there is a free Rop-module, F ,
so that

F −→MD −→ 0 is exact.

But, F being free is projective. We get the exact sequence

0 −→MDD −→ FD.

By Proposition 2.33, the module FD is injective. Composing the natural injection M −→ MDD with the injection

MDD −→ FD, we obtain our injection, M −→ FD, of M into an injective.

Corollary 2.34 Every R-module, M , has an injective resolution

0 −→M −→ Q0 −→ Q1 −→ Q2 −→ · · · ,

where the Qi’s are injective and the sequence is exact.

How about minimal injections? Recall that N −→ M is a minimal (essential) injection iff N is large in
M , which means that for any L ⊆M , if N ∩ L = (0), then L = (0).

We have the following characterization of essential injections, analogous to the characterization of minimal
surjections:

Proposition 2.35 The following are equivalent for injections θ : N →M :

(1) N
θ−→M is essential.

(2) Given any module, Z, and any map, M
ϕ−→ Z, if N −→M

ϕ−→ Z is injective, then ϕ is injective.

(3) Ker (N −→M −→ Z) = (0) implies Ker (M −→ Z) = (0), for any module, Z.

Proof . (DX)

In contradistinction to the case of covering surjections, essential injections always exist.
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Proposition 2.36 Given an injection, N −→M , there exists a submodule, K, of M so that

(1) The sequence 0 −→ N −→M/K is exact, and

(2) It is an essential injection.

Proof . Let
S = {K ⊆M | K ∩N = (0)}.

Since (0) ∈ S, the set S is nonempty. Partially order S by inclusion. If {Zα}α is a chain in S, let Z =
⋃
α Zα,

a submodule of M . We have

Z ∩N =

(⋃
α

Zα

)
∩N =

⋃
α

(Zα ∩N) = (0),

since Zα∩N) = (0), for all α. Therefore, S is inductive, and by Zorn’s lemma, it has a maximal element, say
K. Since K ∩N = (0), property (1) is satisfied. For (2), take L ⊆M/K so that L∩ Im (N) = (0). We must
show that L = (0). By the second homomorphism theorem, L corresponds to L̃ in M , with K ⊆ L̃ ⊆ M ,
and we are reduced to proving that L̃ = K.

Claim: For every η ∈ L̃, if η /∈ K, then η /∈ N .

If η ∈ L̃ and η /∈ K and η ∈ N , then η ∈ L ∩ Im (N), and so, η = 0, since L ∩ Im (N) = (0). (As usual,
η �→ η, denotes the canonical map M −→M/K.) Yet η /∈ K, a contradiction; the claim holds.

Assume that ξ ∈ L̃ and ξ /∈ K. Consider K +Rξ, a submodule of L̃ strictly containing K. Since K is a
maximal module with K ∩ N = (0), there is some η ∈ (K + Rξ) ∩ N , with η �= 0. Consequently, we have
η ∈ L̃ and η ∈ N . Now, if η ∈ K, then η ∈ N ∩K = (0), contradicting the fact that η �= 0; so, we must have
η /∈ K. However, this contradicts the claim. Therefore, ξ cannot exist, and L̃ = K.

Terminology : The module Q is an injective hull of M iff

(1) M −→ Q is an essential injection, and

(2) The module Q is injective.

Theorem 2.37 (Baer–Eckmann–Schopf) Every R-module has an injective hull.

Proof . By Baer’s embedding theorem (Theorem 2.31), there is an injective module, Q, so that
0 −→M −→ Q is exact. Set

S = {L |M ⊆ L ⊆ Q and 0 −→M −→ L is essential}.

Since M ∈ S, the set S is nonempty. The set S is partially ordered by inclusion, and it is inductive (DX).
By Zorn’s lemma, S has a maximal element, say L. I claim that L is injective. Look at the exact sequence
0 −→ L −→ Q. By the argument in the previous proposition on essential extensions, there is a maximal
K ⊆ Q, so that K ∩ L = (0) and 0 −→ L −→ Q/K is essential. Look at the diagram

0 �� L ��

ϕ

��

Q/K

Q .

Since Q is injective, there is a map, ψ : Q/K → Q, extending ϕ; let T = Im ψ. The map ψ is injective,
because ψ � L is injective and the row is essential. Thus, ψ : Q/K → T is an isomorphism; moreover, L ⊆ T .
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We contend that T = L. To see this, we will prove that 0 −→M −→ T is essential. Now, being essential is
a transitive property (DX); since T is essential over L (because Q/K ∼= T and Q/K is essential over L) and
L is essential over M , we see that T is essential over M . But, L is maximal essential over M (in Q) and
L ⊆ T ; so, we conclude that T = L. Therefore, L ∼= Q/K and we have the maps

Q −→ Q/K ∼= L and L −→ Q.

It follows that the sequence
0 −→ K −→ Q −→ L −→ 0

splits. Consequently, L is also injective; so, L is the required injective hull.

Proposition 2.38 (Uniqueness of projective covers and injective hulls.) Say P −→M is a projective cover
and P̃ −→M is another surjection with P̃ projective. Then, there exist P̃ ′, P̃ ′′ ⊆ P̃ , both projective so that

(a) P̃ = P̃ ′ � P̃ ′′.

(b) P ∼= P̃ ′.

(c) In the diagram

P̃

ep

��
P

p �� M ��

��

0

0

there are maps π : P̃ → P and i : P → P̃ in which π is surjective and i is injective, P̃ ′′ = Ker π,
P̃ ′ = Im i and p̃ � P̃ ′ : P̃ ′ →M is a projective cover.

If M and M̃ are isomorphic modules, then every isomorphism, θ : M → M̃ , extends to an isomorphism of
projective covers, P −→ P̃ . The same statements hold for injective hulls and injections, M −→ Q̃, where Q̃
is injective, mutatis mutandis.

Proof . As P̃ is projective, there is a map π : P̃ → P , making the diagram commute. We claim that the
map π is surjective. To see this, observe that p(Im π) = Im p̃ = M . Hence, Im π = P , as P is a covering
surjection. As P is projective and π is a surjection, π splits, i.e., there is a map i : P → P̃ and π ◦ i = idP ;
it easily follows that i is injective. Define P̃ ′′ = Ker π and P̃ ′ = Im i. We know that i : P → P̃ ′ is an
isomorphism, and

0 −→ Ker π (= P̃ ′′) −→ P̃ −→ P (∼= P̃ ′) −→ 0 is split exact;

so, we deduce that P̃ = P̃ ′ � P̃ ′′. The rest is clear.

For injectives, turn the arrows around, replace coproducts by products, etc. (DX).

2.5 The Five Lemma and the Snake Lemma

Proposition 2.39 (The five lemma.) Given a commutative diagram with exact rows

M1
��

ϕ1

��

M2
��

ϕ2

��

M3
��

ϕ3

��

M4
��

ϕ4

��

M5

ϕ5

��
N1

�� N2
�� N3

�� N4
�� N5,

then
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(a) If ϕ2 and ϕ4 are injective and ϕ1 is surjective, then ϕ3 is injective.

(b) If ϕ2 and ϕ4 are surjective and ϕ5 is injective, then ϕ3 is surjective.

(c) If ϕ1, ϕ2, ϕ4 , ϕ5 are isomorphisms, then so is ϕ3.

Proof . Obviously, (a) and (b) imply (c). Both (a) and (b) are proved by chasing the diagram (DX).

Proposition 2.40 (The snake lemma.) Given a commutative diagram with exact rows

M1
��

δ1

��

M2
��

δ2

��

M3
��

δ3

��

0

0 �� N1
�� N2

�� N3
,

then there exists a six term exact sequence

Ker δ1 −→ Ker δ2 −→ Ker δ3
δ−→ Coker δ1 −→ Coker δ2 −→ Coker δ3,

(where δ is called the connecting homomorphism) and if M1 −→ M2 is injective, so is Ker δ1 −→ Ker δ2,
while if N2 −→ N3 is surjective, so is Coker δ2 −→ Coker δ3.

Proof . Simple diagram chasing shows Ker δ1 −→ Ker δ2 −→ Ker δ3 is exact and
Coker δ1 −→ Coker δ2 −→ Coker δ3 is also exact (DX). Moreover, it also shows the very last assertions of
the proposition.

We have to construct the connecting homomorphism, δ. Consider the commutative diagram:

Ker δ1 ��

��

Ker δ2 ��

��

Ker δ3

��
M1

��

δ1

��

M2
p ��

δ2

��

M3
��

δ3

��

0

0 �� N1
i ��

��

N2
��

��

N3

��
Coker δ1 �� Coker δ2 �� Coker δ3 .

Pick ξ ∈ Ker δ3, and consider ξ as an element of M3. There is some η ∈ M2 so that p(η) = ξ. So, we have
δ2(η) ∈ N2, and Im δ2(η) in N3 is δ3(ξ) = 0. As the lower row is exact and i is injective, η gives a unique
x ∈ N1, with i(x) = δ2(η). We define our δ(ξ) as the projection of x on Coker δ1. However, we need to check
that this map is well-defined.

If we chose a different element, say η̃, from η, where p(η) = p(η̃) = ξ, then the construction is canonical
from there on. Take δ2(η) and δ2(η̃). Since η − η̃ goes to zero under p, there is some y ∈ M1, so that
η− η̃ = Im (y) in M2. Consequently η = η̃+Im (y); so, δ2(η) = δ2(η̃)+δ2(Im (y)). But, δ2(Im (y)) = i(δ1(y)),
and so,

δ2(η) = δ2(η̃) + i(δ1(y)). (∗)

As before, we have some unique elements x and x̃ in N1, so that i(x) = δ2(η) and i(x̃) = δ2(η̃); so, by (∗),
we get i(x) = i(x̃) + i(δ1(y)). As i is injective, we conclude that

x = x̃+ δ1(y);
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so, x and x̃ have equal projections in Coker δ1, and our definition of δ(ξ) is independent of the lift, η, of ξ
to M2. The rest is tedious diagram chasing (DX).

Remark: As we said in Section 2.3, Proposition 2.17 also holds under slightly more general assumptions and its
proof is a very nice illustration of the snake lemma. Here it is:

Proposition 2.41 Let

0 −→M ′ ϕ−→M
ψ−→M ′′ −→ 0

be an exact sequence of Λ-modules. If M is f.g. and M ′′ is f.p., then, M ′ is f.g.

Proof . Let
F1 −→ F0 −→M ′′ −→ 0

be a finite presentation of M ′′ (so, F0, F1 are free and f.g.) Consider the diagram

F1
�� F0

�� M ′′ �� 0

0 �� M ′ �� M �� M ′′ �� 0.

Now, F0 is free, so there exists a map F0 −→ M lifting the surjection F0 −→ M ′′. Call this map θ. From the
commutative diagram which results when θ is added, we deduce a map γ : F1 → M ′. Hence, we find the bigger
commutative diagram

0

��
F1

��

γ

��

F0
��

θ

��

M ′′ �� 0

0 �� M ′
ϕ

��

��

M
ψ

��

��

M ′′ ��

��

0

Coker γ �� Coker θ �� 0

But, by the snake lemma, Coker γ ∼= Coker θ. However, Coker θ is f.g. as M is f.g. The image of γ is f.g. as F1 is

f.g. And now, M ′ is caught between the f.g. modules Im γ and Coker γ; so, M ′ is f.g.
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2.6 Tensor Products and Flat Modules

Let R be a ring (not necessarily commutative). In this section, to simplify the notation, the product of
R-modules, M and N , viewed as sets, will be denoted M ×N , instead of M

∏
Sets

N . For any Rop-module,

M , any R-module, N , and any abelian group, Z, we set

BiR(M,N ;Z) =

ϕ : M ×N −→ Z

∣∣∣∣∣∣
(1) (∀m,m′ ∈M)(∀n ∈ N)(ϕ(m+m′, n) = ϕ(m,n) + ϕ(m′, n))
(2) (∀m ∈M)(∀n, n′ ∈ N)(ϕ(m,n+ n′) = ϕ(m,n) + ϕ(m,n′))
(3) (∀m ∈M)(∀n ∈ N)(∀r ∈ R)(ϕ(mr, n) = ϕ(m, rn))

 .

Observe that

(1) The set BiR(M,N ;Z) is an abelian group under addition; i.e., if ϕ,ψ ∈ BiR(M,N ;Z), then
ϕ+ ψ ∈ BiR(M,N ;Z).

(2) The map Z � BiR(M,N ;Z) is a functor from Ab to Sets. Is this functor representable? To be more
explicit, does there exist an abelian group, T (M,N), and an element, Φ ∈ BiR(M,N ;T (M,N)), so
that the pair (T (M,N),Φ) represents BiR(M,N ;−), i.e., the map

HomZ(T (M,N), Z) −̃→ BiR(M,N ;Z)

via ϕ �→ ϕ ◦ Φ, is a functorial isomorphism?

Theorem 2.42 The functor Z � BiR(M,N ;Z) from Ab to Sets is representable.

Proof . Write F for the free abelian group on the set M ×N . Recall that F consists of formal sums∑
α

ξα(mα, nα),

where ξα ∈ Z, with ξα = 0 for all but finitely many α’s, and with mα ∈ M and nα ∈ N . Consider the
subgroup, N , of F generated by the elements

(m1 +m2, n)− (m1, n)− (m2, n)
(m1, n1 + n2)− (m,n1)− (m,n2)
(mr, n)− (m, rn).

Form F/N and write m⊗R n for the image of (m,n) in F/N . We have

(α) (m1 +m2)⊗R n = m1 ⊗R n+m2 ⊗R n.

(β) m⊗R (n1 + n2) = m⊗R n1 +m⊗R n2.

(γ) (mr)⊗R n = m⊗R (rn).

Let T (M,N) = F/N and let Φ be given by Φ(m,n) = m⊗R n. Then, (α), (β), (γ) imply that Φ belongs
to BiR(M,N ;T (M,N)), and the assignment, ϕ �→ ϕ ◦ Φ, gives the functorial map

HomZ(T (M,N), Z) −→ BiR(M,N ;Z).

We need to prove that this map is an isomorphism. Pick θ ∈ BiR(M,N ;Z); we claim that θ yields a
homomorphism, T (M,N) −→ Z. Such a homomorphism is merely a homomorphism, F −→ Z, that
vanishes on N . But, F is free; so we just need to know the images of the basis elements, (m,n), in Z. For
this, map (m,n) to θ(m,n). The induced homomorphism vanishes on the generators of N , as θ is bilinear;
thus, θ yields a map

Ξ(θ) : F/N −→ Z,

and we get our inverse map BiR(M,N ;Z) −→ HomZ(T (M,N), Z). Routine checking shows that the maps
ϕ �→ ϕ ◦ Φ and θ �→ Ξ(θ) are functorial and mutual inverses.
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Definition 2.7 The group, T (M,N) = F/N , constructed in Theorem 2.42, is called the tensor product of
M and N over R and is denoted M ⊗R N .

Remark: Note that Theorem 2.42 says two things:

(1) For every Z-linear map, f : M ⊗RN → Z, the map, ϕ, given by ϕ(m,n) = f(m⊗n), for all m ∈M and n ∈ N ,
is bilinear (i.e., ϕ ∈ BiR(M,N ;Z)), and

(2) For every bilinear map, ϕ ∈ BiR(M,N ;Z), there is a unique Z-linear map, f : M ⊗R N → Z, with ϕ(m,n) =
f(m ⊗ n), for all m ∈ M and n ∈ N . In most situations, this is the property to use in order to define a map
from a tensor product to another module.

� One should avoid “looking inside” a tensor product, especially when defining maps. Indeed, given some
element w ∈ M ⊗R N , there may be different pairs, (m,n) ∈ M × N and (m′, n′) ∈ M × N , with

w = m ⊗R n = m′ ⊗R n′. Worse, one can have m ⊗R n =
∑
αmα ⊗R nα. Thus, defining a function as

f(m⊗R n) for all m ∈M and n ∈ N usually does not make sense; there is no guarantee that f(m⊗R n) and
f(m′ ⊗R n′) should agree when m⊗R n = m′ ⊗R n′. The “right way” to define a function on M ⊗R N is to
first define a function, ϕ, on M × N , and then to check that ϕ is bilinear (i.e., ϕ ∈ BiR(M,N ;Z)). Then,
there is a unique homomorphism, f : M ⊗R N → Z, so that f(m ⊗R n) = ϕ(m,n). Having shown that f
exists, we now may safely use its description in terms of elements, m⊗ n, since they generate M ⊗R N . We
will have many occasions to use this procedure in what follows.

Basic properties of the tensor product:

Proposition 2.43 The tensor product, M ⊗RN , is a functor of each variable (from Rop-modules to Ab or
from R-modules to Ab). Moreover, as a functor, it is right-exact.

Proof . Just argue for M , the argument for N being similar. Say f : M → M̃ is an Rop-morphism. Consider
M × N and the map: f̃(m,n) = f(m) ⊗ n. This is clearly a bilinear map M × N −→ M̃ ⊗R N . By the
defining property of M ⊗R N , we obtain our map (in Ab) M ⊗R N −→ M̃ ⊗R N . Consequently, now that
we know the map is defined, we see that it is given by

m⊗ n �→ f(m)⊗ n.

For right-exactness, again vary M (the proof for N being similar). Consider the exact sequence

M ′ i−→M −→M ′′ −→ 0. (†)

We must prove that

M ′ ⊗R N −→M ⊗R N −→M ′′ ⊗R N −→ 0 is exact. (††)

Pick a test abelian group, Z, and write C for Coker (M ′ ⊗R N −→M ⊗R N). We have the exact sequence

M ′ ⊗R N −→M ⊗R N −→ C −→ 0. (∗)

Now, HomAb(−, Z) is left-exact, so we get the exact sequence

0 −→ HomAb(C,Z) −→ HomAb(M ⊗R N,Z) i∗−→ HomAb(M ′ ⊗R N,Z). (∗∗)

The two terms on the righthand side are isomorphic to BiR(M,N ;Z) and BiR(M ′, N ;Z), and the map, i∗,
is

ϕ ∈ BiR(M,N ;Z) �→ i∗ϕ ∈ BiR(M ′, N ;Z), where i∗ϕ(m′, n) = ϕ(i(m′), n).
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When is i∗ϕ = 0? Observe that i∗ϕ = 0 iff ϕ(i(m′), n) = 0 for all m′ ∈ M ′ and all n ∈ N . So,
HomAb(C,Z) is the subgroup of BiR(M,N ;Z) given by

{ϕ ∈ BiR(M,N ;Z) | (∀m′ ∈M ′)(∀n ∈ N)(ϕ(i(m′), n) = 0)},

and denoted Bi∗R(M,N ;Z).

Claim: There is a canonical (functorial in Z) isomorphism

Bi∗R(M,N ;Z) ∼= BiR(M ′′, N ;Z).

Say ϕ ∈ Bi∗R(M,N ;Z). Pick m ∈M ′′ and n ∈ N , choose any m ∈M lifting m and set

ψ(m,n) = ϕ(m,n).

If m̃ is another lift, then, as (†) is exact, m̃ − m = i(m′) for some m′ ∈ M ′. So, ϕ(m̃ − m,n) = 0, as
ϕ ∈ Bi∗R(M,N ;Z). But, ϕ(m̃ − m,n) = ϕ(m̃, n) − ϕ(m,n), and so, ϕ(m̃, n) = ϕ(m,n), which proves
that ψ is well-defined. Consequently, we have the map ϕ �→ ψ from Bi∗R(M,N ;Z) to BiR(M ′′, N ;Z). If
ψ ∈ BiR(M ′′, N ;Z), pick any m ∈M and n ∈ N and set ϕ(m,n) = ψ(m,n) (where m is the image of m in
M ′′). These are inverse maps. Therefore, we obtain the isomorphism

Bi∗R(M,N ;Z) ∼= BiR(M ′′, N ;Z),

functorial in Z, as claimed. However, the righthand side is isomorphic to HomAb(M ′′ ⊗R N,Z), and so, by
Yoneda’s lemma, we see that C ∼= M ′′ ⊗R N , and (††) is exact.

Proposition 2.44 Consider R as Rop-module. Then, R ⊗R M −̃→M . Similarly, if R is considered as
R-module, then M ⊗R R −̃→M . Say M =

∐t
i=1Mi, then

M ⊗R N ∼=
t∐
i=1

(Mi ⊗R N).

(Similarly for N .)

Proof . We treat the first case R⊗RM −̃→M , the second one being analogous. Pick a test group, Z, and look
at HomAb(R ⊗RM,Z) ∼= BiR(R,M ;Z). Any ϕ ∈ BiR(R,M ;Z) satisfies ϕ(r,m) = ϕ(1, rm), by bilinearity.
Now, set ϕ0(m) = ϕ(1,m). Then, as ϕ is bilinear, we deduce that ϕ0 : M → Z is a group homomorphism.
The map ϕ �→ ϕ0 is clearly an isomorphism from BiR(R,M ;Z) to HomR(M,Z), functorial in Z, and so, we
obtain an isomorphism

HomAb(R⊗RM,Z) −̃→HomAb(M,Z)

functorial in Z. By Yoneda’s lemma, we get the isomorphism R⊗RM −̃→M .

For coproducts, we use an induction on t. The base case, t = 1, is trivial. For the induction step, look at
the exact sequence

0 −→M1 −→M −→
t∐

j=2

Mj −→ 0.

This sequence is not only exact, but split exact. Now, from this, tensoring with N on the right and using
the induction hypothesis, we get another split exact sequence (DX)

0 −→M1 ⊗R N −→M ⊗R N −→
t∐

j=2

(Mj ⊗R N) −→ 0;
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so,

M ⊗R N ∼=
t∐
i=1

(Mi ⊗R N).

In the next section we will prove that tensor product commutes with arbitrary coproducts.

Computation of some tensor products:

(1) Say F =
∐
S R, as Rop-module (with S finite). Then,

F ⊗R N = (
∐
S

R)⊗R N ∼=
∐
S

(R⊗R N) ∼=
∐
S

N.

Similarly, M ⊗R F ∼=
∐
SM , if F =

∐
S R, as R-module (with S finite).

(1a) Assume G is also free, say G =
∐
T R (with T finite), as an R-module. Then,

F ⊗R G ∼=
∐
S

G =
∐
S

∐
T

R =
∐
S×T

R.

(2) Say A is an Rop-ideal of R. Then (R/A)⊗RM ∼= M/AM. Similarly, if A is an R-ideal of R, then for
any Rop-module, M , we have M ⊗R (R/A) ∼= M/MA. (These are basic results.)

Proof . We have the exact sequence

0 −→ A −→ R −→ R/A −→ 0,

where A is an Rop-ideal. By tensoring on the right with M , we get the right-exact sequence

A⊗RM −→ R⊗RM −→ (R/A)⊗RM −→ 0.

Consider the diagram:

A⊗RM �� R⊗RM ��

��

(R/A)⊗RM �� 0

0 �� AM �� M �� M/AM �� 0.

The middle vertical arrow is an isomorphism; we claim that there is a map A⊗RM −→ AM . Such a map
corresponds to a bilinear map in BiR(A,M ;AM). But, (α,m) �→ αm is just such a bilinear map. So, we
get our map A ⊗R M −→ AM . Now, of course, it is given by α ⊗m �→ αm. But then, there is induced a
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righthand vertical arrow and we get the commutative diagram:

0

��

0

��

0

��
Ker ρ ��

��

Ker w ��

��

Ker y

��
A⊗RM ��

ρ

��

R⊗RM ��

w

��

(R/A)⊗RM ��

y

��

0

0 �� AM ��

��

M ��

��

M/AM ��

��

0

Coker ρ ��

��

Coker w ��

��

Coker y

��
0 0 0 .

The snake lemma yields an exact sequence

Ker w −→ Ker y δ−→ Coker ρ −→ Coker w −→ Coker y −→ 0.

Since ρ is onto (DX), we have Coker ρ = 0, and since w is an isomorphism, we have Ker w = Coker w = 0.
Thus, Ker y = 0. As Coker w −→ Coker y −→ 0 is exact and Coker w = 0, we deduce that Coker y = 0.
Therefore, y is an isomorphism, as claimed. (One can also use the five lemma in the proof.)

(3) Compute Z/rZ⊗Z Z/sZ.

We claim that the answer is Z/tZ, where t = g.c.d.(r, s).

We know (DX) that ⊗R is an additive functor. From the exact sequence

0 −→ Z
r−→ Z −→ Z/rZ −→ 0,

we get the exact sequence

Z⊗Z (Z/sZ) r−→ Z⊗Z (Z/sZ) −→ (Z/rZ)⊗Z (Z/sZ) −→ 0.

Write X for (Z/rZ)⊗Z (Z/sZ). Hence,

Z/sZ
r−→ Z/sZ −→ X −→ 0 is exact.

Pick z ∈ Z/sZ, and say rz = 0, i.e., rz ≡ 0 (mod s). We have r = ρt and s = σt, with g.c.d.(ρ, σ) = 1.
Now, rz ≡ 0 (mod s) means that rz = sk, for some k; so, we have ρtz = σtk, for some k, and so, ρz = σk,
for some k. We see that σ | ρz, and since g.c.d.(ρ, σ) = 1, we conclude that σ | z. As a consequence, σt | tz;
so, s (= σt) | tz and we conclude that tz = 0 in Z/sZ. Conversely, if tz = 0, we get ρtz = 0, i.e., rz = 0 in
Z/sZ. Therefore, we have shown that

Ker (mult. by r) = Ker (mult. by t) in Z/sZ;

consequently (as this holds for no further divisor of t)

Im (mult. by r) = Im (mult. by t) in Z/sZ.
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Thus,
X ∼= (Z/sZ)/(tZ/sZ) ∼= Z/tZ.

(4) Say M is an S-module and an Rop-module. If

(sm)r = s(mr), for all s ∈ S and all r ∈ R,

then M is called an (S,Rop)-bimodule, or simply a bimodule when reference to S and R are clear. We will
always assume that if M is an S-module and an Rop-module, then it is a bimodule.

If M is a (S,Rop)-bimodule and N is an R-module, we claim that M ⊗R N has a natural structure of
S-module.

� Illegal procedure: s(m⊗R n) = (sm)⊗R n.

The correct way to proceed is to pick any s ∈ S and to consider the map, ϕs, from M ×N to M ⊗R N
defined by

ϕs(m,n) = (sm)⊗ n.

It is obvious that this map is bilinear (in m and n).

Remark: (The reader should realize that the bimodule structure of M is used here to check property (3) of
bilinearity. We have

ϕs(mr, n) = (s(mr)) ⊗ n = ((sm)r ⊗ n = (sm) ⊗ rn = ϕs(m, rn).)

So, we get a map M ⊗RN −→M ⊗RN , corresponding to s. Check that this gives the (left) action of S on M ⊗RN .
Of course, it is

s(m⊗R n) = (sm) ⊗R n.
Similarly, if M is an Rop-module and N is a (R,Sop)-bimodule, then M ⊗R N is an Sop-module; the (right) action
of S is

(m⊗R n)s = m⊗R (ns).

Remark: If M is an R-module, N is an (R,Sop)-bimodule, and Z is an Sop-module, then any Sop-linear map
f : M ⊗R N −→ Z satisfies the property:

f(m⊗R (ns)) = f(m⊗R n)s, for all s ∈ S,

since f(m⊗R (ns)) = f((m⊗R n)s) = f(m⊗R n)s. Thus, the corresponding bilinear map ϕ : M ×N −→ Z defined
by

ϕ(m,n) = f(m⊗R n)

satisfies the property:
ϕ(m,ns) = ϕ(m,n)s, for all s ∈ S.

This suggests defining a set, Sop-BiR(M,N ;Z), by

Sop-BiR(M,N ;Z) =

8>>>>>><
>>>>>>:
ϕ : M ×N −→ Z

˛̨̨
˛̨̨
˛̨̨
˛̨̨

(1) (∀m,m′ ∈M)(∀n ∈ N)
(ϕ(m+m′, n) = ϕ(m,n) + ϕ(m′, n))

(2) (∀m ∈M)(∀n, n′ ∈ N)
(ϕ(m,n+ n′) = ϕ(m,n) + ϕ(m,n′))

(3) (∀m ∈M)(∀n ∈ N)(∀r ∈ R)(ϕ(mr, n) = ϕ(m, rn))
(4) (∀m ∈M)(∀n ∈ N)(∀s ∈ S)(ϕ(m,ns) = ϕ(m,n)s)

9>>>>>>=
>>>>>>;
.

Then, we have

Theorem 2.45 Let M be an R-module and N be an (R,Sop)-bimodule. The functor Z � Sop-BiR(M,N ;Z) from
Mod(Sop) to Sets is representable by (M ⊗R N,Φ), where Φ is given by Φ(m,n) = m⊗R n.



2.6. TENSOR PRODUCTS AND FLAT MODULES 89

Note that the above statement includes the fact that M ⊗R N is an Sop-module.

Similarly, if M is an (S,Rop)-bimodule, N is an R-module and Z is an S-module, then we can define the set,
S-BiR(M,N ;Z), in an analogous way (replace (4) by ϕ(sm, n) = sϕ(m,n)), and we find

Theorem 2.46 Let M be an (S,Rop)-bimodule and N be an R-module. The functor Z � S-BiR(M,N ;Z) from
Mod(S) to Sets is representable by (M ⊗R N,Φ), where Φ is given by Φ(m,n) = m⊗R n.

Associativity of tensor : Let M be an Rop-module, N an (R,Sop)-bimodule, and Z an S-module. Then,

(M ⊗R N)⊗S Z ∼= M ⊗R (N ⊗S Z).

For any test group, T , the left hand side represents the functor

T � BiS(M ⊗R N,Z;T )

and the righthand side represents the functor

T � BiR(M,N ⊗S Z;T ).

We easily check that both these are just the trilinear maps, “TriR,S(M,N,Z;T );” so, by the uniqueness of
objects representing functors, we get our isomorphism. In particular,

(A) (M ⊗R S)⊗S Z ∼= M ⊗R (S ⊗S Z) ∼= M ⊗R Z.

(B) Say S −→ R is a given surjective ring map and say M is an Rop-module and N is an R-module. Then,
M is an Sop-module, N is an S-module and

M ⊗S N ∼= M ⊗R N.

To see this, look at F/N and see that the same elements are identified.

(C) Say S −→ R is a ring map. Then, M ⊗R N is a homomorphic image of M ⊗S N .

Remark: Adjointness Properties of tensor : We observed that when M is an (S,Rop)-bimodule and N is an R-
module, then M ⊗R N is an S-module (resp. when M is an Rop-module and N is an (R,Sop)-bimodule, then
M ⊗R N is an Sop-module.) The abelian group Hom(M,N) also acquires various module structures depending on
the bimodule structures of M and N . There are four possible module structures:

(a) The module M is an (R,Sop)-bimodule and N is an R-module. Define an S-action on
HomR(M,N) as follows: For every f ∈ HomR(M,N) and every s ∈ S,

(sf)(m) = f(ms), for all m ∈M.

(b) The module M is an (R,Sop)-bimodule and N is an Sop-module. Define an Rop-action on
HomSop(M,N) as follows: For every f ∈ HomSop(M,N) and every r ∈ R,

(fr)(m) = f(rm), for all m ∈M.

(c) The module M is an Rop-module and N is an (S,Rop)-bimodule. Define an S-action on
HomRop(M,N) as follows: For every f ∈ HomRop(M,N) and every s ∈ S,

(sf)(m) = s(f(m)), for all m ∈M.

(d) The module M is an S-module and N is an (S,Rop)-bimodule. Define an Rop-action on
HomS(M,N) as follows: For every f ∈ HomS(M,N) and every r ∈ R,

(fr)(m) = (f(m))r, for all m ∈M.
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The reader should check that the actions defined in (a), (b), (c), (d) actually give corresponding module structures.
Note how the contravariance in the left argument, M , of Hom(M,N) flips a left action into a right action, and
conversely. As an example, let us check (a). For all r, t ∈ S,

((st)f)(m) = f(m(st)) = f((ms)t) = (tf)(ms) = (s(tf))(m).

We also need to check that sf is R-linear. This is where we use the bimodule structure of M . We have

(sf)(rm) = f((rm)s) = f(r(ms)) = rf(ms) = r((sf)(m)).

We are now ready to state an important adjointness relationship between Hom and ⊗.

Proposition 2.47 If M is an Rop-module, N is an (R,Sop)-bimodule, and Z is an Sop-module, then there is a
natural functorial isomorphism

HomSop(M ⊗R N,Z) ∼= HomRop(M,HomSop(N,Z)).

When M is an R-module, N is an (S,Rop)-bimodule, and Z is an S-module, then there is a natural functorial
isomorphism

HomS(N ⊗RM,Z) ∼= HomR(M,HomS(N,Z)).

Proof . Using Theorem 2.45, it is enough to prove that

Sop-BiR(M,N ;Z) ∼= HomRop(M,HomSop(N,Z))

and using Theorem 2.46, to prove that

S-BiR(N,M ;Z) ∼= HomR(M,HomS(N,Z)).

We leave this as a (DX).

Proposition 2.47 states that the functor − ⊗R N is left adjoint to the functor HomSop(N,−) when N is an

(R,Sop)-bimodule (resp. N ⊗R − is left adjoint to HomS(N,−) when N is an (S,Rop)-bimodule).

Commutativity of tensor : If R is commutative, then M ⊗R N ∼= N ⊗R M . The easy proof is just to
consider (m,n) �→ n ⊗m. It is bilinear; so, we get a map M ⊗R N −→ N ⊗R M . Interchange M and N ,
then check the maps are mutually inverse.

(5) Let G be a torsion abelian group and Q a divisible abelian group. Then,

Q⊗Z G = (0).

Look at HomZ(Q⊗ZG,T ) ∼= BiZ(Q,G;T ), for any test group, T . Take ϕ ∈ BiZ(Q,G;T ) and look at ϕ(q, σ).
Since G is torsion, there is some n so that nσ = 0. But, Q is divisible, so q = nq̃, for some q̃ ∈ Q. Thus,

ϕ(q, σ) = ϕ(nq̃, σ) = ϕ(q̃n, σ) = ϕ(q̃, nσ) = 0.

As this holds for all q and σ, we have ϕ ≡ 0, and so, Q⊗Z G = (0).

(6) Free modules (again). Let F =
∐
S R, an Rop-module and G =

∐
T R, an R-module (with both S

and T finite). We know that
F ⊗R G =

∐
S×T

R.

We want to look at this tensor product more closely. Pick a basis, e1, . . . , es, in F and a basis, f1, . . . , ft, in
G, so that

F =
s∐
j=1

ejR and G =
t∐
l=1

Rfl.
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Then, we get

F ⊗R G =
s,t∐

j=1,l=1

(ejR)⊗R (Rfl).

Thus, we get copies of R indexed by elements ej ⊗ fl. Suppose that F is also an R-module. This means
that ρej ∈ F makes sense. We assume ρej ∈ ejR, that is the left action of R commutes with the coproduct
decomposition. Then F ⊗R G is an R-module and it is free of rank st if the left action, ρej , has obvious
properties (and similarly if G is also an Rop-module).

� It is not true in general that ρej = ejρ. Call a free module a good free module iff it possesses a basis
e1, . . . , es so that ρej = ejρ, for all ρ ∈ R. (This is not standard terminology.)

� It is not generally true even here, that

ρm = mρ (m ∈ F ).

Say m =
∑s
j=1 ejλj . Then, we have

ρm =
s∑
j=1

ρ(ejλj) =
s∑
j=1

ρ(λjej) =
s∑
j=1

(ρλj)ej ,

and

mρ =
s∑
j=1

(ejλj)ρ =
s∑
j=1

ej(λjρ) =
s∑
j=1

(λjρ)ej .

In general, ρλj �= λjρ, and so, ρm �= mρ.

Consider the special example in which R = k = a field. Then, all modules are free and good. Let V be
a k-vector space of dimension d, and let e1, . . . , ed be some basis for V . We know that the dual space, V D,
has the dual basis, f1, . . . , fd, characterized by

fi(ej) = δij .

Every v ∈ V can be uniquely written as v =
∑
λiei, and every f ∈ V D can be uniquely written as f =

∑
µifi.

Consider the space
V ⊗k · · · ⊗k V︸ ︷︷ ︸

a

⊗k V D ⊗k · · · ⊗k V D︸ ︷︷ ︸
b

.

Elements of this space, called (a, b)-tensors, have the unique form

i1,...,ia∑
j1,...,jb

ci1,...,iaj1,...,jb
ei1 ⊗k · · · ⊗k eia ⊗k fj1 ⊗k · · · ⊗k fjb .

So, V ⊗k · · · ⊗k V ⊗k V D ⊗k · · · ⊗k V D may be identified with tuples (ci1,...,iaj1,...,jb
), of elements of k, doubly-

multiply indexed. They transform as ... (change of basis). A tensor in V ⊗k · · · ⊗k V ⊗k V D ⊗k · · · ⊗k V D
is cogredient of rank (or degree) a and contragredient of rank (or degree) b. A tensor field on a space, X,
is a function (of some class, C∞, Ck, holomorphic, etc.) from X to a tensor vector space, as above. More
generally, it is a section of a tensor bundle over X. Also, we can apply fjm to eik and reduce the cogredient
and contragredient ranks by one each. This gives a map V ⊗a ⊗R V D

⊗b −→ V ⊗(a−1) ⊗R V D
⊗(b−1), called

contraction.
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Remark: Let M be an R-module, N be an S-module, and Z be an (R,Sop)-bimodule. Then, we know that
HomR(M,Z) is an Sop-module and that Z ⊗S N is an R-module. We can define a canonical homomorphism of
Z-modules,

θ : HomR(M,Z) ⊗S N −→ HomR(M,Z ⊗S N).

For this, for every n ∈ N and u ∈ HomR(M,Z), consider the map from M to Z ⊗S N given by

θ′(u, n) : m �→ u(m) ⊗ n.

The reader will check (DX) that θ′(u, n) isR-linear and that θ′ ∈ BiS(HomR(M,Z), N ; HomR(M,Z⊗SN)). Therefore,
we get the desired homomorphism, θ, such that θ(u⊗n) is the R-linear map θ′(u, n). The following proposition holds:

Proposition 2.48

(i) If N is a projective S-module (resp. a f.g. projective S-module), then the Z-homomorphism,
θ : HomR(M,Z) ⊗S N −→ HomR(M,Z ⊗S N), is injective (resp. bijective).

(ii) If M is a f.g. projective R-module, then the Z-homomorphism, θ, is bijective.

Proof . In both cases, the proof reduces to the case where M (resp. N) is a free module, and it proceeds by induction
on the number of basis vectors in the case where the free module is f.g. (DX).

The following special case is of special interest: R = S and Z = R. In this case, HomR(M,R) = MD, the dual
of M , and the Z-homomorphism, θ, becomes

θ : MD ⊗R N −→ HomR(M,N),

where θ(u⊗ n) is the R-linear map, m �→ u(m)n.

Corollary 2.49 Assume that M and N are R-modules.

(i) If N is a projective R-module (resp. a f.g. projective R-module), then the Z-homomorphism,
θ : MD ⊗R N −→ HomR(M,N), is injective (resp. bijective).

(ii) If M is a f.g. projective R-module, then the Z-homomorphism, θ, is bijective.

If the R-module, N , is also an Sop-module, then θ is Sop-linear. Similarly, if the R-module, M , is also an Sop-
module, then θ is S-linear. Furthermore, if M is an Rop-module (and N is an R-module), then we obtain a canonical
Z-homomorphism,

θ : MDD ⊗R N −→ HomR(MD, N).

Using the canonical homomorphism, M −→MDD, we get a canonical homomorphism

θ′ : M ⊗R N −→ HomR(MD, N).

Again, if M is a f.g. projective Rop-module, then the map θ′ is bijective (DX).

Some (very) important algebras:

Suppose that M is both an R and an Rop-module, and that R ∈ RNG. We also assume, as usual, that
M is a bimodule, i.e., (ρm)σ = ρ(mσ). Then, M ⊗RM is again a bimodule, so we can form M ⊗RM ⊗RM ,
etc. Define Tj(M) (also denoted M⊗j) by T0(M) = R, T1(M) = M , and

Tj(M) = M ⊗R · · · ⊗RM︸ ︷︷ ︸
j

, if j ≥ 2.

Then, form
T (M) =

∐
j≥0

Tj(M) =
∐
j≥0

M⊗j .

We can make T (M) into a ring, by concatenation. Define the map Mr ×Ms −→ Tr+s(M), by

〈(m1, . . . ,mr), (n1, . . . , ns)〉 �→ m1 ⊗ · · · ⊗mr ⊗ n1 ⊗ · · · ⊗ ns.
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This map is bilinear in the pair 〈(r−tuple), (s−tuple)〉 and so, it is multilinear in all the variables. Thus, we
get a map Tr(M)⊗R Ts(M) −→ Tr+s(M). Therefore, T (M) is an R, Rop-algebra called the tensor algebra
of M .

If Z is an R-algebra, denote by (Z) the object Z considered just as an R-module (i.e., Z � (Z) is the
partial stripping functor from R-alg to Mod(R).)

Proposition 2.50 There is a natural, functorial isomorphism

HomR-alg(T (M), Z) ∼= HomMod(R)(M, (Z)),

for every R-algebra, Z. That is, the functor M � T (M) is the left-adjoint of Z � (Z).

Proof . Given ϕ ∈ HomR-alg(T (M), Z), look at ϕ � T1(M) = ϕ �M . Observe that
ϕ � M ∈ HomMod(R)(M, (Z)), and clearly, as M generates T (M), the map ϕ is determined by ϕ � M . We
get a functorial and injective map HomR-alg(T (M), Z) −→ HomMod(R)(M, (Z)). Say ψ : M → (Z), pick
(m1, . . . ,md) ∈Md and form

ψ̃(m1, . . . ,md) = ψ(m1) · · ·ψ(md).

This map is R-multilinear in the mj ’s and has values in Z; it gives a map

Ξd(ψ) : M ⊗R · · · ⊗RM︸ ︷︷ ︸
d

−→ Z,

and so, we get a map Ξ(ψ) : T (M) −→ Z. It is easy to check that ϕ �→ ϕ � M and ψ �→ Ξ(ψ) are inverse
functorial maps.

In T (M), look at the two-sided ideal generated by elements

(m⊗R n)− (n⊗R m),

call it I. Now, T is a graded ring , i.e., it is a coproduct,
∐
j≥0 Tj(M), of R-modules and multiplication

obeys:
Tj(M)⊗R Tl(M) ⊆ Tj+l(M).

The ideal, I, is a homogeneous ideal , which means that

I =
∐
j≥0

I ∩ Tj(M).

To see this, we will in fact prove more:

Proposition 2.51 Suppose R =
∐
n≥0Rn is a graded ring and I is a two-sided ideal generated by homoge-

neous elements {rα}α∈Λ (i.e., rα ∈ Rdα
, for some dα). Then, I is a homogeneous ideal. Moreover, the ring,

R/I, is again graded and R −→ R/I preserves degrees.

Proof . Pick ξ ∈ I, then ξ =
∑
α ραrα and each ρα is of the form

ρα =
∞∑
n=0

ρα,n, where ρα,n ∈ Rn,

all the sums involved being, of course, finite. So, we have

ξ =
∑
α

∞∑
n=0

ρα,nrα;
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moreover, ρα,nrα ∈ Rn+dα
and ρα,nrα ∈ I. As I is a 2-sided ideal, the same argument works for ξ =

∑
α rαρα.

It follows that
I =

∐
n≥0

I ∩Rn,

and I is homogeneous.

Write R for R/I, and let Rn be the image of Rn under the homomorphism ρ �→ ρ. Then,

R =
(∐
n

Rn

)
/
(∐
n

I ∩Rn
)
∼=

∐
Rn/(I ∩Rn).

But, Rn = Rn/(I ∩Rn), so we are done.

In T (M), which is graded by the Tn(M), we have the two 2-sided ideals: I, the 2-sided ideal generated
by the homogeneous elements (of degree 2)

m⊗ n− n⊗m,

and K, the 2-sided ideal generated by the homogeneous elements

m⊗m and m⊗ n+ n⊗m.

Both I and K are homogeneous ideals, and by the proposition, T (M)/I and T (M)/K are graded rings.

Remark: For K, look at

(m+ n)⊗ (m+ n) = m⊗m+ n⊗ n+m⊗ n+ n⊗m.

We deduce that if m⊗m ∈ K for all m, then m⊗ n+ n⊗m ∈ K for all m and n. The converse is true if 2
is invertible.

We define Sym(M), the symmetric algebra of M to be T /I and set m · n = image of m⊗ n in Sym(M).
The module Symj(M) is called the j-th symmetric power of M . Similarly,

∧
(M) = T /K is the exterior

algebra of M , and we set m ∧ n = image of m⊗ n in
∧

(M). The module
∧j(M) is called the j-th exterior

power of M .

Observe that m · n = n ·m in Sym(M) and m ∧ n = −n ∧m in
∧

(M), for all m,n ∈ M . Of course,
m ∧m = 0, for all m ∈ M . Further, Sym(M) is a commutative ring. However, we can have ω ∧ ω �= 0 in∧
M ; for this, see the remark before Definition 2.8.

� The algebras Sym(M) and
∧

(M) are Z-algebras only, even if M is an R-bimodule, unless R is commu-
tative, and then they are R-algebras.

Why?

We know that r(m⊗n) = (rm⊗n) in T (M). But in Sym(M), we would have (writing = for equivalence
mod I)

r(m⊗ n) = (rm)⊗ n
= n⊗ (rm)
= (nr)⊗m
= m⊗ (nr)
= (m⊗ n)r.
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Then, for any r, s ∈ R, we would have

(rs)(m⊗ n) = r(s(m⊗ n))
= r((m⊗ n)s)
= r(m⊗ (ns))
= (m⊗ (ns))r
= (m⊗ n)(sr).

But, (sr)(m⊗ n) = (m⊗ n)(sr), and so, we would get

(rs)(m⊗ n) = (sr)(m⊗ n), for all r, s ∈ R.

So, if we insist that Sym(M) and
∧

(M) be R-algebras, then R must act as if it were commutative, i.e., the
2-sided ideal, M, generated by the elements rs− sr (= [r, s]) annihilates both our algebras. Yet R/M might
be the 0-ring. However, in the commutative case, no problem arises.

Proposition 2.52 Suppose M is an R-bimodule and as R-module it is finitely generated by e1, . . . , er. Then,∧s
M = (0) if s > r.

Proof . Note that for any ρ ∈M and any ej , we have ejρ ∈M , and so,

ejρ =
∑
i

λiei, for some λi’s,

in other words, ejρ is some linear combination of the ei’s. Elements of
∧2

M are sums∑
β,γ

mβ ∧mγ =
∑
β,γ

(∑
i

λ
(β)
i ei

)
∧
(∑

j

µ
(γ)
j ej

)
=

∑
β,γ

∑
i,j

λ
(β)
i (ei ∧ µ(γ)

j ej)

=
∑
β,γ

∑
i,j

λ
(β)
i (eiµ

(γ)
j ∧ ej)

=
∑
l,m

ρlm(el ∧ em),

for some ρlm. An obvious induction shows that
∧s

M is generated by elements of the form ei1 ∧ · · · ∧ eis .
There are only r distinct ei’s and there are s of the ei’s in our wedge generators; thus, some ei occurs twice,
that is, we have

ei1 ∧ · · · ∧ eis = ei1 ∧ · · · ∧ ei ∧ · · · ∧ ei ∧ · · · ∧ eis .
However, we can repeatedly permute the second occurrence of ei with the term on its left (switching sign
each time), until we get two consecutive occurrences of ei:

ei1 ∧ · · · ∧ eis = ±ei1 ∧ · · · ∧ ei ∧ ei ∧ · · · ∧ eis .

As ei ∧ ei = 0, we get ei1 ∧ · · · ∧ eis = 0, and this for every generator. Therefore,
∧s

M = (0).

Let us now assume that M is a free R-module with basis e1, . . . , en. What are T (M), Sym(M) and∧
(M)?

The elements of Tr(M) are sums of terms of the form m1⊗· · ·⊗mr. Now, each mi is expressed uniquely
as mi =

∑
j λjej . Therefore, in Tr(M), elements are unique sums of terms of the form

(µ1ei1)⊗ (µ2ei2)⊗ · · · ⊗ (µreir ),
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where eil might be equal to eik with il �= ik. Let Xj be the image of ej in T (M). Then, we see that the
elements of T (M) are sums of “funny monomials”

µ1Xi1µ2Xi2 · · ·µdXid ,

and in these monomials, we do not have Xµ = µX (in general). In conclusion, the general polynomial
ring over R in n variables is equal to T

(∐n
j=1R

)
. If our free module is good (i.e., there exists a basis

e1, . . . , en and λei = eiλ for all λ ∈ R and all ei), then we get our simplified noncommutative polynomial
ring R〈X1, . . . , Xn〉, as in Section 2.2.

For Sym
(∐r

j=1R
)
, where

∐r
j=1R is good, we just get our polynomial ring R[X1, . . . , Xr].

All this presumed that the rank of a free finitely-generated R-module made sense. There are rings where
this is false. However, if a ring possesses a homomorphism into a field, then ranks do make sense (DX).
Under this assumption and assuming that the free module M =

∐r
j=1R has a good basis, we can determine

the ranks of Td(M), Symd(M) and
∧d(M). Since elements of the form

ei1 ⊗ · · · ⊗ eid , where {i1, . . . , id} is any subset of {1, . . . , r}

form a basis of Td(M), we get rk(T (M)) = rd. Linear independence is reduced to the case where R is a field
in virtue of our assumption. Here, it is not very difficult linear algebra to prove linear independence. For
example, M ⊗k N is isomorphic to Homk(MD, N), say by Corollary 2.49.

Elements of the form
ei1 ⊗ · · · ⊗ eid , where i1 ≤ i2 ≤ . . . ≤ id

form a basis of Symd(M), so we get rk(Symd(M)) =
(
r+d−1
d

)
(DX–The linear algebra is the same as before,

only the counting is different). Let us check this formula in some simple cases. For r = d = 2, the formula
predicts dimension 3; indeed, we have the basis of 3 monomials: X2

1 ,X
2
2 ,X1X2. For r = d = 3, the formula

predicts dimension 10; we have the basis of 10 monomials:

X3
1 , X

3
2 , X

3
3 , X

2
1X2, X

2
1X3, X

2
2X1, X

2
2X3, X

2
3X1, X

2
3X2, X1X2X3.

Finally, elements of the form

ei1 ∧ · · · ∧ eid , where i1 < i2 < . . . < id

form a basis of
∧d(M), so we get dim(

∧d(M)) =
(
r
d

)
. Again, linear independence follows from the field case.

Here, it will be instructive to make a filtration of
∧d

M in terms of lower wedges of M and M̃ , where M̃
has rank r − 1. Then, induction can be used. All this will be left to the reader.

And now, an application to a bit of geometry. Let M be a (smooth) manifold of dimension r. For every
x ∈M , we have the tangent space to M at x, denoted T (M)x, a rank r vector space. A basis of this vector
space is

∂

∂X1
, . . . ,

∂

∂Xr
,

where X1, . . . , Xr are local coordinates at x ∈M . A tangent vector is just
r∑
j=1

aj
∂

∂Xj
,

the directional derivative w.r.t. the vector −→v = (a1, . . . , ar). The dual space, T (M)Dx , is called the cotangent
space at x or the space of 1-forms at x, and has the dual basis: dX1, . . . , dXr, where

(dXi)
(

∂

∂Xj

)
= δij .
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Every element of T (M)Dx is a 1-form at x, i.e., an expression
∑r
j=1 bjdXj . We have the two vector space

families
⋃
x∈M T (M)x and

⋃
x∈M T (M)Dx . These vector space families are in fact vector bundles (DX), called

the tangent bundle, T (M), and the cotangent bundle, T (M)D, respectively.

Say ϕ : M → N is a map of manifolds, then we get a vector space map,

Dϕx : T (M)x −→ T (N)ϕ(x).

This map can be defined as follows: For any tangent vector, ξ ∈ T (M)x, at x, pick a curve through x (defined
near x), say z : I → M , and having our chosen ξ as tangent vector at t = 0 (with x = z(0)). Here, I is a
small open interval about 0. Then,

I
z−→M

ϕ−→ N

is a curve in N through ϕ(x), and we take the derivative of ϕ(z(t)) at t = 0 to be our tangent vector
(Dϕx)(ξ).

By duality, there is a corresponding map (Dϕx)∗ : T (N)Dϕ(x) −→ T (M)Dx called pull-back of differential

forms. Given any open subset, V , of N , for any section, ω ∈ Γ(V,
∧d

T (N)D), by pullback we get the section
ϕ∗ω ∈ Γ(ϕ−1(V ),

∧d
T (M)D). The reader should explicate this map in terms of the local coordinates on V

and ϕ−1(V ).

Now, consider some section, ω ∈ Γ(U,
∧d

T (M)D), where U is an open in M . In local coordinates, ω
looks like ∑

i1<···<id
a(x)dxi1 ∧ · · · ∧ dxid ; x ∈ U.

Here, U is a piece of a chart, i.e., there is a diffeomorphism ϕ : V (⊆ Rr) −̃→ U . If z : I (⊆ Rd) −→ V is a
map of a D-disk to V , the composition ϕ ◦ z is called an elementary d-chain in U ⊆ M , and a d-chain is a
formal Z-combination of elementary d-chains. Then, we have (ϕ◦z)∗ω, a d-form on I. Hence, by elementary
real calculus in several variables, ∫

I

(ϕ ◦ z)∗ω

makes sense. ((DX), compute (ϕ◦z)∗ω in local coordinates.) We define the integral of ω over the elementary
d-chain ϕ(z(I)) by ∫

ϕ(z(I))

ω =
∫
I

(ϕ ◦ z)∗ω,

and for d-chains, let ∫
d−chain

ω =
∑∫

elem. pieces

ω.

An elaboration of these simple ideas gives the theory of integration of forms on manifolds.

We also have the theory of determinants. Suppose R is a commutative ring and M is a free module of
rank d over R with basis e1, . . . , ed. So,

M ∼=
d∐
j=1

Rej .

Let N be another free module of the same rank with basis f1, . . . , fd. Then, a linear map ϕ ∈ HomR(M,N)
gives a matrix in the usual way (ϕ(ej) as linear combination of the fi’s is the j-th column). By functoriality,
we get a linear map

∧d
ϕ :

∧d
M →

∧d
N . Now, each of

∧d
M and

∧d
N is free of rank 1, and their bases

are e1 ∧ · · · ∧ ed and f1 ∧ · · · ∧ fd, respectively. Therefore,

( d∧
ϕ
)
(e1 ∧ · · · ∧ ed) = λ(f1 ∧ · · · ∧ fd),
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for some unique λ ∈ R. This unique λ is the determinant of ϕ, by definition. Now,(∧d
ϕ
)
(e1 ∧ · · · ∧ ed) = ϕ(e1) ∧ · · · ∧ ϕ(ed), and so det(ϕ) is an alternating multilinear map on the columns

of the matrix of ϕ. If Q is yet a third free module of rank d and if ψ : N → Q is an R-linear map and
g1, . . . , gd a chosen basis for the module Q, then we find that

∧d
ψ takes f1 ∧ · · · ∧ fd to µ(g1 ∧ · · · ∧ gd),

where µ = det(ψ). Since
∧d

ψ is R-linear, it takes λ(f1 ∧ · · · ∧ fd) to λµ(g1 ∧ · · · ∧ gd), and it follows that

det(ψ ◦ ϕ) = µλ = det(ψ) det(ϕ).

It might appear that det(ϕ) depends upon our choice of basis, but this is not entirely so. If one has two
choices of bases in each of M and N , say {ei} and {ẽi}; {fj} and {f̃j}, and if the matrices of the identity
transformations M −→ M and N −→ N in the basis pairs are the same, then det(ϕ) is the same whether
computed with e’s and f ’s or with ẽ’s and f̃ ’s. This situation holds when we identify M and N as same
rank free modules, then we have just one pair of bases: The {ei} and the {ẽi}. The determinant of the
endomomorphism ϕ : M →M is then independent of the choice of basis.

If M and N have different ranks, say M has rank r with chosen basis e1, . . . , er while N has rank s with
chosen basis f1, . . . , fs, then for any R-linear ϕ : M → N , we have the induced map

d∧
ϕ :

d∧
M −→

d∧
N.

Consider ej1 ∧ · · · ∧ ejd , an element of the induced basis for
∧d

M . We apply the map
∧d

ϕ and find

( d∧
ϕ
)
(ej1 ∧ · · · ∧ ejd) =

∑
1≤i1<···<id≤s

λj1...jdi1...id
fi1 ∧ · · · ∧ fid .

The element λj1...jdi1...id
∈ R is exactly the d × d minor from the rows i1, . . . , id and columns j1, . . . , jd of the

matrix of ϕ in the given bases. So, the d× d minors form the entries for
∧d

ϕ. Projectives being cofactors of
free modules allow the definition of determinants of their endomorphisms as well. For this, one must study∧d(

P � P̃
)
. (DX)

For the next two remarks, assume that R ∈ CR.

Remarks:

(1) Let Z be a commutative R-algebra. Then, the functor, Z � (Z)(= Z as R-module), has as left-adjoint
in CR the functor M � SymR(M):

HomR-alg(SymR(M), Z) −̃→ HomR(M, (Z))

is a functorial isomorphism (in M and Z).

(2) An alternating R-algebra is a Z/2Z-graded R-algebra (which means that Z = Zeven �Zodd = Z0 �Z1,
with ZiZj ⊆ Zi+j (mod 2)), together with the commutativity rule

ξη = (−1)deg ξ·deg ηηξ.

The left-adjoint property for
∧
M is this: The functor Z � (Z1) (= Z1 as R-module, where Z is an

alternating R-algebra) has M �
∧
M as left adjoint, i.e.,

Homalt. R-alg(
∧
M,Z) −̃→ HomR(M, (Z1))

is a functorial isomorphism (in M and Z).
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Remark: If ω ∈ (
∧
M)even, then ω ∧ ω need not be zero. In fact, if ξ ∈

∧p
M and η ∈

∧q
M , then (DX)

ξ ∧ η = (−1)pqη ∧ ξ.

Example: M = R4, ω = dx1 ∧ dx2 + dx3 ∧ dx4 (ω is the standard symplectic form on R4). We have

ω ∧ ω = (dx1 ∧ dx2 + dx3 ∧ dx4) ∧ (dx1 ∧ dx2 + dx3 ∧ dx4) = 2dx1 ∧ dx2 ∧ dx3 ∧ dx4 �= 0.

Flat Modules. As with the functor Hom, we single out those modules rendering ⊗ an exact functor.
Actually, before we study right limits, little of consequence can be done. So, here is an introduction and
some first properties; we’ll return to flatness in Section 2.8.

Definition 2.8 An Rop-module, M , is flat (over R) iff the functor N � M ⊗R N is exact. If M is an
R-module then M is flat (over R) iff the functor (on Rop-modules) N � N ⊗R M is exact. The module,
M , is faithfully flat iff M is flat and M ⊗R N = (0) (resp. N ⊗RM = (0)) implies N = (0).

Proposition 2.53 Say M is an R-module (resp. Rop-module) and there is another R-module (resp. Rop-
module), M̃ , so that M � M̃ is flat. Then M is flat. Finitely generated free modules are faithfully flat.
Finitely generated projective modules are flat. Finite coproducts of flat modules are flat. (The finiteness
hypotheses will be removed in Section 2.8, but the proofs require the notion of right limit.)

Proof . Let 0 −→ N ′ −→ N −→ N ′′ −→ 0 be an exact sequence; we treat the case whereM is an Rop-module.
Let F = M � M̃ . As F is flat, the sequence

0 −→ F ⊗R N ′ −→ F ⊗R N is exact.

We have the diagram

M ⊗R N ′ θ ��

��

M ⊗R N

��
F ⊗R N ′ ∼= �� M ⊗R N ′ � M̃ ⊗R N ′ �� M ⊗R N � M̃ ⊗R N F ⊗R N.

∼=

The bottom horizontal arrow is injective and the vertical arrows are injective too, as we see by tensoring the
split exact sequence

0 −→M −→ F −→ M̃ −→ 0

on the right with N and N ′. A trivial diagram chase shows that θ is injective, as contended.

Assume F is free and f.g., that is, F =
∐
S R, where S �= ∅ and S is finite. Since F ⊗R N ∼=

∐
S N , we

have F ⊗R N = (0) iff N = (0). If we knew that finite coproducts of flats were flat, all we would need to
show is that R itself is flat. But, R⊗R N ∼= N , and so, R⊗R − is exact.

Let M and M̃ be flat and consider their coproduct, F = M � M̃ . Then, for any exact sequence

0 −→ N ′ −→ N −→ N ′′ −→ 0

the maps f : M ⊗R N ′ → M ⊗R N and g : M̃ ⊗R N ′ → M̃ ⊗R N are injective, as M and M̃ are flat. Since
the coproduct functor is exact, f � g is injective and so

(M ⊗R N ′)� (M̃ ⊗R N ′) ∼= F ⊗R N ′ −→ F ⊗R N ∼= (M ⊗R N)� (M̃ ⊗R N)

is injective as well, which proves that F is flat.

If P is projective and f.g., then P � P̃ ∼= F , for some module P̃ and some f.g. free module, F . The first
part of the proof shows that P is flat.
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Proposition 2.54 If R ∈ CR is an integral domain (or R ∈ RNG has no zero divisors) then every flat
module is torsion-free. The converse is true if R is a P.I.D. (the proof will be given in Section 2.8).

Proof . If ξ ∈ R, then 0 −→ R
ξ−→ R is an injective Rop-homomorphism ((ξm)ρ = ξ(mρ)). The diagram

0 �� R⊗RM
ξ ��

��

R⊗RM

��
M

ξ �� M

commutes, the vertical arrows are isomorphisms, and the upper row is exact, since M is flat. This shows
that m �→ ξm is injective; so, if ξm = 0, then m = 0.

Remark: The module Q is a flat Z-module. However, Q is not free, not projective (DX) and not faithfully
flat (Q⊗Z Z/2Z = (0)).

2.7 Limit Processes in Algebra

Let Λ be a partially ordered set (with partial order ≤) and assume Λ has the Moore–Smith property (Λ is a
directed set), which means that for all α, β ∈ Λ, there is some γ ∈ Λ so that α ≤ γ and β ≤ γ.

Examples of Directed Sets: (1) Let X be a topological space, and pick x ∈ X; take
Λ = {U | (1) U open in X; (2) x ∈ U}, with U ≤ V iff V ⊆ U .

(2) Λ = N, and n ≤ m iff n | m (Artin ordering).

To introduce right and left limits, we consider the following set-up: We have a category, C, a collection
of objects of C indexed by Λ, say Cα. Consider the two conditions (R) and (L) stated below:

(R) For all α ≤ β, there is a morphism, ϕβα : Cα → Cβ , and there is compatibility: For all α ≤ β ≤ γ, the
diagram

Cγ

Cα
ϕβ

α

��

ϕγ
α

����������
Cβ

ϕγ
β

��









commutes and ϕαα = idCα
.

(L) For all α ≤ β, there is a morphism, ψαβ : Cβ → Cα, and there is compatibility: For all α ≤ β ≤ γ, the
diagram

Cγ
ψα

γ

����
��

��
�� ψβ

γ

��















Cα Cβ
ψα

β



commutes and ψαα = idCα
.

Definition 2.9 A right (direct, inductive) mapping family, (Cα, ϕβα), of C is a family of objects, Cα, and
morphisms, ϕβα, satisfying axiom (R). Mutatis mutandis for a left (inverse, projective) mapping family ,
(Cα, ψαβ ) and axiom (L).
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Examples of Right and Left Mapping Families:

(1L) Let Λ = N with the usual ordering, C = Ab and Cn = Z. Pick a prime, p; for m ≤ n, define
ψmn : Z→ Z as multiplication by pn−m.

(1R) Same Λ, same C, same Cn, and ϕnm : Z→ Z is multiplication by pn−m.

(2L) Same Λ, Artin ordering, same C, same Cn. If n ≤ m, then n | m, so mZ ⊆ nZ, define
ψnm : Z/mZ→ Z/nZ as the projection map.

(2R) Same Λ, Artin ordering, same C, Cn = Z/nZ. If n ≤ m, then r = m/n ∈ Z, define ϕmn : Z/nZ →
Z/mZ as multiplication by r.

Look at the functor (from C to Sets)

T �

(fα : Cα −→ T )α

∣∣∣∣∣∣∣∣∣∣
T

Cα
ϕβ

α

��

fα

����������
Cβ

fβ

��������� commutes whenever α ≤ β

 ,

denoted Lim−→
α

(Cα, ϕβα)(T ), and the cofunctor (from C to Sets)

T �

(gα : T −→ Cα)α

∣∣∣∣∣∣∣∣∣
T

cα

����
��

��
�� cβ

���
��

��
��

Cα Cβ
ψα

β


commutes whenever α ≤ β

 ,

denoted Lim←−
β

(Cβ , ψαβ )(T ).

Question: Are either (or both) of these representable?

Definition 2.10 The right (direct, inductive) limit of a right mapping family, (Cα, ϕβα), is the pair, (C, {cα}),
representing the functor Lim−→

α

(Cα, ϕβα) and is denoted lim−→
α

(Cα, ϕβα). The left (inverse, projective) limit of

a left mapping family, (Cβ , ψαβ ), is the pair, (C, {cβ}), representing the functor Lim←−
β

(Cβ , ψαβ ), denoted

lim←−
β

(Cβ , ψαβ ).

Let us explicate this definition. First, consider right mapping families. The tuple {cα}α is to lie in
Lim−→
α

(Cα, ϕβα)(C), the set of tuples of morphisms, cα : Cα → C, so that the diagram

T

Cα
ϕβ

α

��

cα

����������
Cβ

cβ

���������

commutes whenever α ≤ β. We seek an object, C ∈ C, and a family of morphisms, cα : Cα → C, so that

HomC(C, T ) ∼= Lim−→
α

(Cα, ϕβα)(T ),
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for every T ∈ C, via the isomorphism u �→ {u ◦ cα}α. Thus, the above functorial isomorphism says that for

every family of morphisms, {fα : Cα → T}α ∈ Lim−→
α

(Cα, ϕβα)(T ), there is a unique morphism, u : C → T , so

that
fα = u ◦ cα, for all α ∈ Λ.

This is the universal mapping property of lim−→
α

Cα.

Next, consider left mapping families. This time, the tuple {cβ}β is to lie in Lim←−
β

(Cβ , ψαβ )(C), the set of

tuples of morphisms, cβ : C → Cβ , so that the diagram

C
cα

����
��

��
�� cβ

��












Cα Cβ
ψα

β



commutes whenever α ≤ β. We seek an object, C ∈ C, and a family of morphisms, cβ : C → Cβ , so that

HomC(T,C) ∼= Lim←−
β

(Cβ , ψαβ )(T ),

for every T ∈ C, via the isomorphism u �→ {cβ ◦ u}β . The universal mapping property of lim←−
α

Cα is that for

every family of morphisms, {gα : T → Cα}α ∈ Lim←−
β

(Cβ , ψαβ )(T ), there is a unique morphism, u : T → C, so

that
gα = cα ◦ u, for all α ∈ Λ.

Remark: A right (resp. left) mapping family in C is the same as a left (resp. right) mapping family in the
dual category CD. Thus, lim−→

α

(Cα) exists in C iff lim←−
α

(Cα) exists in CD.

Let us examine Example (1L). If we assume that its inverse limit exists, then we can find out what this
is. By definition, whenever n ≤ m, the map ψnm : Z→ Z is multiplication by pm−n. Pick ξ ∈ C, hold n fixed
and look at cn(ξ) ∈ Z. For all m ≥ n, the commutativity of the diagram

C
cn

		��
��

��
�

cm

���
��

��
��

Z Z
ψn

m



shows that pm−ncm(ξ) = cn(ξ), and so, pm−n divides cn(ξ) for all m ≥ n. This can only be true if cn ≡ 0.

Therefore, all the maps, cn, are the zero map. As there is a unique homomorphism from any abelian group,
T , to (0) and as the tuple of maps, {cα}α, is the tuple of zero maps, the group (0) with the zero maps is
lim←−
α

Cα. In fact, this argument with T replacing C proves the existence of the left limit for the family (1L)

and exhibits it as (0).

Theorem 2.55 (Existence Theorem) If C is any one of the categories: Sets, Ω-groups (includes R-modules,
vector spaces, Ab, Gr), topological spaces, topological groups, CR, RNG, then both Lim−→

α

and Lim←−
α

are

representable (we say that C possesses arbitrary right and left limits).
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Proof . We give a complete proof for Sets and indicate the necessary modifications for the other categories.
Let Λ be a directed index set.

(1) Right limits: For every α ∈ Λ, we have a set, Sα, and we have set maps, ϕβα : Sα → Sβ , whenever
α ≤ β. Let S =

⋃
· Sα, the coproduct of the Sα’s in Sets (their disjoint union). Define an equivalence

relation on S as follows: For all x, y ∈ S,

if x ∈ Sα and y ∈ Sβ then x ∼ y iff (∃γ ∈ Λ)(α ≤ γ, β ≤ γ)(ϕγα(x) = ϕγβ(y)).

We need to check that ∼ is an equivalence relation. It is obvious that ∼ is reflexive and symmetric.

Say x ∼ y and y ∼ z. This means that x ∈ Sα, y ∈ Sβ , z ∈ Sγ and there exist δ1, δ2 ∈ Λ so that α ≤ δ1;
β ≤ δ1; β ≤ δ2; γ ≤ δ2, and

ϕδ1α (x) = ϕδ1β (y); ϕδ2β (y) = ϕδ2γ (z).

As Λ is directed, there is some δ ∈ Λ, with δ1 ≤ δ and δ2 ≤ δ; so, we may replace δ1 and δ2 by δ. Therefore,
ϕδα(x) = ϕδγ(z), and transitivity holds. Let S = S/ ∼. We have the maps

sα : Sα −→
⋃
·
λ

Sλ = S pr−→ S/ ∼ = S,

and the pair (S, {sα}) represents Lim−→
α

Sα, as is easily checked.

(2) Left Limits: We have sets, Sα, for every α ∈ Λ, and maps, ψαβ : Sβ → Sα. Let

P =
{

(ξα) ∈
∏
α

Sα
∣∣ (∀α ≤ β)(ψαβ (ξβ) = ξα)

}
,

be the collection of consistent tuples from the product. The set P might be empty.

We have the maps
pα : P ↪→

∏
α

Sα
prα−→ Sα.

The pair (P, {pα}) represents the cofunctor Lim←−
α

Sα (DX).

Modifications: Look first at the category of groups (this also works for Ω-groups and rings).

(1′) Right limits. Write Gα for each group (α ∈ Λ). We claim that G = lim−→
α

Gα (in Sets) is already a

group (etc., in a natural way) and as a group, it represents our functor. All we need to do is to define the
group operation on lim−→

α

Gα. If x, y ∈ G = lim−→
α

Gα, then x = cα(ξ) and y = cβ(η), for some ξ ∈ Gα and

some η ∈ Gβ . Since Λ is directed, there is some γ ∈ Λ with α, β ≤ γ; consider ξ′ = ϕγα(ξ) and η′ = ϕγβ(η).
(Obviously, cγ(ξ′) = x and cγ(η′) = y.) So, we have ξ′, η′ ∈ Gγ , and we set

xy = cγ(ξ′η′).

Check (DX) that such a product is well-defined and that G is a group. Also, the maps cα are group
homomorphisms.

The existence of right limits now holds for all the algebraic categories.

Now, consider the category, TOP, of topological spaces. Observe that when each Sα is a topological
space, then the disjoint union, S =

⋃
· Sα, is also a topological space (using the disjoint union topology); in

fact, it is the coproduct in TOP. Give S = S/ ∼ the quotient topology, and then check that the maps sα
are continuous and that (S, {sα}) represents Lim−→

α

Sα in TOP.
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For the category of topological groups, TOPGR, check that G = lim−→
α

Gα is also a topological space as

above and (DX) that the group operations are continuous. Thus, (G, {sα}α) represents Lim−→
α

Gα in TOPGR.

(2′) Left Limits. Again, first assume each Gα is a group and the ψαβ are homomorphisms. Check that
P (= consistent tuples) is a group (in particular, note that (1, 1, . . . , 1, . . .) is consistent so that P �= ∅) and
that the pα’s are homomorphisms (DX); hence, (P, {pα}) represents Lim←−

α

Gα. Now, similar reasoning shows

left limits exist for all the algebraic categories.

For TOP, we make
∏
α Sα into a topological space with the product topology. Check (DX) that the

continuity of the ψαβ ’s implies that P is closed in
∏
α Sα. Then, the pα’s are also continuous and (P, {pα})

represents Lim←−
α

Sα in TOP.

For TOPGR, similar remarks, as above for TOP and as in the discussion for groups, imply that (P, {pα})
represents Lim←−

α

Gα in TOPGR.

Remark: Say Λ is a directed index set. We can make Λ a category as follows: Ob(Λ) = Λ, and

Hom(α, β) =
{
∅ if α �≤ β;
{·} if α ≤ β.

(Here, {·} denotes a one-point set.) Given a right mapping family, (Cα, ϕβα), where ϕβα ∈ HomC(Cα, Cβ), we
define the functor, RF, by

RF(α) = Cα

RF(· : α→ β) = ϕβα.

Similarly, there is a one-to-one correspondence between left-mapping families, (Cβ , ψαβ ), and cofunctors, LF,
defined by

LF(α) = Cα

LF(· : α→ β) = ψαβ .

If we now think of RF and LF as “functions” on Λ and view the Moore–Smith property as saying that the α’s
“grow without bound”, then we can interpret lim−→

α

Cα and lim←−
α

Cα as: “limits, as α→∞, of our ‘functions’

RF and LF”,
lim−→
α

Cα = lim
α→∞RF(α) and lim←−

α

Cα = lim
α→∞LF(α).

Indeed, there is a closer analogy. Namely, we are taking the limit of RF(α) and LF(α) as nets in the sense
of general topology.

Say Γ ⊆ Λ is a subset of our index set, Λ. We say that Γ is final in Λ (old terminology, cofinal) iff for
every α ∈ Λ, there is some β ∈ Γ with α ≤ β. Check (DX),

lim−→
α∈Γ

Cα = lim−→
α∈Λ

Cα; lim←−
α∈Γ

Cα = lim←−
α∈Λ

Cα.

Examples of Right and Left Limits:
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(1R) Recall that Λ = N with the ordinary ordering, Cn = Z and for m ≥ n, ϕmn is multiplication by
pm−n. Consider the isomorphism, θn : Z→ (1/pn)Z ⊆ Q, defined by θn(1) = 1/pn. The diagram

Cn = Z
θn ��

pm−n

��

1
pn

Z
� � ��

incl

��

Q

Cm = Z
θm

�� 1
pm

Z
� � �� Q

commutes, and so, the direct limit on the left is equal to the direct limit in the middle. There, the direct
limit is

lim−→
m

Cm =
{
k

pt

∣∣∣∣ k ∈ Z, p � | k
}
⊆ Q.

This subgroup, lim−→
m

Cm, of Q is usually denoted
1
p∞

Z.

Generalization: Λ = N, Artin ordering (n ≤ m iff n | m), Cn = Z, and for n ≤ m, define, ϕmn =
multiplication by m/n. We get

lim−→
n

Cn = Q. (∗)

(2R) What is lim−→
n|m

Z/nZ? If we observe that Z/nZ ∼= 1
nZ/Z, by (∗), we get

lim−→
n|m

Z/nZ = Q/Z.

Say X and Y are topological spaces and pick x ∈ X. Let

Λx = {U | U open in X and x ∈ U};

Partially order Λx so that U ≤ V iff V ⊆ U (usual ordering on Λx). Clearly, Λx has Moore–Smith. Let

C(U) =
{
f

∣∣∣∣ (1) f : U → Y
(2) f is continuous on U (or perhaps has better properties)

}
Look at lim−→

Λx

C(U), denoted temporarily Cx. We have ξ ∈ Cx iff there is some open subset, U , of X, with

x ∈ U , some continuous function, f : U → Y , and ξ is the class of f .

Two functions, f : U → Y and g : V → Y , where U, V ⊆ X are open and contain x, give the same ξ iff
there is some open, W ⊆ U ∩ V , with x ∈ W , so that f � W = g � W . Therefore, Cx is the set of germs of
continuous functions on X at x. (The usual notation for Cx is OX,x.)

(2L) Consider the left limit, lim←−
n|m

Z/nZ, where ψnm : Z/mZ → Z/nZ is projection. The elements of

lim←−
n|m

Z/nZ are tuples, (ξn), with ξn ∈ Z, such that

(1) (ξn) = (ηn) iff (∀n)(ξn ≡ ηn (mod n)) and

(2) (consistency): If n | m, then ξm ≡ ξn (mod n).
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We obtain a new object, denoted Ẑ. We have an injective map, Z −→ Ẑ, given by n �→ (n, n, . . . , n, . . .).
You should check that the following two statements are equivalent:

(1) Chinese Remainder Theorem.

(2) Z is dense in Ẑ.

Proposition 2.56 Say C = lim−→
α

Cα and let x ∈ Cα and y ∈ Cβ, with cα(x) = cβ(y). Then, there is some

γ ≥ α, β, so that ϕγα(x) = ϕγβ(y). In particular, if all the ϕβα are injections, so are the canonical maps, cα.

Proof . Clear.

Corollary 2.57 Say C = Ω-modules and each Cα is Ω-torsion-free. Then, lim−→
α

Cα is torsion-free.

Proof . Pick x ∈ C = lim−→
α

Cα; λ ∈ Ω, with λ �= 0. Then, λx = λcα(xα), for some α and some xα ∈ Cα. So,

0 = λx = cα(λxα) implies that there is some γ ≥ α, with ϕγα(λxα) = 0. Consequently, λϕγα(xα) = λxγ = 0.
But Cγ is torsion-free, so xγ = 0. Therefore, x = cα(xα) = cγ(xγ) = 0. This proves that C is torsion-free.

Corollary 2.58 Say C = Ω-modules and each Cα is Ω-torsion. Then, lim−→
α

Cα is torsion.

Proof . If x ∈ C, then there is some α and some xα ∈ Cα, with cα(xα) = x. But, there is some λ ∈ Ω, with
λ �= 0, so that λxα = 0, since Cα is torsion. So, λx = λcα(xα) = cα(λxα) = 0.

Proposition 2.59 Let Λ be an index set and C = Sets. Then, every set is the right-limit of its finite subsets
(under inclusion). The same conclusion holds if C = Gr, Ω-groups, RNG, then each object of C is equal to
the right limit of its finitely generated subobjects.

Proof . Let Λ = {T ⊆ S | T finite}. Order Λ, via T ≤ W iff T ⊆ W . Clearly, Λ has Moore–Smith. Let
Σ = lim−→

T∈Λ

T .

For a given T ∈ Λ, we have an injective map, iT : T ↪→ S. Hence, by the universal mapping property,
these maps factor through the canonical maps, γT : T → Σ, via a fixed map, ϕ : Σ→ S:

Σ
ϕ �� S

T

γT

��������� iT

���������

Pick some ξ ∈ S. Then, {ξ} ∈ Λ; so we get a map, γ{ξ} : {ξ} → Σ. Let ψ(ξ) = γ{ξ}(ξ) ∈ Σ. This gives a
map, ψ : S → Σ. Check (DX), ϕ and ψ are inverse maps.

Modifications: Λ = {T ⊆ S | T is a finitely generated subobject of S} and proceed analogously.

Corollary 2.60 An abelian group is torsion iff it is a right-limit of finite abelian groups.

Corollary 2.61 Say C is a category with finite coproducts (or finite products). If C has right limits (resp.
left limits) then C has arbitrary coproducts (resp. arbitrary products).

Proof . Cf. Problem 62.
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Proposition 2.62 Say {Gα}α is a left-mapping family of finite groups (not necessarily abelian). Then, the
left limit, lim←−

α

Gα = G, is a compact topological group. (Such a G is called a profinite group.) Similarly,

if the Gα are compact topological groups and form a left-mapping family with continuous homomorphisms,
then lim←−

α

Gα = G is a compact topological group.

Proof . Observe that the second statement implies the first. Now, G is the group of consistent tuples in∏
αGα. By Tychonov’s theorem,

∏
αGα is compact. As the ψαβ are continuous, the subgroup of consistent

tuples is closed ; therefore, this subgroup is compact.

It follows from Proposition 2.62 that Ẑ is compact.

2.8 Flat Modules (Again)

Proposition 2.63 Say {Ωα}α is a right-mapping family of rings, {Mα}α, {Nα}α are “right-mapping fam-
ilies” of Ωop

α (resp. Ωα)-modules, then {Mα ⊗Ωα
Nα}α forms a right-mapping family (in Ab) and

lim−→
α

(Mα ⊗Ωα
Nα) =

(
lim−→
α

Mα

)
⊗ lim−→

α

Ωα

(
lim−→
α

Nα

)
.

Proof . The hypothesis (within quotes) means that for all α ≤ β, we have

ψβα(λαnα) = θβα(λα)ψβα(nα), for all λα ∈ Ωα and all nα ∈ Nα,

where ψβα : Nα → Nβ and θβα : Ωα → Ωβ , and similarly with the Mα’s.

Let M = lim−→
α

Mα; N = lim−→
α

Nα; Ω = lim−→
α

Ωα and G = lim−→
α

(Mα ⊗Ωα
Nα). Write cα : Mα → M ;

dα : Nα → N and tα : Ωα → Ω, for the canonical maps. We have the maps

cα ⊗ dα : Mα ⊗Ωα
Nα −→M ⊗Ω N,

hence, by the universal mapping property of right limits, there is a unique map, Φ: G → M ⊗Ω N , so that
the following diagram commutes for every α:

G
Φ �� M ⊗Ω N

Mα ⊗Ωα
Nα

canα

������������ cα⊗dα

��

We also need a map, M ⊗ΩN −→ G. Pick m ∈M and n ∈ N , since the index set is directed we may assume
that there is some α so that m = cα(mα) and n = dα(nα). Thus, we have mα⊗Ωα

nα ∈Mα⊗Ωα
Nα and so,

canα(mα ⊗Ωα
nα) ∈ G. Define Ψ by

Ψ(m,n) = canα(mα ⊗Ωα
nα).

Check (DX) that

(1) Ψ is well-defined,

(2) Ψ is bilinear; thus, by the universal mapping property of tensor, there is a map, Ψ: M ⊗Ω N → G,

(3) Φ and Ψ are inverse homomorphisms.
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Proposition 2.64 Suppose C =Mod(Ω) and N ′
α, Nα, N

′′
α , are all right-mapping families of Ω-modules. If

for every α, the sequence
0 −→ N ′

α −→ Nα −→ N ′′
α −→ 0 is exact,

then the sequence
0 −→ lim−→

α

N ′
α −→ lim−→

α

Nα −→ lim−→
α

N ′′
α −→ 0 is again exact.

Proof . (DX)

Corollary 2.65 The right-limit of flat modules is flat.

Proof . The operation lim−→
α

commutes with tensor and preserves exactness, as shown above.

Corollary 2.66 Tensor product commutes with arbitrary coproducts. An arbitrary coproduct of flat modules
is flat.

Proof . Look at
∐
α∈SMα. We know from the Problems that

∐
α∈SMα = lim−→

T

MT , where T ⊆ S, with T

finite and MT =
∐
β∈T Mβ . So, given N , we have

N ⊗Ω

(∐
S

Mα

)
= N ⊗Ω lim−→

T

MT

= lim−→
T

(N ⊗Ω MT )

= lim−→
T

∐
β∈T

(N ⊗Ω Mβ)

=
∐
β∈S

(N ⊗Ω Mβ).

The second statement follows from Corollary 2.65 and the fact that finite coproducts of flat modules are flat
(Proposition 2.53).

Remark: Corollary 2.66 extends the last part of Proposition 2.44 that only asserts that tensor commutes with

finite coproducts. It also proves that Proposition 2.53 holds for arbitrary modules, not just f.g. modules. Thus, free

modules are flat and so, projective modules are flat, too.

Proposition 2.67 Say Ω is a ring and M is an Ωop-module (resp. Ω-module). Then, M is flat iff for every
exact sequence

0 −→ N ′ −→ N −→ N ′′ −→ 0

of Ω (resp. Ωop)-modules in which all three modules are f.g., the induced sequence

0 −→M ⊗Ω N
′ −→M ⊗Ω N −→M ⊗Ω N

′′ −→ 0
(resp. 0 −→ N ′ ⊗Ω M −→ N ⊗Ω M −→ N ′′ ⊗Ω M −→ 0)

remains exact.

Proof . Given
0 −→ N ′ −→ N −→ N ′′ −→ 0,

an arbitrary exact sequence of Ω-modules, write N = lim−→
α

Nα, where the Nα’s are f.g. submodules of N .

Let N ′′
α be the image of Nα in N ′′. So, N ′′

α is f.g., too. We get the exact sequence

0 −→ N ′ ∩Nα −→ Nα −→ N ′′
α −→ 0. (∗)
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Now, N ′ ∩Nα = lim−→
β

N (α)
β , where N (α)

β ranges over the f.g. submodules of N ′ ∩Nα. We get the exact

sequence

0 −→ N (α)
β −→ Nα −→ N ′′

α,β −→ 0, (†)

where N ′′
α,β = Nα/N (α)

β , and all the modules in (†) are f.g. The right limit of (†) is (∗). By hypothesis,
M ⊗Ω (†) is still exact, and the right limit of an exact sequence is exact; so

0 −→M ⊗Ω (N ′ ∩Nα) −→M ⊗Ω Nα −→M ⊗Ω N
′′
α −→ 0 is exact.

Now, if we pass to the right limit, this time over α, we get

0 −→M ⊗Ω N
′ −→M ⊗Ω N −→M ⊗Ω N

′′ −→ 0 is exact.

Theorem 2.68 (FGI-Test)1 An Ω-module, M , is flat iff for all sequences

0 −→ A −→ Ωop −→ Ωop/A −→ 0

in which A is a finitely generated Ωop-ideal, the sequence

0 −→ A⊗Ω M −→ Ωop ⊗Ω M −→ (Ωop/A)⊗Ω M −→ 0 is still exact.

Proof . (⇒) is trivial.

(⇐). We proceed in two steps.

Step 1. I claim: For every exact sequence of Ωop-modules of the form

0 −→ K −→
∐
S

Ωop −→ N −→ 0, (∗)

in which #(S) is finite, we have an exact sequence

0 −→ K ⊗Ω M −→
(∐
S

Ωop
)
⊗Ω M −→ N ⊗Ω M −→ 0.

We prove this by induction on the minimal number, r, of generators of N . (Note that #(S) ≥ r.) The case
r = 1 has all the ingredients of the general proof as we will see. When r = 1, look first at the base case:
#(S) = 1, too. Sequence (∗) is then:

0 −→ K −→ Ωop −→ N −→ 0. (∗)1

This means that K is an ideal of Ωop and we know K = lim−→
α

Kα, where the Kα’s are f.g. Ωop-ideals. Then,

(∗)1 is the right limit of

0 −→ Kα −→ Ωop −→ Nα −→ 0, (∗)α

where Nα = Ωop/Kα. Our hypothesis shows that

0 −→ Kα ⊗Ω M −→ Ωop ⊗Ω M −→ Nα ⊗Ω M −→ 0 is exact.

Pass the latter sequence to the limit over α and obtain

0 −→ K ⊗Ω M −→ Ωop ⊗Ω M −→ N ⊗Ω M −→ 0 is exact.
1FGI stands for finitely generated ideal.
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Thus, the base case #(S) = r = 1 is proved.

We now use induction on #(S) to establish the case #(S) > r = 1. (So, our claim involves an induction
inside an induction.) The induction hypothesis is: For all exact sequences

0 −→ K −→
∐
S

Ωop −→ N −→ 0,

in which #(S) = s and r (= minimal number of generators of N) = 1, tensoring with M leaves the sequence
exact. Say it is true for all sequences with #(S) < s. Given

0 −→ K −→
∐
S

Ωop −→ N −→ 0, #(S) = s,

pick some σ ∈ S and let Σ = S − {σ}. We have the map Ωop = Ωop
σ ↪→

∐
S Ωop −→ N , and we let Nσ be

the image of this map in N . This gives the commutative diagram

0

��

0

��

0

��
0 �� Kσ

��

��

Ω = Ωσ ��

��

Nα ��

��

0

0 �� K ��

��

∐
S Ω ��

��

N ��

��

0

0 �� K ′′ ��

��

∐
Σ Ω ��

��

N ′′ ��

��

0

0 0 0

(where N ′′ = N/Nσ) with exact rows and columns and the middle column split-exact. Note that N ′′ and
Nσ have r ≤ 1 and when r = 0 the above argument is trivial. Tensor the diagram on the right with M . So,
the top and bottom rows remain exact (by the induction hypothesis and the base case), the middle column
remains exact (in fact, split) and all other rows and columns are exact:

0

��
0 �� Kσ ⊗Ω M ��

ν

��

Ω⊗Ω M ��

��

Nα ⊗Ω M ��

��

0

K ⊗Ω M
α ��

π

��

(∐
S Ω

)
⊗Ω M ��

θ

��

N ⊗Ω M ��

��

0

0 �� K ′′ ⊗Ω M ��

��

(∐
Σ Ω

)
⊗Ω M ��

��

N ′′ ⊗Ω M ��

��

0

0 0 0 .

We must show that α is an injection. Take x ∈ K ⊗Ω M . If α(x) = 0, then θ(α(x)) = 0, which implies that
π(x) goes to zero under the injection (K ′′⊗ΩM −→

(∐
Σ Ω

)
⊗ΩM), and so, π(x) = 0. Then, there is some
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y ∈ Kσ⊗ΩM with ν(y) = x. But the map Kσ⊗ΩM −→ Ω⊗ΩM −→
(∐

S Ω
)
⊗ΩM is injective and y goes

to zero under it. So, we must have y = 0, and thus, x = 0. This proves that α is injective, and completes
the interior induction (case: r = 1). By the way, α is injective by the five lemma with the two left vertical
sequences considered horizontal and read backwards!

There remains the induction on r. The case r = 1 is proved. If the statement is true for modules N with
< r minimal generators, we take an N with exactly r as its number of minimal generators. Then, for any
finite S, and any sequence

0 −→ K −→
∐
S

Ωop −→ N −→ 0,

we choose, as above, σ ∈ S and set Σ = S − {σ} and let Nσ, N ′′ be as before. Now redo the argument
involving the 9 term diagram; it shows α is, once again, injective and the claim is proved.

Step 2. I claim that for every sequence

0 −→ N ′ −→ N −→ N ′′ −→ 0

of Ωop-modules, all of which are f.g., the sequence

0 −→ N ′ ⊗Ω M −→ N ⊗Ω M −→ N ′′ ⊗Ω M −→ 0

remains exact. By the previous proposition, this will finish the proof.

Since N ′, N and N ′′ are all f.g., we have the commutative diagram

0

��

0

��

0

��
0 �� K ′ ��

��

∐
S Ω ��

��

N ′ ��

��

0

0 �� K ��

��

∐
S∪T Ω ��

��

N ��

��

0

0 �� K ′′ ��

��

∐
T Ω ��

��

N ′′ ��

��

0

0 0 0 ,

in which the middle column is split-exact. By tensoring this diagram with M (on the right), we get the
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following commutative diagram with all exact rows (by Step 1) and columns:

0

��

Ker α

��
0 �� K ′ ⊗Ω M ��

��

(∐
S Ω

)
⊗Ω M ��

��

N ′ ⊗Ω M ��

α

��

0

0 �� K ⊗Ω M ��

��

(∐
S∪T Ω

)
⊗Ω M ��

��

N ⊗Ω M ��

��

0

0 �� K ′′ ⊗Ω M
β ��

��

(∐
T Ω

)
⊗Ω M ��

��

N ′′ ⊗Ω M ��

��

0

0 0 0 .

We must show that α is injective. Apply the snake lemma to the first two rows: We get

0 −→ Ker α δ−→ K ′′ ⊗Ω M
β−→

(∐
T

Ω
)
⊗Ω M is exact.

But, Ker β = (0) implies that Im δ = (0), and so, Ker α = (0).

The second (unproven) assertion of Proposition 2.54 now follows from Theorem 2.68.

Corollary 2.69 If Ω is a P.I.D., more generally, a nonzero-divisor ring all of whose f.g. Ωop-ideals are
principal, then M is flat over Ω iff M is Ω-torsion-free.

Proof . The implication (⇒) is always true when Ω has no zero divisors.

(⇐). By the previous theorem, we only need to test against exact sequences of the form

0 −→ A −→ Ωop −→ Ωop/A −→ 0,

where A is a f.g. (hence, principal) Ωop-ideal. So, there is some λ ∈ Ω with A = λΩ. We have the
commutative diagram

0 �� Ω
λ ��

θ

��

Ω �� Ω/λΩ �� 0

0 �� A
� � �� Ω �� Ω/A �� 0

(with A considered as right ideal and where θ(µ) = λµ) and all the vertical maps are isomorphisms. Conse-
quently, we may assume that our exact sequence is

0 −→ Ω λ−→ Ω −→ Ω/λΩ −→ 0.

By tensoring with M , we get the exact sequence

Ω⊗Ω M
λ−→ Ω⊗Ω M −→ (Ω/λΩ)⊗Ω M −→ 0,

which, in view of the isomorphisms Ω⊗Ω M ∼= M and (Ω/λΩ)⊗Ω M ∼= M/λM , is equivalent to

M
λ−→M −→M/λM −→ 0.

Since M has no torsion, multiplication by λ is injective and the sequence is exact.
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� The corollary is false if Ω is not a P.I.D. Here is an example:

Consider the ring, A = C[X,Y ] (A ∈ CR). The ring A is a domain; so, it is torsion-free. (It’s even a
UFD.) Let M be the ideal of A generated by X and Y . We can write

M = {f ∈ C[X,Y ] | f(X,Y ) = g(X,Y )X + h(X,Y )Y, with g(X,Y ), h(X,Y ) ∈ C[X,Y ]}
= {f ∈ C[X,Y ] | f(0, 0) = 0, i.e., f has no constant term}.

Since M ⊆ A, we see that M is torsion-free.

Claim: M is not flat.

Now, A/M ∼= C, so C is an A-module; how?

The A-module structure on C is as follows: For any f(X,Y ) ∈ A and any λ ∈ C,

f(X,Y ) · λ = f(0, 0)λ.

Note that X · λ = Y · λ = 0. When we consider M as an A-module, write its generators as e1 and e2. Under
the map M −→ A, we have e1 �→ X and e2 �→ Y . There is a unique nontrivial relation:

Y · e1 −X · e2 = 0.

We claim that e1 ⊗ e2 �= e2 ⊗ e1 in M⊗A M. To see this, define a map, B : M×M→ C.

(a) First, define B on the generators e1, e2, by setting

B(e1, e1) = B(e2, e2) = 0, B(e1, e2) = 1, B(e2, e1) = −1.

(b) We need to check that B is well-defined. Let’s check it for the left hand side argument:

B

(
Y · e1 −X · e2,

(
e1
e2

))
= Y ·B

(
e1,

(
e1
e2

))
−X ·B

(
e2,

(
e1
e2

))
.

In the case of e1, we get X · 1 = 0, and in the case of e2, we get Y · 1 = 0. The reader should check
similarly that there is no problem for the righthand side argument.

Consequently, we get a linear map, θ : M⊗M −→ C. For this linear map,

θ(e1 ⊗ e1) = θ(e2 ⊗ e2) = 0, θ(e1 ⊗ e2) = 1, θ(e2 ⊗ e1) = −1.

So, e1 ⊗ e2 �= e2 ⊗ e1, as contended. Now we will see that M is not flat as A-module. Look at the exact
sequence

0 −→M −→ A −→ C −→ 0

and tensor it with M. We get

M⊗A M −→ A⊗A M −→ C⊗A M −→ 0 is exact.

However, M ⊗A M −→ A ⊗A M is not injective. To see this, use the isomorphism µ : A ⊗A M ∼= M, via
α⊗m �→ α ·m and examine the composed homomorphism

ϕ : M⊗A M −→ A⊗A M
µ−→M.

Since µ is an isomorphism, all we must prove is that ϕ is not injective. But,

ϕ(e1 ⊗ e2) = µ(X ⊗ e2) = X · e2
ϕ(e2 ⊗ e1) = µ(Y ⊗ e1) = Y · e1.

Yet, X · e2 = Y · e1 and e1 ⊗ e2 �= e2 ⊗ e1, so ϕ is not injective and M is not flat.

Say Ω is a Λ-algebra and M is a Λop-module, then M ⊗Λ Ω is an Ωop-module. The module M ⊗Λ Ω is
called the base extension of M to Ω.
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Proposition 2.70 Say M is a flat Λ-module, then its base extension, Ω⊗ΛM , is again a flat Ω-module. If
N is a flat Ω-module and Ω is a flat Λ-algebra, then N considered as Λ-module (via Λ −→ Ω), is again flat
over Λ.

Proof . Assume M is flat as Λ-module. Then, we know that for any exact sequence of Λop-modules,

0 −→ N ′ −→ N −→ N ′′ −→ 0,

the sequence
0 −→ N ′ ⊗Λ M −→ N ⊗Λ M is exact.

Now, take any exact sequence of Ω-modules, say

0 −→ N ′ −→ N −→ N ′′ −→ 0, (†)

it is still exact as a sequence of Λ-modules. Hence,

0 −→ N ′ ⊗Λ M −→ N ⊗Λ M is exact.

Tensoring (†) with Ω⊗Λ M over Ω, we get

N ′ ⊗Ω (Ω⊗Λ M) −→ N ⊗Ω (Ω⊗Λ M) −→ · · · . (††)

We want to show that (††) is exact on the left. But Z ⊗Ω (Ω ⊗Λ M) ∼= Z ⊗Λ M , for any Ωop-module, Z.
Hence, (††) becomes

N ′ ⊗Λ M −→ N ⊗Λ M −→ · · · ,
and we already observed that this sequence is exact on the left.

For the second part, take an exact sequence of Λop-modules,

0 −→M ′ −→M −→M ′′ −→ 0. (∗)

We need to show that
0 −→M ′ ⊗Λ N −→M ⊗Λ N is exact.

Tensor (∗) over Λ with Ω. The resulting sequence

0 −→M ′ ⊗Λ Ω −→M ⊗Λ Ω −→ · · · (∗∗)

is still exact as Ω is flat. Tensor (∗∗) with N over Ω; again, as N is flat over Ω, we get

0 −→ (M ′ ⊗Λ Ω)⊗Ω N −→ (M ⊗Λ Ω)⊗Ω N −→ · · · is exact.

But the latter exact sequence is just

0 −→M ′ ⊗Λ N −→M ⊗Λ N −→ · · · ,

as required.

Harder question: Let P (Λ) be a property of Λ-modules. Say Ω is a Λ-algebra and M is a Λ-module.
Then, we get the Ω-module, Ω⊗Λ M , the base extension of M to Ω. Suppose, Ω⊗Λ M has P (Ω). Does M
have P (Λ)?

If so, one says that P descends in the extension Ω over Λ. This matter is a question of descent.

A more realistic question is: Given P , or a collection of interesting P ’s, for which Λ-algebras, Ω, does
(do) P (Ω) descend?

Examples:
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1. P1(Λ): M is a torsion-free Λ-module.

2. P2(Λ): M is a flat Λ-module.

3. P3(Λ): M is a free Λ-module.

4. P4(Λ): M is an injective Λ-module.

5. P5(Λ): M is a torsion Λ-module.

Take Λ = Z (a very good ring: commutative, P.I.D), Ω = Q (a field, a great ring), Q is flat over Z (and
Z ↪→ Q). Let M = Z� (Z/2Z). (The module M is f.p.) The module M , has, none of Pj(Z) for j = 1, 2, 3, 4.
On the other hand, Q ⊗Z M ∼= Q, and Q has all of Pj(Q) for j = 1, 2, 3, 4. However, P5 descends in the
extension Q over Z. This follows from

Proposition 2.71 The module, M , is a torsion Z-module iff Q⊗Z M = (0).

Proof . (⇒). This has already been proved.

(⇐). First, let M be f.g. We know that there is an exact sequence

0 −→ t(M) −→M −→M/t(M) −→ 0 (†)

where t(M) is the torsion submodule of M and M/t(M) is torsion-free; hence (since M is f.g.), M/t(M) is
free. If we tensor (†) with Q, we get

Q⊗Z M −→ Q⊗Z (M/t(M)) −→ 0.

Since Q ⊗Z M = (0), by hypothesis, we get Q ⊗Z (M/t(M)) = (0). Yet, M/t(M) = �SZ where S is finite;
consequently, S = ∅ and so, M/t(M) = (0), i.e., M = t(M). Therefore, M is torsion.

For an arbitrary M , we can write M = lim−→
α

Mα, where Mα ranges over the f.g. submodules of M . We

have an exact sequence
0 −→Mα −→M, for all α,

and Q is flat; so,
0 −→ Q⊗Z Mα −→ Q⊗Z M is still exact.

But, Q⊗Z M = (0) implies Q⊗Z Mα = (0). As the Mα’s are f.g., the previous argument shows that Mα is
torsion. Then, M = lim−→

α

Mα is torsion as the right limit of torsion modules is torsion.

We now go back to the question. Given the Z-module M , we assume that Q⊗Z M is torsion. Since Q is
a field, Q⊗Z M = (0). Proposition 2.71 implies that M is torsion and P5 descends in the extension Q over
Z.

2.9 Further Readings

Rings and modules are covered in most algebra texts, so we shall nor repeat the references given in Section
1.8. Other references include Atiyah MacDonald [3], Lafon [32, 33], Eisenbud [13], Matsumura [39], Malliavin
[38] and Bourbaki [8].
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