
Chapter 3

Commutative Rings

3.1 Introduction

The ordinary arithmetic of the integers and simple generalizations (such as the Gaussian Integers) as well
as of analogues like the polynomial ring in one variable over a field gave rise to the study of number theory
and then to the study of commutative rings. The assumption of commutativity in multiplication makes
possible a much deeper theory with more satisfying applications. Nowadays, a thorough knowledge of this
Chapter is essential in order to do Algebraic Geometry and Algebraic Number Theory (and their mixture:
Arithmetic Algebraic Geometry); one also needs to know the material here for Algebraic Topology. Many
of the results are direct consequences of prodding from geometry, physics and number theory. A modern
problem is to use our physical knowledge (quantum theory), our knowledge of modules and representation
theory, and the hints from the forefront of number theory to augment these results to a new and better
theory of not necessarily commutative rings. This endeavor will probably be a big part of the twenty-first
century in mathematics.

3.2 Classical Localization

All rings in this chapter are commutative with unity.

Definition 3.1 Let A ∈ CR and S ⊆ A be a subset of A. We say that S is a multiplicative subset in A iff

(1) 1 ∈ S
(2) If x, y ∈ S, then xy ∈ S
(3) 0 /∈ S.

Examples:

(1) S = Gm(A) = the units of A; the idea is to abstract this case.

(2) S = {α ∈ A | α is not a zero divisor in A}.
(3) S = {x ∈ R | x > 0} ⊆ Gm(R).

(3a) S has property (1) and (2) and is contained in Gm(A).

(4) Given f ∈ A, let S = {fn | n ∈ Z, n ≥ 0} and assume that f /∈ N (A) (i.e., fn �= 0 for all n ≥ 0).
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118 CHAPTER 3. COMMUTATIVE RINGS

Fix a base ring, C, and look at C-algebras in CR (we get CR when C = Z). Let A and B be C-algebras,
where B varies, and let S be a multiplicative subset in A. Look at

HomC−alg(A,B;S) = {ϕ ∈ HomC−alg(A,B) | ϕ(S) ⊆ Gm(B)}.

Check that B � HomC−alg(A,B;S) is a functor from C-algebras to Sets. Is it representable? This means,
is there a C-algebra, S−1A, and a map (of C-algebras), h : A→ S−1A, so that

θB : HomC−alg(S−1A,B) ∼= HomC−alg(A,B;S)

functorially, where θB(ψ) = ψ ◦ h ∈ HomC−alg(A,B;S), as illustrated below:

S−1A
ψ �� B

A

h

��

ψ◦h

�����������

Proposition 3.1 The functor B � HomC−alg(A,B;S) is representable. The representing object, S−1A, is
called the fraction ring of A w.r.t. S (or the localization of A w.r.t. S). The C-algebra map, h : A→ S−1A,
is the canonical map.

Proof . Look at A× S (in Sets) and form the equivalence relation, ∼, given by:

(a, s) ∼ (b, t) iff (∃u ∈ S)(u(at− sb) = 0 in A).

Write
a

s
for the equivalence class of (a, s). So,

a

s
=
b

t
iff (∃u ∈ S)(u(at− sb) = 0).

Define addition and multiplication by:

a

s
+
b

t
=
at+ sb

st
and

a

s
· b
t

=
ab

st
.

Check that these operations are well defined and that S−1A is a C-algebra
(
c · a

s
=
f(c)a
s

)
;1 the C-algebra

map, h : A→ S−1A, is given by h(a) =
a

1
.

Functorial part. Given ψ ∈ HomC−alg(S−1A,B), form ψ ◦ h taking A to B. Now, elements of S become
units in S−1A, because

s

1
· 1
s

=
1
1
, the unit element of S−1A.

But, ψ maps units of S−1A to units of B, so ψ◦h ∈ HomC−alg(A,B;S). Next, given ϕ ∈ HomC−alg(A,B;S),
define

[ϕ]
(a
s

)
= ϕ(s)−1ϕ(a) ∈ B.

Check

(a) The homomorphism [ϕ] : S−1A→ B is well defined.

(b) θB and ϕ 	→ [ϕ] are inverse maps.

1Here, f : C → A is the ring homomorphism making A into a C-algebra.
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We can do the same thing with modules. Let M be an A-module and S a multiplicative set in A. Make
(M × S)/ ∼, where ∼ is given by

(m, s) ∼ (n, t) iff (∃u ∈ S)(u(tm− sn) = 0 in M).

Write
m

s
for the equivalence class of (m, s). Define addition and the action of A by

m

s
+
m′

s′
=
s′m+ sm′

ss′
and a · m

s
=
am

s
.

This gives the A-module, S−1M . We have the canonical map, h : M → S−1M , given by h(m) = m/1.

To discuss what this means, look at the general case of a ring homomorphism, ψ : A → B. We have
two functors: ψ• : Mod(B) � Mod(A) (the backward image functor) and ψ• : Mod(A) � Mod(B) (the
forward image functor). Here, ψ•(M) = M as an A-module via ψ; that means a ·m = ψ(a) ·m. The functor
ψ• is an exact functor. Also, the functor ψ• is given by: ψ•(M) = B ⊗AM . The forward image functor is
only right-exact, in general. These functors form a pair of adjoint functors:

HomB(ψ•(M), N) ∼= HomA(M,ψ•(N)).

Proposition 3.2 The module S−1M is, in a natural way, an S−1A-module. The map M � S−1M is a
functor from Mod(A) to Mod(S−1A) and is left-adjoint to h•. That is,

HomS−1A(S−1M,N) ∼= HomA(M,h•(N)).

Consequently,
S−1M ∼= S−1A⊗AM ∼= M ⊗A S−1A = h•(M).

Proof . Let
a

t
· m
s

=
am

ts
, this is well-defined and makes S−1M into an S−1A-module. If ϕ : M → M̃ in

Mod(A), the assignment
m

s
	→ ϕ(m)

s
yields S−1ϕ : S−1M → S−1M̃ . Check this makes M � S−1M a

functor.

Say θ ∈ HomS−1A(S−1M,N), set

Θ(m) = θ
(m

1

)
∈ h•(N).

Now,
Θ(am) = θ

(am
1

)
= θ

(a
1
m

1

)
=
a

1
· θ

(m
1

)
=

(
a · θ

(m
1

)
in h•(N)

)
= a ·Θ(m).

So, we have a map from HomS−1A(S−1M,N) to HomA(M,h•(N)) given by θ 	→ Θ. Now, say
ϕ ∈ HomA(M,h•(N)); then, S−1ϕ ∈ HomS−1A(S−1M,S−1h•(N)). But, if N ∈ Mod(S−1A), then
S−1h•(N) = N , and we get the map in the opposite direction, ϕ 	→ S−1ϕ. These maps are mutually
inverse. Each of S−1−; S−1A⊗A −; −⊗A S−1A, are left adjoint to h•; so, they are all isomorphic.

Proposition 3.3 The functor M � S−1M is exact, hence, S−1A is a flat A-algebra.

Proof . Given any exact sequence M1
ϕ−→ M2

ψ−→ M3, we will show that S−1M1
S−1ϕ−→ S−1M2

S−1ψ−→ S−1M3

is again exact. Clearly, as M1
ϕ−→M2

ψ−→M3 is exact, we have ψ◦ϕ = 0; and so, (S−1ψ)◦(S−1ϕ) = 0. This
shows that Im (S−1ϕ) ⊆ Ker (S−1ψ). Say ξ ∈ S−1M2 and S−1ψ(ξ) = 0. As ξ = m/s, for some m ∈M2 and
some s ∈ S, and as S−1ψ(ξ) = ψ(m)/s = 0 in S−1M3, there is some u ∈ S with uψ(m) = 0, i.e., ψ(um) = 0.
By exactness, there is some m′ ∈M1 so that um = ϕ(m′). Consider the element m′/(su); we have

S−1ϕ

(
m′

su

)
=
ϕ(m′)
su

=
um

su
=
m

s
= ξ.

Therefore, ξ ∈ Im (S−1ϕ), as required.

Examples:



120 CHAPTER 3. COMMUTATIVE RINGS

(1) S = Gm(A) or more generally, S ⊆ Gm(A). Then, S−1A = A.

(2) S = all nonzero divisors of A. Here, S−1A is a bigger ring if we are not in case (1). The ring S−1A
is called the total fraction ring of A and it is denoted Frac(A). If A is a domain, then Frac(A) is
a field, the fraction field of A. For example, Frac(Z) = Q. The field, Frac(k[X1, . . . , Xn]), denoted
k(X1, . . . , Xn), is the rational function field in n variables (where k is a field). If A is the ring of entire
(holomorphic) functions, then Frac(A) is the field of meromorphic functions on C. If A = Hol(U), the
ring of holomorphic functions on an open, U ⊆ C, then Frac(A) =Mer(U) = the field of meromorphic
functions on U .

(3) S = {fn | f ∈ A (f fixed); f /∈ N (A)}. The ring S−1A has the special notation Af . Observe that

Af =
{
α

fn

∣∣∣∣ α ∈ A,n ≥ 0
}
,

while, in general,

Ker (h : A −→ S−1A) =
{
α ∈ A

∣∣∣ α
1

= 0
}

= {α ∈ A | (∃u ∈ S)(uα = 0)}.

In cases (1) and (2), the map, h, is injective. In case (3), Ker h = {α ∈ A | (∃n ≥ 0)(fnα = 0)}. Consider
the map A[X] −→ Af , via X 	→ 1/f (a 	→ h(a), for a ∈ A). Since aXn 	→ a/fn, our map is surjective.
What is its kernel?

Consider the diagram

Af [X]
X �→1/f�� Af

A[X]

h

��

X �→1/f �� Af .

The kernel of the top arrow is: (X − 1/f). The answer to our question is now easily seen to be

{P (X) ∈ A[X] | (∃r ≥ 0)(frP (X) ∈ (Xf − 1)} = (Xf − 1)ec.

Here, (Xf − 1)ec is, for the moment, just a notation for the left hand side. So,

A[X]/(Xf − 1)ec ∼= Af .

Generalities on extension (e) and contraction (c).

Let ψ : A → B be a map of rings. Say A is an ideal in A. Let Ae = (the extended ideal) be the ideal of
B generated by ψ(A). If B is an ideal in B, then let Bc = (the contracted ideal) be the ideal of A given by

Bc = ψ−1(B) = {x ∈ A | ψ(x) ∈ B}.
Take B = S−1A. If A ⊆ A, what is Ae?

Claim: Ae =
{
α/s | α ∈ A, s ∈ S

}
. Indeed, we have

Ae =

{
n∑
i=1

bi
si

ai
1

∣∣∣∣∣ ai ∈ A, bi ∈ A, si ∈ S
}
.

Such a sum is of the form
1
σ

∑n
i=1 ciai, where σ = s1 · · · sn; ci ∈ A and ai ∈ A. Since A is an ideal, this sum

is of the form α/σ, where α ∈ A. We have proved part of
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Proposition 3.4 For any commutative ring, A, and any multiplicative subset, S, of A we have:

(1) Gm(S−1A) = {α/s | (∃b ∈ A)(bα ∈ S)}.
(2) If A ⊆ A then Ae = {α/s | α ∈ A, s ∈ S}.
(3) Ae = (1) = S−1A iff A ∩ S �= ∅.

Proof . (1) We have α/s ∈ Gm(S−1A) iff there is some β/t with
βα

ts
= 1 =

1
1

iff (∃u ∈ S)((uβ)α = ust).
But, ust ∈ S; so, if we set b = uβ, we get bα ∈ S. The converse is clear.

(2) Already done.

(3) We have Ae = (1) iff some element of Ae is a unit iff α/s is a unit for some α ∈ A iff there is some
b ∈ A with bα ∈ S. But, α ∈ A, so bα ∈ A, yet bα ∈ S; so, A ∩ S �= ∅. Conversely, if A ∩ S �= ∅, then
{s/1 | s ∈ S} ∩ Ae �= ∅. Consequently, Ae has a unit in it, and so, Ae = (1).

Say A ⊆ A, when is A contracted? First an easier question: What is Aec?

Note: for all v ∈ A, we have A ⊆ (v −→ A) (this only uses the fact that A is a two-sided ideal).

Claim: (v −→ A) = A iff v is not a zero divisor mod A, i.e., v ∈ A/A is not a zero divisor. (Terminology:
v is regular w.r.t, A).

We have (v −→ A) = A iff (v −→ A) ⊆ A iff for every ξ ∈ A, when ξv ∈ A, then ξ ∈ A. Reading this
mod A, we find the above statement is equivalent to

(∀ξ ∈ A/A)(ξv = 0 =⇒ ξ = 0),

which holds iff v is not a zero divisor in A/A.

Going back to the question: What is Aec?, we have ξ ∈ Aec iff h(ξ) ∈ Ae iff h(ξ) = α/s, for some α ∈ A
and some s ∈ S, iff ξ/1 = α/s iff there is some u ∈ S so that u(ξs− α) = 0, i.e. uξs = uα ∈ A. As us ∈ S,
this implies that there is some v ∈ S with vξ ∈ A. Conversely, if vξ ∈ A for some v ∈ S, then

v

1
ξ

1
∈ Ae =⇒ 1

v

v

1
ξ

1
∈ Ae =⇒ ξ

1
∈ Ae =⇒ h(ξ) ∈ Ae,

and so, ξ ∈ Aec. Therefore,

Aec = {ξ | (∃v ∈ S)(vξ ∈ A)}
= {ξ | (∃v ∈ S)(ξ ∈ (v −→ A))}
=

⋃
v∈S

(v −→ A).

Now, A = (1 −→ A) ⊆ ⋃
s∈S(s −→ A) = Aec.

When is A contracted, i.e., when is it of the form A = Bc, for some B ⊆ S−1A?

Of course, if A = Aec, then B = Ae will do. In fact, we shall prove that A = Bc for some B ⊆ S−1A iff
A = Aec. First, we claim that B = Bce for every B ⊆ S−1A; that is, every ideal, B, of S−1A is an extended
ideal. For, any ξ in B is of the form ξ = α/s, for some α ∈ A and some s ∈ S. But, sξ ∈ B, too, and so,
α/1 ∈ B, which implies that α ∈ Bc. Consequently, ξ = α/s ∈ Bce. Conversely, if ξ ∈ Bce, then ξ = β/t,
with β ∈ Bc; it follows that ξ = (1/t)(β/1) ∈ B, and so, B = Bce.

But now, A = Bc implies that Ae = Bce = B; so, Aec = Bc = A. These remarks prove most of the

Proposition 3.5 If A ∈ CR and S is a multiplicative system in A, then
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(1) An ideal, A, of A is contracted iff A = Aec iff every element of S is regular for A.

(2) Every ideal, B ⊆ S−1A, is extended.

(3) The map, A 	→ Ae, is a one-to-one inclusion-preserving correspondence between all the contracted ideals
of A and all ideals of S−1A.

(4) If A is noetherian, then S−1A is noetherian.

Proof . (1) We proved earlier that Aec =
⋃
v∈S(v −→ A) and we know that (v −→ A) = A iff v is regular for

A. So, (1) is now clear.

(2) This has already been proved.

(3) Assume that A and Ã have the same extension and both are contracted. Then, by (1) A = Aec and
Ã = Ãec, and since, by hypothesis Ae = Ãe, we get A = Ã. It is also clear that if A ⊆ Ã, then Ae ⊆ Ãe.

(4) (DX) from (1), (2), (3).

The same argument shows the corresponding proposition for modules.

Proposition 3.6 If A ∈ CR and S is a multiplicative system in A, for any module, M ∈Mod(A),

(1) A submodule, N , of M is contracted iff it is equal to its S-saturation. The S-saturation of N is the
submodule given by

{ξ ∈M | (∃v ∈ S)(vξ ∈ N)} =
⋃
v∈S

(v −→ N),

where (v −→ N) = {ξ ∈M | vξ ∈ N}.
(2) Every submodule of S−1M is extended, i.e., has the form S−1N , for some submodule, N , of M .

(3) The map, N 	→ S−1N , is a one-to-one inclusion-preserving correspondence between all the S-saturated
submodules of M and all submodules of S−1M .

(4) If M is a noetherian module, then S−1M is a noetherian module.

Proposition 3.7 Say A ∈ CR and S is a multiplicative system in A. For any ideal, A ⊆ A, we have

(a) The image, S, of S in A/A, is a multiplicative subset provided that S ∩ A = ∅.

(b) S−1A/Ae −̃→ S
−1

(A/A).

Proof . (a) This is trivial.

(b) We have A −→ A/A −→ S
−1

(A/A). The elements of S become units in S
−1

(A/A). By the universal
mapping property, we have the map S−1A −→ S

−1
(A/A). This map is a/s 	→ a/s; so, it is surjective. We

have a/s = 0 in S
−1

(A/A) iff there is some u ∈ S so that u a = 0 iff a/1 ∈ Ae iff a/s ∈ Ae. Therefore, the
kernel of our map is Ae, and so, S−1A/Ae −̃→ S

−1
(A/A).
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3.3 Prime and Maximal Ideals

Recall that an ideal, p, of A ∈ CR is a prime ideal iff p �= (1) and for all a, b ∈ A, if ab ∈ p, then one of a ∈ p
or b ∈ p holds.

Proposition 3.8 Given a commutative ring, A, for any ideal, A ⊆ A, the following are equivalent:

(1) The ideal, A, is a prime ideal.

(2) The ring A/A is an integral domain.

(3) The set S = A− A = the complement of A is a multiplicative subset of A.

(4) If B and B̃ are two ideals of A and if BB̃ ⊆ A, then one of B ⊆ A or B̃ ⊆ A holds.

(5) There is a ring, B, a homomorphism, ϕ : A→ B and a maximal ideal, m, of B, so that ϕ−1(m) = A.

(6) There is a multiplicative set, S ⊆ A, so that

(i) A ∩ S = ∅ and

(ii) A is maximal among the ideals having (i).

Proof . Equivalence of (1)–(4) is known and clear. Now, the inverse image of a prime ideal is always a prime
ideal (DX). Every maximal ideal is prime, so it follows that (5) ⇒ (1). Moreover, (1) implies (6) because
take S = A− p. This is a multiplicative set by (3) and (6) follows tautologically.

(1) ⇒ (5). Given a prime, A, let S = A − A, a multiplicative set by (3) and let B = S−1A and ϕ = h.
We claim that Ae is a maximal ideal of S−1A. This is because S−1A/Ae −̃→ S

−1
(A/A), but A/A is an

integral domain and S = nonzero elements of A/A. Consequently, S
−1

(A/A) = Frac(A/A) is a field; so, Ae

is a maximal ideal. Now, h−1(Ae) = Aec =
⋃
v∈S(v −→ A). Now, ξ ∈ (v −→ A) iff vξ ∈ A, where v /∈ A.

But, A is prime, so ξ ∈ A. Therefore, (v −→ A) = A, for all v ∈ S; and so, Aec = h−1(Ae) = A and (5)
follows.

(6)⇒ (1). Given any a, b /∈ A, we must show that ab /∈ A. The hypotheses imply that A + (a) > A and
A + (b) > A, and by (6) (i) and (ii), we have (A + (a)) ∩ S �= ∅ and (A + (b)) ∩ S �= ∅. So, there are some
s, t ∈ S, where s = α+ ρa, t = β + σb, with α, β ∈ A, ρ, σ ∈ A. Since st ∈ S, it follows that

αβ + ρaβ + σbα+ ρσ(ab) ∈ S.
If ab ∈ A, then st ∈ A ∩ S, a contradiction. Therefore, ab /∈ A.

Corollary 3.9 Given any multiplicative set, S, in A, there exists a prime ideal, p, so that p ∩ S = ∅.
Proof . Look at S = {A | A an ideal and A ∩ S = ∅}. We have (0) ∈ S, partially order S by inclusion and
check that S is inductive. By Zorn’s lemma, S has some maximal element, p. By (6), the ideal p is prime.

Notation: If S = A − p, where p is a prime ideal, write Ap instead of S−1A; the ring Ap is called the
localization of A at p. Recall that a local ring is a ring that has a unique maximal ideal.

Corollary 3.10 For any prime ideal, p, in A, the ring Ap is always a local ring and its maximal ideal is
just pe.

Proof . Say A is an ideal of A. Ideals of Ap = S−1A are extended ideals, i.e., they are of the form Ae. We
have Ae = (1) iff A ∩ S �= ∅ iff A �⊆ p. Thus, Ae is a proper ideal iff A ⊆ p; the latter implies that Ae ⊆ pe.
So, pe is the maximal ideal of Ap, as contended.

Remark: We have pec = p. We saw this above in the proof that (1)⇒ (5).
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Proposition 3.11 Let A ∈ CR be a commutative ring, S be a multiplicative set in A and let P be a prime
ideal of A. Then,

(1) The ideal Pe is a prime ideal of S−1A iff Pe �= (1) iff P ∩ S = ∅.
(2) Every prime ideal of S−1A has the form Pe, for some prime ideal, P, of A.

(3) There is a one-to-one, inclusion-preserving, correspondence between the prime ideals of S−1A and the
prime ideals, P, of A for which P ∩ S = ∅.

When S = A− p for some prime, p, of A, we have

(1′) The ideal Pe is a prime of Ap iff P is a prime in A and P ⊆ p.

(2′) Every prime ideal of Ap is Pe, for some prime, P, of A with P ⊆ p.

(3′) There is a one-to-one, inclusion-preserving, correspondence between all primes of Ap and the
primes of A contained in p.

Proof . (1) We know that Pe �= (1) iff P ∩ S = ∅. By definition, a prime ideal is never equal to (1), so, all
we must show is: If P is prime in A, then Pe is prime in S−1A (of course, Pe �= (1)). Say (α/s)(β/t) ∈ Pe.
Then, (αβ)/1 ∈ Pe, and so, αβ ∈ Pec. But, Pec =

⋃
v∈S(v −→ P) and ξ ∈ (v −→ P) iff vξ ∈ P; moreover,

v /∈ P since P ∩ S = ∅, so, ξ ∈ P. Therefore, Pec = P, and so, αβ ∈ P. Since P is prime, either α ∈ P or
β ∈ P; it follows that either α/s ∈ Pe or β/t ∈ Pe.

(2) If q is a prime in S−1A, then q = qce and qc is a prime, as qc = h−1(q). Take P = qc to satisfy (2).
Conversely, Pe is prime iff P ∩ S = ∅.

(3) follows from (1) and (2) and previous work.

Finally, (1′), (2′) and (3′) are special cases of (1), (2) and (3), respectively.

Definition 3.2 If p is a prime ideal of A ∈ CR, look at chains of prime ideals

p = p0 > p1 > · · · > pn,

where each pj is prime ideal of A. Call n the length of this chain and define the height of p by

ht(p) = sup{length of all chains p = p0 > p1 > · · · > pn}.

Observe that ht(p) might be infinite. Since there is a one-to-one inclusion-preserving correspondence
between the set of all primes, P, contained in p and the set of all prime ideals of Ap, we get

ht(p) = ht(maximal ideal of Ap).

Definition 3.3 The Krull dimension of a commutative ring, A, denoted dim(A), is the supremum of the
set {ht(m) | m is a maximal ideal of A}.

Hence, we see that ht(p) = dim(Ap), and

dim(A) = sup{dim(Am) | m is a maximal ideal of A}.

Examples.

(1) Say dim(A) = 0. This holds iff every prime ideal is maximal iff every maximal ideal is a minimal
prime ideal. An example is a field, or Z/nZ.
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(2) dim(A) = 1. Here, A = a P.I.D. will do. For example, Z, Z[i], Q[T ], more generally, k[T ], for any
field, k. Also, Z[

√−5], a non-P.I.D., has dimension 1.

(3) C[T1, . . . , Tn] has dimension n (this is not obvious, try it!) Given a commutative ring, A, for appli-

cations to algebraic geometry and number theory, it is useful to introduce two important sets, SpecA and
MaxA, and to make these sets into topological spaces. Let

SpecA = {p | p is a prime ideal of A}
MaxA = {m | m is a maximal ideal of A}.

The set, X = SpecA, is given a topology (the Zariski topology or spectral topology) for which a basis of
open sets consists of the sets

Xf = {p ∈ SpecA | f /∈ p} (f ∈ A),

and MaxA ⊆ SpecA is given the relative topology.

Remarks:

(1) Xfn = Xf , for all n ≥ 1. This is because fn /∈ p iff f /∈ p, as p is prime.

(2) Xfg = Xf ∩Xg. This is because p ∈ Xfg iff fg /∈ p iff (f /∈ p) and (g /∈ p).

(3) Xf = SpecA = X iff f /∈ p, for every prime p iff f ∈ Gm(A) iff Xf = X1.

(4) Xf = ∅ iff f ∈ p, for all primes, p.

The open sets in X = SpecA are just the sets of the form
⋃
f∈T Xf , for any subset, T , of A. So, a set,

C, is closed in X iff it is of the form C =
⋂
T X

c
f , where

Xc
f = {p ∈ SpecA | p /∈ Xf} = {p ∈ SpecA | f ∈ p} = {p ∈ SpecA | (f) ⊆ p}.

Thus, p ∈ C iff the ideal generated by the set T is contained in p. This suggests the following definition: For
any ideal, A, in A, let

V (A) = {p ∈ SpecA | p ⊇ A}
be the variety defined by A. Then, we have

V (A) =
⋂
f∈A

Xc
f =

⋂
{Xc

f | f is part of a generating set for A}.

The dual properties to (1)–(4) are:

(1′) V (A ∩B) = V (AB) = V (A) ∪ V (B)

(2′) V (
∑
α Aα) =

⋂
α V (Aα) (

∑
α Aα = the ideal generated by the Aα’s).

(3′) V (A) = ∅ iff A = (1).

(4′) V (A) = X = SpecA iff (∀p ∈ SpecA)(A ⊆ p).

From now on, when we refer to SpecA and MaxA, we mean these as topological spaces.

To give a more informative criterion for (4) and (4′), we need to study N (A) = the nilradical of A,
defined by

N (A) = {x ∈ A | xn = 0, for some integer n > 0}.
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This is an ideal of A. Indeed, if x ∈ N (A) and y ∈ A, since A is commutative, we have (yx)n = ynxn = 0.
Also, if x, y ∈ N (A), then there is some integer n ≥ 0 so that xn = yn = 0, and by the binomial formula,

(x± y)2n =
2n∑
j=0

(
2n
j

)
xj(±1)2n−jy2n−j = 0,

since y2n−j = 0 if j ≤ n and xj = 0 if j ≥ n. Therefore, x± y ∈ N (A) and N (A) is an ideal.

More generally, if A is an ideal, the radical of A, denoted
√

A, is
√

A = {x ∈ A | (∃n ≥ 0)(xn ∈ A)}.

It is easy to check that
√

A is an ideal and that A ⊆ √A. Note:
√

(0) = N (A).

That
√

A is an ideal can also be seen as follows: Consider the projection map, A bar−→ A/A, and look at
N (A/A). Then,

√
A is the inverse image of N (A/A) under bar, and so,

√
A is an ideal. Furthermore, by

the first homomorphism theorem,
A/
√

A ∼= (A/A)/N (A/A).

Observe that A/N (A) is a ring without nonzero nilpotent elements. Such a ring is called a reduced ring and
A/N (A) is reduced. We write Ared for A/N (A). Note: (A/A)red = A/

√
A. For example,

(Z/pnZ)red = Z/pZ, for any prime p.

The following facts are easy to prove (DX):

(a)
√√

A =
√

A.

(b)
√

A ∩B =
√

A ∩√B.

(c) If Ak ⊆ B, for some k ≥ 1, then
√

A ⊆ √B.

There is another radical, the Jacobson radical , J (A), given by

J (A) =
⋂

m∈Max(A)

m.

Proposition 3.12 For any ring, A ∈ CR, we have

(1) x /∈ Gm(A) iff there is some maximal ideal, m, so that x ∈ m.

(2) If x ∈ J (A), then 1 + x ∈ Gm(A).

(3) N (A) =
⋂

p∈SpecA p; hence N (A) ⊆ J (A).

Proof . (1) is clear (use Zorn’s lemma).

(2) Assume (1 + x) /∈ Gm(A). By (1), there is some m ∈ MaxA, so that 1 + x ∈ m. So, x /∈ m (else,
1 ∈ m, a contradiction). As J (A) is contained in every maximal ideal, we get x /∈ J (A).

(3) Suppose x ∈ N (A); then, xn = 0, for some n ≥ 0. Consequently, xn ∈ p, for every prime p; so,
x ∈ p, as p is prime. Conversely, assume x ∈ ⋂

p∈Spec(A) p. Look at the set S = {xn | n ≥ 0}. Were S a
multiplicative set, then there would be some prime ideal, p, with p ∩ S = ∅. As x ∈ p, this is impossible.
Therefore, S is not a multiplicative set, which happens iff x is nilpotent.

Now, we can give the criteria for (4) and (4′).

(4) Xf = ∅ iff f ∈ N (A).
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(4′) V (A) = X = SpecA iff A ⊆ N (A).

Corollary 3.13 Given any ideal, A,
√

A =
⋂
{p ∈ SpecA | p ⊇ A} =

⋂
{p ∈ SpecA | p ∈ V (A)}.

Proof . There is a one-to-one correspondence between the set of prime ideals, p, containing A and the set of
prime ideals, p, in A/A. So,

⋂{p | p ⊇ A} is the inverse image of N (A/A), but this inverse image is
√

A.

The minimal elements among primes, p, such that p ⊇ A are called the isolated primes of A. Therefore,
√

A =
⋂
{p ∈ SpecA | p is an isolated prime of A}.

Proposition 3.14 The space X = SpecA is always quasi-compact (i.e., compact but not necessarily Haus-
dorff).

Proof . Say
⋃
α Uα = X is an open cover of X. Each open Uα has the form Uα =

⋃
β Xf

(α)
β

. Therefore, we

get an open cover
⋃
α,β Xf

(α)
β

= X. If we prove that this cover has a finite subcover, we are done (DX). The

hypothesis implies that
⋂
α,β X

c

f
(α)
β

= ∅. However the left hand side is V ((f (α)
β )) and so (f (α)

β ) = (1), by

previous work. We find

1 = cα1,β1f
(α1)
β1

+ · · ·+ cαs,βs
f

(αs)
βs

, for some cαj ,βj
∈ A.

Thus, already, (f (αj)
βj

)sj=1 = (1), and so,
⋂s
j=1X

c

f
(αj)
βj

= ∅. Thus,
⋃s
j=1Xf

(αj)
βj

= X, a finite cover.

Remark: The space, SpecA, is almost never Hausdorff. For example,
Spec(Z) = {(0), (2), (3), (5), (7), (11), . . .}, and {(0)} is dense in Spec(Z), i.e., every open set contains (0).

Another geometric example of SpecA and MaxA is this:

Proposition 3.15 Let X be a compact, Hausdorff space and write A = C(X) (the ring of real-valued (or
complex-valued) continuous functions on X). For each x ∈ X, write mx = {f ∈ A | f(x) = 0}. Then

(1) Each mx is a maximal ideal of A and

(2) The map x 	→ mx is a bijection of X with MaxA. (In fact, x 	→ mx is a homeomorphism).

Proof . Note that the map f 	→ f(x) is a homomorphism of C(X) onto R (resp. C). Its kernel is mx, and so,
mx is maximal. By Urysohn’s lemma, if x �= y, there is some continuous function, f ∈ A, so that f(x) = 0
and f(y) = 1. Thus, f ∈ mx and f /∈ my; it follows that mx �= my; so, our map is an injection (of sets).
Take any m in MaxA. Say, m �= mx for all x ∈ X. Given x ∈ X, since m �= mx, there is some fx ∈ m and
fx /∈ mx, Therefore, fx(x) �= 0. Since f is continuous, there is some open subset, Ux, with x ∈ Ux, and
f � Ux �= 0. Then, the family {Ux} is an open cover of X, and by compactness, it contains a finite subcover,
say {Uxj

}tj=1. We have a function, fxj
∈ m, for each j = 1, . . . , t. Let

F =
t∑

j=1

f2
xj

(
F =

t∑
j=1

|fxj
|2, in the complex case

)
.

Clearly, F ≥ 0. Pick any ξ ∈ X. Then, there is some j, with 1 ≤ j ≤ t, so that ξ ∈ Uxj
, and so, fxj

(ξ) �= 0.
It follows that F (ξ) > 0. Thus, F is never zero on X; consequently, 1/F ∈ A. But now, F is a unit
and yet, F ∈ m, a contradiction. Therefore, the map x 	→ mx is surjective. We leave the fact that it is a
homeomorphism as a (DX).

Here are some useful lemmas on primes.
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Lemma 3.16 If p is a prime of A and A1, . . . ,At are some given ideals, then p ⊇ ⋂t
j=1 Aj iff p ⊇ Aj, for

some j.

Proof . (⇐). This is a tautology.

(⇒). Observe that p ⊇ ⋂t
j=1 Aj ⊇

∏t
j=1 Aj , and since p is prime, we must have p ⊇ Aj , for some j.

Lemma 3.17 (Prime avoidance lemma) Let A be an ideal and let p1, . . . , pt be some prime ideals. If
A ⊆ ⋃t

j=1 pj, then A ⊆ pj, for some j. (The lemma says that if A avoids all the pj, in the sense that A �⊆ pj,
then it avoids

⋃t
j=1 pj).

Proof . We proceed by induction on t. The case t = 1 is obvious. Assume the induction hypothesis for
t < n. Given n prime ideals, p1, . . . , pn, by the induction hypothesis, we may assume that A �⊆ ⋃

j �=i pj , for
i = 1, . . . , n. Since, by hypothesis, A ⊆ ⋃n

j=1 pj , for every i = 1, . . . , n, there is some xi ∈ A with

xi ∈ pi and xi /∈ pj , for all j �= i. (†)
Let k be given and form

yk = x1 · · ·xk−1x̂kxk+1 · · ·xn,
where, as usual, the hat over xk means that xk is omitted. Then, yk ∈ pi, for all i �= k. We claim that
yk /∈ pk. Indeed, were it not the case, then we would have yk = x1 · · · x̂k · · ·xn ∈ pk; since pk is prime, there
would be some xj ∈ pk for some j �= k, a contradiction of (†).

Of course, yk ∈ A, for all k. Now, take a = y1 + · · ·+ yn.

Claim. a /∈ ⋃n
j=1 pj .

Suppose that a ∈ pk, for some k. We can write

a = yk +
∑
j �=k

yj ∈ pk, (∗)

and since we proved that yj ∈ pk for all j �= k, the fact that a ∈ pk implies that yk ∈ pk, a contradiction.

Lemma 3.18 Say p1, . . . , pn are prime ideals in A, then S = A−⋃n
j=1 pj is a multiplicative subset of A.

Proof . We have 0 /∈ S and 1 ∈ S. Suppose that s, t ∈ S and st /∈ S. Then, st ∈ ⋃n
j=1 pj , and so, st ∈ pj for

some j; as pj is prime, either s ∈ pj or t ∈ pj , a contradiction.

Now, I.S. Cohen (1950) showed that noetherian-ness of a ring is controlled by its prime ideals.

Lemma 3.19 (Cohen, 1950) If A is an ideal in a commutative ring, A, and if b is an element of A for
which A + (b) is f.g. and (b −→ A) is also f.g., then A is f.g.

Proof . Say A + (b) is generated by β1, . . . , βt. Each βj is of the form aj + ρjb, for some aj ∈ A and some
ρj ∈ A. So, the elements a1, . . . , at and b generate A + (b). Let c1, . . . , cs generate (b −→ A). Then, cjb ∈ A,
for j = 1, . . . , s.

We claim that the elements a1, . . . , at, c1b, . . . , csb generate A.

Pick α ∈ A, then α ∈ A + (b), and so, α =
∑t
j=1 vjaj + ρb, with aj as above, for j = 1, . . . , t. But,

ρb = α−
t∑

j=1

vjaj ∈ A,

and so, ρ ∈ (b −→ A). Consequently, we can write ρ =
∑s
j=1 ujcj , as the cj ’s generate (b −→ A). It follows

that

α =
t∑

j=1

vjaj +
s∑
j=1

uj(cjb),

as contended.
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Proposition 3.20 Let A be a commutative ring, then the following are equivalent:

(1) A is noetherian (A has the ACC).

(2) Every ideal of A is f.g.

(3) A has the maximal condition on ideals.

(4) A has the ACC on f.g. ideals.

(5) (I.S. Cohen, 1950) Every prime ideal of A is f.g.

Proof . We already proved the equivalence (1)–(3) (c.f. Proposition 2.9). Obviously, (1) implies (4) and (2)
implies (5).

(4)⇒ (1). Suppose
A1 < A2 < A3 < · · ·

is a strictly ascending chain of ideals of A. By the axiom of choice, we can find a tuple, (aj)∞j=1, of elements
in A so that aj ∈ Aj and aj /∈ Aj−1. Look at the ascending chain

(a1) ⊆ (a1, a2) ⊆ (a1, a2, a3) ⊆ · · · ⊆ (a1, . . . , an) ⊆ · · · .
This is a strictly ascending sequence, by the choice of the aj ’s, a contradiction.

(5) ⇒ (2). Take F = {A an ideal of A | A is not f.g.} and partially order F by inclusion. If F is not
empty, it is inductive (DX). By Zorn’s lemma, F has a some maximal element, A. Since A ∈ F , it is not f.g.
and by (5), the ideal A is not prime. So, there exist a, b ∈ A with a, b /∈ A and yet, ab ∈ A. Since b /∈ A, we
have A+(b) > A. Now, a ∈ (b −→ A) (since ab ∈ A), yet, a /∈ A, and so, (b −→ A) > A. As A is maximal in
F , it follows that both A + (b) and (b −→ A) are f.g. By Cohen’s lemma, the ideal A is f.g., a contradiction.
Therefore, F = ∅, and (2) holds.

We now move back to modules. Given an A-module, M , we make the definition

Definition 3.4 The support of an A-module, M , denoted Supp(M) is that subset of SpecA given by

Supp(M) = {p ∈ SpecA |Mp �= (0)}.
Proposition 3.21 If M is an A-module, then

Supp(M) ⊆ V ((M −→ (0))) = V (Ann(M)).

If M is f.g., then
Supp(M) = V ((M −→ (0))).

So, the support of a f.g. module is closed in SpecA.

Proof . Pick p in Supp(M), i.e., Mp �= (0). We need to show that p ∈ V ((M −→ (0))), i.e., p ⊇ (M −→ (0)).
We will show that if p �⊇ (M −→ (0)) then Mp = (0). But, p �⊇ (M −→ (0)) implies that there is some s /∈ p
with s ∈ (M −→ (0)). In Mp,

s

1
m

t
=
sm

t
= 0, as s kills M

But, s/1 is a unit in Ap, and so, m/t = 0 already, and Mp = (0).

Now, say M is f.g. with m1, . . . ,mt as generators. Pick p ∈ V ((M −→ (0))), we need to show that
p ∈ Supp(M). This means, if p ⊇ Ann(M), then Mp �= (0). We will prove that if Mp = (0), then
p �⊇ Ann(M).

If Mp = (0), then m/1 = 0. So, there is some s = s(m) ∈ S with sm = 0 in M . If we repeat this process
for each of the m1, . . . ,mt that generate M , we get s1, . . . , st ∈ S such that sjmj = 0, for j = 1, . . . , t. Write
σ = s1 · · · st ∈ S. We get σmj = 0 for all j = 1, . . . , t; so, σ ∈ Ann(M). But, σ ∈ S implies that σ /∈ p;
consequently, p �⊇ Ann(M).
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Proposition 3.22 Say M is an A-module (where A ∈ CR). Then, the following are equivalent:

(1) M = (0).

(2) Supp(M) = ∅.
(2a) Mp = (0), for all p ∈ SpecA.

(3) Supp(M) ∩MaxA = ∅.
(3a) Mm = (0), for all m ∈ MaxA.

Proof . The implications (2) ⇔ (2a) and (3) ⇔ (3a) are obvious. Similarly, (1) ⇒ (2) and (2) ⇒ (3)
are trivial. So, we need to show (3) ⇒ (1). Let us first assume that M is f.g., Then, we know that
Supp(M) = V ((M −→ (0))). The hypothesis (3) implies that m ⊇ (M −→ (0)) for no maximal ideal, m.
This implies that (M −→ (0)) = (1), the unit ideal. Consequently, 1 ∈ (M −→ (0)), and so, M = (0).

Let us now consider the case where M is not f.g. We can write M = lim−→
α

Mα, where the Mα’s range over

the f.g. submodules of M . Now, Mα ⊆M and localization being exact, (Mα)m ⊆Mm; so, (Mα)m = (0) for
all m ∈ MaxA. By the f.g. case, we get Mα = (0) for all α, and thus, M = (0).

Remark: The implication (3) ⇒ (1) can also be proved without using right limits. Here is the proof. Assume

M �= (0). Then, there is some m ∈ M with m �= 0, and let Ann(m) = {a ∈ A | am = 0}; we have Ann(m) �= (1);

so, Ann(m) ⊆ m, for some maximal ideal, m. Consider m/1 ∈ Mm . Since Mm = (0), we have λm = 0, for some

λ ∈ A− m; thus, λ ∈ Ann(m), and yet λ /∈ m ⊇ Ann(m), a contradiction. Therefore, M = (0).

Corollary 3.23 If M ′ ϕ−→ M
ψ−→ M ′′ is a given sequence of modules and maps, then it is exact iff for all

p ∈ SpecA, the sequence M ′
p −→Mp −→M ′′

p is exact iff for all m ∈ MaxA, the sequence
M ′

m −→Mm −→M ′′
m is exact.

Proof . (⇒). This direction is trivial as localization is an exact functor.

Observe that we need only assume that the sequence M ′
m −→ Mm −→ M ′′

m is exact for all m ∈ MaxA.
Then, (ψ ◦ ϕ)m = ψm ◦ ϕm = 0; so if N is the image of the map ψ ◦ ϕ, we find Nm = (0), for all m ∈ MaxA.
By Proposition 3.22, we get N = (0), and thus ψ ◦ ϕ = 0.

Let H = Ker ψ/Im ϕ. The same argument (using exactness of localization) shows that
Hm
∼= (Ker ψ)m/(Im ϕ)m = (0). Again, Proposition 3.22 implies that H = (0) and Ker ψ = Im ϕ, as

contended.

� The statement is not that a whole family of local morphisms comes from a global morphism, rather we
must have the global morphisms and then exactness is a local property.

Local Terminology: If P is property of A-modules (or morphisms), then a module (or morphism) is
locally P iff for every p ∈ SpecA, the module Mp has P as Ap-module.2

Examples: Locally f.g., locally f.p., locally flat, locally exact, locally free, locally zero. etc.

Sometimes, you get a global result from an everywhere local result.

Proposition 3.24 (Local flatness criterion) Say M is an A-module (where A ∈ CR). Then, the following
are equivalent:

(1) M is flat over A.

2In reality, this ought to be called “pointwise P”.
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(2) M is locally flat.

(2a) For every p ∈ SpecA, the module Mp is flat over A.

(3) For every m ∈ MaxA, the module Mm is flat over Am.

(3a) For every m ∈ MaxA, the module Mm is flat over A.

Proof . The implications (1) ⇒ (2) and (2) ⇒ (3) hold, the first by base extension and the second because
it is a tautology. We shall prove that (3)⇒ (1) (and along the way, (3)⇐⇒ (3a) and hence, (2)⇐⇒ (2a)).
Assume 0 −→ N ′ −→ N is exact. Tensoring with M , we get N ′ ⊗A M −→ N ⊗A M . Consider the exact
sequence

0 −→ K −→ N ′ ⊗AM −→ N ⊗AM,

where K = Ker (N ′ ⊗AM −→ N ⊗AM). By localizing at m, we get the exact sequence

0 −→ K ⊗A Am −→ (N ′ ⊗AM)⊗A Am −→ (N ⊗AM)⊗A Am. (∗)

It follows that the sequence

0 −→ Km −→ N ′ ⊗AMm −→ N ⊗AMm is exact. (∗∗)

Now, for any module, L,

(L⊗AM)⊗A Am
∼= (L⊗A Am)⊗Am (M ⊗Am) ∼= Lm ⊗Am Mm,

and so, the sequence

0 −→ Km −→ N ′
m ⊗Am Mm −→ Nm ⊗Am Mm is also exact. (†)

Since, the sequence 0 −→ N ′
m −→ Nm is exact and

(a) Mm is Am-flat; we find Km = (0).

(b) Mm is A-flat; we find Km = (0), again.

But, the above holds for all m ∈ MaxA, and thus, K = (0), as required.

This method amounts to studying modules over the Ap’s and the latter are local rings, where matters
are usually easier. The basic fact is Nakayama’s lemma.

Lemma 3.25 (Nakayama’s lemma) Say A is a commutative ring and J (A) is its Jacobson radical. Suppose
that M is a f.g. A-module and that J (A)M = M . Then, M = (0). That is, if M ⊗A (A/J (A)) = (0), then
M = (0) (recall that M ⊗A (A/J (A)) ∼= M/(J (A)M)).

Proof . Pick a generating set for M of least cardinality. If M �= (0), this set is nonempty. Write m1, . . . ,mt

for these generators. As M = J (A)M , we can express mt ∈ M as mt =
∑t
j=1 αjmj , where αj ∈ J (A).

Consequently,

(1− αt)mt =
t−1∑
j=1

αjmj .

Now, 1−αt ∈ Gm(A), since αt ∈ J (A). Therefore, mt =
∑t−1
j=1 αj(1−αt)−1mj , contradicting the minimality

of t.

Corollary 3.26 (Classical Nakayama) Say A is a local ring and mA is its maximal ideal. Suppose that M
is a f.g. A-module and that mAM = M . Then, M = (0).
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Corollary 3.27 On the category of f.g. modules, A/J (A) is a faithful module. This means if
M ⊗A (A/J (A)) = (0), then M = (0). (In the local ring case, if M ⊗A κ(A) = (0), then M = (0), with
κ(A) = A/mA.)

Corollary 3.28 Let M be an f.g. A-module and say m1, . . . ,mt ∈M have residues m1, . . . ,mt in
M = M ⊗A (A/J (A)) ∼= M/(J (A)M) which generate M . Then, m1, . . . ,mt generate M .

Proof . Let N be the submodule of M generated by m1, . . . ,mt. Look at M/N = M/N . Since M is f.g.,
M/N is f.g. and M/N = M/N = (0). By Corollary 3.27, we get M/N = (0), i.e., M = N .

Corollary 3.29 Let M be an f.g. A-module and let N be a submodule for which N + J (A)M = M . Then,
N = M .

Proof . The hypothesis means M = N ; so, M/N = (0). We conclude using Corollary 3.27, again.

Corollary 3.30 Let A be a local ring and M be a f.g. A-module. Write t for the minimal cardinality of a
set of generators for M . Then

(1) A set of elements m1, . . . ,mr generate M iff m1, . . . ,mr span the vector space M ⊗A κ(A).

(2) Every set of generators of M contains a subset generating M with exactly t elements.

The integer t is equal to dimκ(A)(M ⊗A κ(A)).

Proof . (1) The implication (⇒) is clear and the implication (⇐) follows from Corollary 3.28.

(2) For vector spaces, each spanning set contains a basis; this implies that each generating set of M
contains elements which pass to a basis. So, t ≥ d = dimκ(A)(M ⊗A κ(A)). As any basis of a vector space
spans the vector space, Corollary 3.28 shows that M has a generating set of d elements, and so, t ≤ d.
Therefore, t = d.

Proposition 3.31 Let A be a local ring and M be an A-module. Assume one of

(a) A is noetherian and M is f.g.

(b) M is f.p.

Then, the following are equivalent:

(1) M is free over A.

(2) M is projective over A.

(3) M is faithfully flat over A.

(4) M is flat over A.

Proof . The implications (1) ⇒ (2), (2) ⇒ (4) and (1) ⇒ (3), are already known (c.f. Remark (1) after
Definition 2.4 for (1)⇒ (2) and c.f. Proposition 2.53 and Proposition 2.66 for (2)⇒ (4) and (1)⇒ (3)). We
need only prove (4) ⇒ (1). Hypothesis (b) follows from hypothesis (a), so, we assume that M is f.p. and
flat. Pick a minimal set of generators for M , having say, having t generators. We have the exact sequence

0 −→ K −→ At −→M −→ 0.

As M is f.p. and At is f.g., by Proposition 2.41 (or Proposition 2.17), we know that K is also f.g. Since M
is flat, when we tensor with κ(A), the sequence

0 −→ K −→ κ(A)t Θ−→M −→ 0
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remains exact (a Homework problem, but c.f. below). Since the vector spaces M and κ(A)t have the same
dimension, Θ is an isomorphism. So, K = (0). Since K is f.g., by Nakayama’s lemma, K = (0). Therefore,
M ∼= At and M is free over A.

Remark: For the sake of completeness, here is a proof of the fact referred to during the proof of the previous
proposition.

Proposition 3.32 Let Λ be a ring and consider the exact sequence of Λ-modules

0 −→M ′ −→M −→M ′′ −→ 0. (∗)
If M ′′ is flat, then for any Λop-module, N , the sequence

0 −→ N ⊗Λ M
′ −→ N ⊗Λ M −→ N ⊗Λ M

′′ −→ 0 is still exact.

Proof . We can write N as a factor of some free Λop-module, F :

0 −→ K −→ F −→ N −→ 0. (∗∗)
Then, by tensoring (∗) with K, F and N and by tensoring (∗∗) with M ′, M and M ′′ we obtain the following
commutative diagram:

0

��
K ⊗Λ M

′ ��

δ1

��

K ⊗Λ M ��

δ2

��

K ⊗Λ M
′′ ��

δ3

��

0

0 �� F ⊗Λ M
′ ��

��

F ⊗Λ M ��

��

F ⊗Λ M
′′ ��

��

0

N ⊗Λ M
′ θ ��

��

N ⊗Λ M ��

��

N ⊗Λ M
′′ ��

��

0

0 0 0

The second row is exact because F is free, and thus flat; the third column is exact because M ′′ is flat, and the other

rows and columns are exact because tensor is right-exact. We need to prove that θ : N ⊗ΛM
′ → N ⊗ΛM is injective.

However, this follows from the snake lemma applied to the first two rows.

Theorem 3.33 Let A be a commutative ring and M be an A-module. Assume one of

(a) A is noetherian and M is f.g.

(b) M is f.p.

Then, the following are equivalent:

(1) M is projective over A.

(2) M is flat over A.

(3) M is locally free over A.

Proof . The implication (1) ⇒ (2) is known (c.f. Proposition 2.53 and Proposition 2.66) and (2) ⇒ (3)
follows from Proposition 3.31. We need to prove (3)⇒ (1). Consider the functor T : N � HomA(M,N); we
must show it is exact. Say

0 −→ N ′ −→ N −→ N ′′ −→ 0 is exact



134 CHAPTER 3. COMMUTATIVE RINGS

and apply T . We get

0 −→ HomA(M,N ′) −→ HomA(M,N) −→ HomA(M,N ′′) −→ C −→ 0, (†)
where C is the cokernel of the map HomA(M,N) −→ HomA(M,N ′′). We have the lemma (proved in the
Problems):

Lemma 3.34 If B is a flat A-algebra and M is a f.p. A-module, then the canonical map

HomA(M,N)⊗A B −→ HomB(M ⊗A B,N ⊗A B)

is an isomorphism.

Let B = Ap, for any p ∈ SpecA. If we localize (†) at p, we get

0 −→ HomA(M,N ′)p −→ HomA(M,N)p −→ HomA(M,N ′′)p −→ Cp −→ 0,

and Lemma 3.34 implies, this is

0 −→ HomAp(Mp, N
′
p) −→ HomAp(Mp, Np) −→ HomAp(Mp, N

′′
p ) −→ Cp −→ 0.

Yet, by (3), M is locally free, i.e., Mp is free over Ap. So, Cp = (0) (since Hom(F,−) is exact for F free).
As p is arbitrary, C = (0).
Proof of Lemma 3.34. Define the map θ : HomA(M,N) ×B −→ HomB(M ⊗A B,N ⊗A B) by

θ(f, b) = b(f ⊗ idB), for all f ∈ HomA(M,N) and all b ∈ B.

The map θ is clearly bilinear, so, it induces a canonical linear map

Θ: HomA(M,N) ⊗A B −→ HomB(M ⊗A B,N ⊗A B).

Since M is an f.p. A-module, there is an exact sequence
a

q

A −→
a

p

A −→M −→ 0,

for some integers p, q ≥ 0. Since HomA(−, N) is a left-exact cofunctor, we get

0 −→ HomA(M,N) −→
Y

p

HomA(A,N) −→
Y

q

HomA(A,N) is exact.

Tensoring with B, since B is a flat A-algebra, we get

0 −→ HomA(M,N) ⊗A B −→
Y

p

HomA(A,N) ⊗A B −→
Y

q

HomA(A,N) ⊗A B is exact.

Similarly, the sequence
“

a

q

A
”

⊗A B −→
“

a

p

A
”

⊗A B −→M ⊗A B −→ 0 is exact,

i.e., the sequence
a

q

B −→
a

p

B −→M ⊗A B −→ 0 is exact,

and since HomB(−, N ⊗A B) is a left-exact cofunctor, we get

0 −→ HomB(M ⊗A B,N ⊗A B) −→
Y

p

HomB(B,N ⊗A B) −→
Y

q

HomB(B,N ⊗A B) is exact.

Thus, we have the commutative diagram

0 �� HomA(M,N) ⊗A B ��

Θ

��

Q

p HomA(A,N) ⊗A B ��

Θp

��

Q

q HomA(A,N) ⊗A B

Θq

��
0 �� HomB(M ⊗A B,N ⊗A B) �� Q

p HomB(B,N ⊗A B) �� Q

q HomB(B,N ⊗A B).

But, clearly Θp and Θq are isomorphisms; so, the five lemma shows that Θ is an isomorphism.
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� These results are wrong if M has no finiteness properties.

Take A = Z(p) =
{ r
s

∣∣∣ (s, p) = 1
}

(= Ẑ(p) ∩ Q); this is a local ring, in fact, a local P.I.D. Take M = Q

as Z(p)-module. What is κ(p) = Z(p)/mp, where mp = (p)e =
{ r
s

∣∣∣ r ≡ 0 (mod p), (s, p) = 1
}

? We have

Z(p)/mp is equal to the localization of Z/pZ, i.e., κ(p) = Z/pZ. How about Q⊗Z(p)κ(p)? We have a surjection
Q ⊗Z κ(p) −→ Q ⊗Z(p) κ(p). But, Q ⊗Z κ(p) = (0), so Q ⊗Z(p) κ(p) = (0). Therefore, κ(p) is not faithful
on Q. Now, were Q free, then Q ⊗Z(p) κ(p) would be a vector space of rank equal to rk(Q) over κ(p). So,
Q is not free over Z(p). But Q is flat over Z(p) as Q is (Z(p))(0) (the localization of Z(p) at (0)). Note:

Q = lim−→
n

Z(p)

[
1
pn

]
.

Remarks on Mp, for any A module, M .

Let S = A− p, for a given p ∈ SpecA. We can partially order S:

f ≤ g iff f | gn for some n > 0,

i.e. iff there is some ξ ∈ A with fξ = gn. (Note, ξ ∈ S, automatically). Check: This partial order has the
Moore–Smith property. So, we can form lim−→

f /∈p

Mf .

Claim: lim−→
f /∈p

Mf = Mp.

We have maps Mf −→Mp, for all f , and the commutative diagram

Mp

Mf

ϕg
f ��

����������
Mg

����������

for all f ≤ g. (Since f ≤ g iff fξ = gn for some ξ ∈ S and some n > 0, the map ϕgf is given by

ϕgf

(
m
fr

)
= mξr

gnr .) Check that ϕgf is well-defined (DX). Hence, there exists a map lim−→
f /∈p

Mf −→ Mp. To go

backwards, pick ξ ∈ Mp. The element ξ is the class of some m/s, with s /∈ p. Now, m/s ∈ Ms; hence,
cans(m/s) ∈ lim−→

f /∈p

Mf . Check that

(1) ξ 	→ cans(m/s) is well defined. It maps Mp −→ lim−→
f /∈p

Mf .

(2) The map (1) and lim−→
f /∈p

Mf −→Mp from above are mutually inverse.

Geometric Interpretation: We claim that f ≤ g iff Xg ⊆ Xf .

Indeed, Xg ⊆ Xf iff V ((f)) ⊆ V ((g)) iff p ⊇ (f) implies p ⊇ (g) iff
⋂

p⊇(f) p ⊇ (g) iff
√

(f) ⊇ (g) iff√
(f) ⊇√

(g). Now,
√

(f) ⊇√
(g) iff g ∈√

(f) iff gn ∈ (f) for some n > 0 iff f | gn iff f ≤ g. This shows
that lim−→

Xf	 p

Mf = Mp and so, Mp represents germs of some kind. We will come back and elucidate this point

later. However, we want to note that for ideals, A and B, the reasoning above shows that

V (A) ⊆ V (B) iff
√

A ⊇
√

B.
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Remark: The following proposition involving comaximal ideals will be needed in the next Chapter and is often
handy.

Two ideals a and b of a ring A are comaximal iff a + b = A. The following simple fact holds (DX): If a, b1, . . . , bn

are ideals so that a and bi are comaximal for i = 1, . . . , n, then a and b1 · · · bn are comaximal.

Proposition 3.35 (Chinese Remainder Theorem) Let a1, . . . , an be ideals of a ring A. If for all i �= j, the ideals ai

and aj are comaximal, then

(1) The canonical map ϕ : A→ Qn
i=1A/ai is surjective.

(2) Kerϕ =
Tn

i=1 ai =
Qn

i=1 ai.

Consequently, we have a canonical isomorphism

ψ : A
.“

n
Y

i=1

ai

”

→
n

Y

i=1

(A/ai).

Moreover, the converse of (1) holds: If the canonical map ϕ : A → Qn
i=1A/ai is surjective, then for all i �= j, the

ideals ai and aj are comaximal.

Proof . We prove (1) and (2) together by induction on n. If n = 2, there exist e1 ∈ a1 and e2 ∈ a2 with e1 + e2 = 1.
For any element (a1, a2) ∈ A/a1

Q

A/a2, let a = e2a1 + e1a2. Then,

πi(a) = πi(e2a1) + πi(e1a2) = ai, i = 1, 2

(where πi : A→ A/ai is the canonical projection onto A/ai). Thus, ϕ is surjective.

Since a1a2 ⊆ a1 ∩ a2, it is enough to prove that a1 ∩ a2 ⊆ a1a2. Now, as 1 = e1 + e2, for every a ∈ a1 ∩ a2, we
have a = ae1 + ae2; however, ae1 ∈ a1a2 and ae2 ∈ a1a2, so a ∈ a1a2. As Kerϕ = a1 ∩ a2, we find Kerϕ = a1a2.

For the induction step, observe that (by the fact stated just before Proposition 3.35), b = a1 · · · an−1 and
an are comaximal. Then, by the case n = 2, we have b ∩ an = ban; moreover, by the induction hypothesis,
b =

Tn−1
i=1 ai =

Qn−1
i=1 ai, so we have

Tn
i=1 ai =

Qn
i=1 ai.

By the case n = 2, we have an isomorphism

A/ban
∼= (A/b)

Y

(A/an)

and by the induction hypothesis, we have an isomorphism

A/b ∼=
n−1
Y

i=1

(A/ai).

Therefore, we get an isomorphism

A
.“

n
Y

i=1

ai

” ∼=
n

Y

i=1

A/ai.

Finally, assume that the canonical map ϕ : A → Qn
i=1A/ai is surjective. Pick i, j with i �= j. By surjectivity,

there is some a ∈ A so that πi(a) = 0 and πj(a) = 1, i.e., πj(1 − a) = 0. Therefore, a ∈ ai and b = 1 − a ∈ aj with
a+ b = 1, which proves ai + aj = A.

The classical version of the Chinese Remainder Theorem is the case where A = Z and ai = miZ, where the
m1, . . . ,mn are pairwise relatively prime natural numbers. The theorem says that given any natural numbers
k1, . . . , kn, there is some natural number, q, so that

q ≡ ki (modmi), i = 1, . . . , n,

and the solution, q, is unique modulo m1m2 · · ·mn.

Proposition 3.35 can be promoted to modules.
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Proposition 3.36 Let M1, . . . ,Mn be submodules of the A-module, M . Suppose the Mi are pairwise comaximal
(Mi +Mj = M), then the natural map

M
.“

n
\

i=1

Mi

”

−→
n

Y

i=1

(M/Mi)

is an isomorphism. (Observe that, Mi = aiM with the ai comaximal ideals, is a special case.)
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3.4 First Applications of Fraction Rings

A) Rings with the DCC

In this subsection, every ring is a commutative ring with unity.

Lemma 3.37 If the ring A has the DCC, then Max(A) = Spec(A) and #(Max(A)) is finite. Thus,
dim(A) = 0.

Proof . Note, Max(A) = Spec(A) iff dim(A) = 0, in any commutative ring A. Pick p ∈ Spec(A) and look at
A/p; the ring A/p is a domain and it has the DCC. But, every integral domain with the DCC is a field and
conversely. This is proved as follows: Say D is a domain with the DCC, and pick x �= 0 in D. Look at the
decreasing chain

(x) ⊇ (x2) ⊇ (x3) ⊇ · · · ⊇ (xn) ⊇ · · · .
By the DCC, there is some n so that (xn) = (xn+1). Thus, xn ∈ (xn+1), and so, there is some u ∈ D with
xn = uxn+1. It follows that xn(1 − ux) = 0; as x �= 0 and D is a domain, we get 1 − ux = 0, so, x−1 = u
and D is a field. Therefore, p is maximal since A/p is a field.

Let S be the set of finite intersections of distinct maximal ideals of A. Of course, S �= ∅, so, by the DCC,
S has a minimal element, say m1 ∩m2 ∩ · · · ∩mn. We claim that m1,m2, . . . ,mn are all the maximal ideals
of A.

Take another maximal ideal, m, and look at m ∩m1 ∩m2 ∩ · · · ∩mn. This ideal is in S and

m ∩m1 ∩m2 ∩ · · · ∩mn ⊆ m1 ∩m2 ∩ · · · ∩mn.

By minimality, we have
m ⊇ m1 ∩m2 ∩ · · · ∩mn ⊇ m1m2 · · ·mn.

As m is prime, m ⊇ mj , for some j; but both m and mj are maximal, so m = mj .

Lemma 3.38 If A is a noetherian ring, then every ideal, A, contains a product of prime ideals. In particular,
(0) is a product of prime ideals.

Proof . (Noetherian induction) Say the conclusion of the lemma is false and let S denote the collection of all
ideals not containing a finite product of prime ideals. By assumption, S �= ∅. Since A is noetherian, S has a
maximal element, A. The ideal A can’t be prime; so, there exist a, b /∈ A and yet, ab ∈ A. As A + (a) > A,
we have A + (a) ⊇ p1 · · · pr, for some primes pi. Similarly, A + (b) ⊇ q1 · · · qs, for some primes qj . Now, we
have A = A + (ab), since ab ∈ A; consequently, we get

A = A + (ab) ⊇ (A + (a))(A + (b)) ⊇ p1 · · · prq1 · · · qs,
a contradiction. Therefore, S = ∅ and the lemma holds.

Proposition 3.39 (Akizuki, 1935) Say A is a local ring with the DCC. Then, the maximal ideal, m, of A
is nilpotent (i.e., mn = (0) for some n ≥ 1) and A is noetherian. The converse is also true.

Proof . (Nagata) Consider the chain

m ⊇ m2 ⊇ m3 ⊇ · · · ⊇ mn ⊇ · · · ,
it must stop, by the DCC. Thus, there is some n > 0 so that mn = mn+1. Were mn �= (0), the set
S = {A | Amn �= (0)} would not be empty as m ∈ S. By the DCC, the set S has a minimal element, call it
A. Let p = Ann(Amn). We claim that p is a prime ideal. Pick a, b /∈ p. Then, by definition of p, we have
aAmn �= (0) and bAmn �= (0). Yet, aA ⊆ A and bA ⊆ A and A is minimal in S. Therefore,

aA = bA = A.
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Now,
abAmn = a(bA)mn = (aA)mn = Amn �= (0),

and so, ab /∈ p. Consequently, p is indeed prime. By Lemma 3.37, the prime ideal, p, is maximal; as A is a
local ring, we get m = p. As m = p = Ann(Amn), we have mAmn = (0), so, Amn+1 = (0), i.e., Amn = (0)
(remember, mn = mn+1), a contradiction. Therefore, the maximal ideal, m, of A is nilpotent.

To prove A has the ACC, argue by induction on the least n so that mn = (0). When n = 1, we have
m = (0) and A = κ(A) is a field. Since every field has the ACC, we are done. Assume that the induction
hypothesis holds for all r < n. Consider the exact sequence

0 −→ mn−1/mn (= mn−1) −→ A/mn (= A) −→ A/mn−1 −→ 0.

The left hand term has the DCC and is a module over A/m = κ(A); so, it is vector space over κ(A) and
it is finite dimensional. Consequently, it has the ACC, The righthand term has the ACC, by the induction
hypothesis. It follows that the middle term, A, has the ACC.

Now, for the converse, assume that A is noetherian, local and that mn = (0) for some n ≥ 1. We prove
that A has the DCC by induction on the index of nilpotence of m. When n = 1, the ring A = A/m is a field
and so, it has the DCC. Assume that the induction hypothesis holds for all r < n. Say mn = (0). Then, we
have the exact sequence

0 −→ mn−1/mn (= mn−1) −→ A/mn (= A) −→ A/mn−1 −→ 0,

where the righthand side has the DCC by the induction hypothesis. But, the left hand side is a module over
A/m = κ(A); so, it is vector space over κ(A) and it has the ACC because A does. Thus, mn−1 is a finite
dimensional vector space, and so, it has the DCC. Therefore, A is caught between two DCC modules, and
A is artinian.

Theorem 3.40 (Akizuki’s structure theorem, 1935) If A is a commutative ring with unity, then A has the
DCC iff A has the ACC and Max(A) = Spec(A) (i.e., dim(A) = 0). When A has the DCC, the map

θ : A→
∏

p∈Spec(A)

Ap (∗)

is an isomorphism and each Ap is an Artin local ring. Moreover, each map hp : A→ Ap is a surjection.

Proof . (⇒) By Lemma 3.37, we have Max(A) = Spec(A) and Max(A) only has finitely many elements.
Therefore, the product in (∗) is a finite product. Each Ap is local with the DCC, so, it has the ACC (and
its maximal ideal is nilpotent), by Proposition 3.39. If θ is an isomorphism, we are done with this part.

(1) The map θ is injective (this is true in general). Pick a ∈ A and look at the principal ideal (a) = Aa.
If θ(a) = 0, then (Aa)p = (0) for every prime, p ∈ Spec(A). Therefore, Aa = (0), so, a = 0.

(2) The map θ is surjective. The ideal pe in Ap is nilpotent. So, (pe)n = (0) in Ap, yet (pe)n = (pn)e,
and thus,

Ap = Ap/(pe)n = Ap/(pn)e = (A/pn)p,

where p is the image of p in A/pn. Now, p is the unique prime ideal of A which contains pn (since Spec(A) =
Max(A)). Therefore, A/pn is a local ring and p is its maximal ideal. It follows that (A/pn)p = A/pn, and so
Ap
∼= A/pn. Each hp is thereby a surjection. Since pnp and qnq are pairwise comaximal, which means that

(1) = pnp + qnq (because Spec(A) = Max(A)), the Chinese Remainder Theorem implies that θ is surjective.

(⇐) This time, A has the ACC and Max(A) = Spec(A). By Lemma 3.38, the ideal (0) is a product of
maximal ideals, say (0) =

∏t
j=1 mj . Let m be any maximal ideal. Now 0 ∈ m implies that m ⊇ mj , for some



140 CHAPTER 3. COMMUTATIVE RINGS

j. Since both m and mj are maximal, m = mj . Thus, m1, . . . ,mt are all the maximal ideals of A. Consider
the descending chain

A ⊇ m1 ⊇ m1m2 ⊇ · · · ⊇ m1 · · ·mt = (0).

In this chain, we have m1 · · ·ms−1 ⊇ m1 · · ·ms. The module m1 · · ·ms−1/m1 · · ·ms is an A/ms-module,
hence, a vector space, since A/ms is a field. By hypothesis, this vector space has the ACC. Thus, it is
finite-dimensional and it has the DCC. But then, m1 · · ·ms−1/m1 · · ·ms has a composition series. If we do
this for each s, we obtain a composition series for A. Consequently, A has finite length as A-module, so, it
has the DCC.

Remark: This is false for noncommutative rings. Take the ring R of n × n lower triangular matrices over
C. The “primes of R” are n in number and the localization at the j-th one, Mj , is the full ring of j × j
matrices over C. But, θ : R→∏n

j=1Mj(C) is only injective, not surjective.

B) Locally Free f.g. A-Modules.

We begin by restating and reproving that Supp(M) is closed when M is f.g.

Lemma 3.41 If M is a f.g. A-module and if Mp = (0) for some p ∈ SpecA, then there exists some σ /∈ p
so that σM = (0) and Mσ = (0).

Proof . Write m1, . . . .mt for generators of M . Then, mj/1 = 0 in Mp = (0). So, there is some sj /∈ p with
sjmj = 0 for j = 1, . . . , t. Let σ = s1 · · · st, then σmj = 0 for j = 1, . . . , t. Consequently, σM = (0) and
mj/1 = 0 in Mσ for j = 1, . . . , t, so, Mσ = (0).

Geometric Interpretation. If ϕ : A → B is a ring map we get a map, ϕa : SpecB → SpecA, namely,
q 	→ ϕ−1(q). This is a continuous map (because (ϕa)−1(V (A)) = V (B ·ϕ(A)), for every ideal A ⊆ A). Since
there is a map A −→ As, we get a map Spec(As) −→ Spec(A). For this map we have

Proposition 3.42 The map Spec(As) −→ Spec(A) takes Spec(As) homeomorphically onto the open set,
Xs, of SpecA.

Proof . We make a map Xs −→ Spec(As). For this, observe that p ∈ Xs iff s /∈ p iff pe ∈ Spec(As). Thus,
the desired map is p 	→ pe. Now, q = pe iff p = qc = inverse image of q; therefore, our maps are inverse to
one-another and the image of the contraction is Xs (an open set in SpecA). We must now show that the
map Xs −→ Spec(As) via p 	→ pe is continuous. The open Xs has as basis of opens the Xs ∩ Xt = Xst,
where t ∈ A. The topology in Spec(As) has as basis the opens Yτ , where τ ∈ As and q ∈ Yτ iff τ /∈ q. We
have τ = t/sn, for some t and some n. Moreover, q = pe; so τ /∈ q iff t /∈ p and it follows that Xs ∩ Xt

corresponds to Yτ .

To continue with the ‘geometric interpretation, let M be an A-module. We make a presheaf over SpecA
from M , denote it by M̃ . For every open subset, U , in X = SpecA,

M̃(U) =

f : U −→
⋃
p∈U

Mp

∣∣∣∣∣∣
(1) f(p) ∈Mp

(2) (∀p ∈ U)(∃m ∈M,∃s ∈ A)(s /∈ p, i.e., p ∈ Xs)
(3) (∀q ∈ Xs ∩ U)

(
f(q) = image

(
m
s

)
inMq

)
.


The intuition is that M̃(U) consists of kinds of functions (“sections”) such that for every “point” p ∈ U ,
each function is locally defined in a consistent manner on a neighborhood (Xs ∩ U) of p (in terms of some
element m ∈M).

The reader should prove that the presheaf, M̃ , is in fact a sheaf on SpecA (where SpecA has the Zariski
topology) (DX).

Here are two important properties of the sheaf M̃ (DX):
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(1) M̃ is an exact functor of M . This means, if

0 −→M ′ −→M −→M ′′ −→ 0

is an exact sequence of A-modules, then

0 −→ M̃ ′ −→ M̃ −→ M̃ ′′ −→ 0

is an exact sequence of sheaves. (Recall that if F −→ G is a morphism of sheaves, it is surjective iff
for every open, U , and every ξ ∈ G(U), there is a covering {Uα −→ U}α so that ξα = ρUα

U (ξ) ∈ G(Uα)
comes from some ηα ∈ F(Uα) for all α.)

(2) The functor M � M̃ commutes with arbitrary coproducts, i.e., if M =
∐
αMα, then M̃ =

∐
α M̃α.

The easiest way to see (1) and (2) is via the following ideas: Say F is a presheaf on some space X. If
x ∈ X is a point, let Fx = lim−→

U	 x
F(U). We call Fx the stalk of the presheaf , F , at x.

Remark: The module, Mp, is the stalk of M̃ at p. This is immediate from the definition (DX).

Proposition 3.43 Say θ : F → G is a map of sheaves (with values in a category based on sets, e.g., sets,
groups, rings, ...) and suppose for all x ∈ X, the map θx : Fx → Gx is injective (resp. surjective, bijective).
Then θ is injective (resp. surjective, bijective). If Fx = (0) for all x ∈ X, then F = (0). (Here, F has values
in groups or modules.)

Proof . One checks that F � Fx is an exact functor of F (for each x ∈ X). Then the last statement implies
all the others. For example,

0 −→ Ker θ −→ F θ−→ G −→ Coker θ −→ 0 is exact;

so, take stalks at x. We get

0 −→ (Ker θ)x −→ Fx θx−→ Gx −→ (Coker θ)x −→ 0 is exact.

If θx is injective, then (Ker θ)x = (0). By the last statement of the proposition, Ker θ = 0, etc. So, we need
to prove that Fx = (0) for all x ∈ X implies that F = (0).

Pick an open, U , of X and pick any x ∈ U . We have Fx = lim−→
V 	 x

F(V ) (with V ⊆ U). If ξ ∈ F(U), then

ξx = image of ξ in Fx = 0. This means that there is some open subset, V = Vx, with ρVU (ξ) = 0 in F(V ).
Then, as x ranges over U , we have a cover, {Vx −→ U}, of U and ρVx

U (ξ) = 0, for all Vx in the cover. By the
uniqueness sheaf axiom, we must have ξ = 0. Since ξ is arbitrary in F(U), we get F(U) = (0).

It is clear that the remark and this proposition imply (1) and (2) above.

As a special case of the tilde construction, if we view A has a module over itself, we can make the sheaf
Ã on X, usually denoted OX . More explicitly, for every open subset, U , in X = SpecA,

OX(U) =

f : U −→
⋃

p∈U
Ap

∣∣∣∣∣∣∣
(1) f(p) ∈ Ap

(2) (∀p ∈ U)(∃a, g ∈ A)(g /∈ p, i.e., p ∈ Xg)
(3) (∀q ∈ Xg ∩ U)

(
f(q) = image

(
a
g

)
inAq

)
.


Observe that OX is a sheaf of local rings, which means that OX(U) is a ring for all U and OX,p (= Ap)

is a local ring, for every p. The sheaf M̃ is a sheaf of modules over OX .

Given a module M and an element s ∈ A, we have the sheaves M̃ � Xs and M̃s. Note that M̃s is a sheaf
on Spec(As) and M̃ � Xs is a sheaf on Xs, but the map Spec(As) −→ SpecA gives a homeomorphism of
Spec(As) −̃→Xs.
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Proposition 3.44 Under the homeomorphism, ϕ : Spec(As)−̃→Xs, the sheaves M̃s and M̃ � Xs correspond.

Proof . Say ϕ : X → Y is a continuous map of spaces and F is a sheaf on X. We can make ϕ∗F , a new sheaf
on Y , called the direct image of F . For any open, V , in Y , set

ϕ∗F(V ) = F(ϕ−1(V )).

The sense of our proposition is that ϕ∗(M̃s) and M̃ � Xs are isomorphic as sheaves on Xs. Now, ϕ∗(M̃s)(U)
is just M̃s(ϕ−1(U)), where U is an open in Xs ⊆ SpecA. The map ϕ : Y = SpecAs → Xs is just
q ∈ Spec(As) 	→ qc ∈ SpecA. We have

M̃s(ϕ−1(U)) =

f : ϕ−1(U) −→
⋃

p∈ϕ−1(U)

(Ms)p

∣∣∣∣∣∣
(1) f(p) ∈ (Ms)p

(2) (∀p ∈ ϕ−1(U))(∃µ ∈Ms,∃τ ∈ As)(p ∈ Yτ )
(3) (∀q ∈ Yτ ∩ ϕ−1(U))

(
f(q) = image

(
µ
τ

)
in (Ms)q

)
.


Now, q ∈ ϕ−1(U) iff q = pe and p ∈ U ⊆ Xs. We also have µ = m/sn, for some m ∈M ; τ = t/sn, for some
t ∈ A, and so, µ/τ = m/t. It follows that there exists a natural map, M̃ � Xs(U) −→ ϕ∗(M̃s)(U), via
f [given by m/t] 	→ f [given by (m/sn)/(t/sn)] = µ/τ .

This gives a map of sheaves, M̃ � Xs −→ ϕ∗(M̃s). We check that on stalks the map is an isomorphism:
(M̃ � Xs)p = Mp and ϕ∗(M̃s)q = (Ms)q = (Ms)pe = Mp. Therefore, our global map, being a stalkwise
isomorphism, is an isomorphism.

Recall that the stalk (M̃)p is just Mp. So,

Mp = lim−→
f /∈p

Mf = lim−→
p∈Xf

Mf = lim−→
p∈Xf

M̃(Xf ).

Consequently, Mp consists indeed of “germs”; these are the germs of “sections” of the sheaf M̃ . Thus, Ap =
germs of functions in OX(U), for any p ∈ U .

Say X is an open ball in Rn or Cn. Equip X with the sheaf of germs of Ck-functions on it, where
0 ≤ k ≤ ∞ or k = ω:

OX(U) =

f : U −→
⋃
u∈U
OX,u

∣∣∣∣∣∣
(1) f(u) ∈ OX,u (germs of Ck-functions at u)
(2) (∀u ∈ U)(∃ small openXε ⊆ U)(∃ Ck-function, g, on Xε)
(3) (∀u ∈ Xε) (f(u) = image(g) inOX,u) .


For Cn and k = ω, we can take g to be a power series converging on Xε. Observe that OX is a sheaf of local
rings (i.e., OX,u(= germs at u) is a local ring).

The concept of a sheaf help us give a reasonable answer to the question, “what is geometry?”

A local ringed space (LRS) is a pair, (X,OX), so that

(1) X is a topological space.

(2) OX is a sheaf of local rings on X.

Examples.

(1) Open balls in Rn or Cn, with the sheaf of germs of Ck functions, for a given k, are local ringed spaces.

(2) (SpecA, Ã) is an LRS.

The LRS’s form a category, LRS. A map (X,OX) −→ (Y,OY ) is a pair of maps, (ϕ,Φ), such that:
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(a) ϕ : X → Y is a continuous map.

(b) Φ: OY → ϕ∗OX is a homomorphism of sheaves of rings.

Now, geometry is the study of local ringed spaces that are locally standard , i.e., each point x ∈ X has a
neighborhood, U , and the LRS (U,OX � U) is isomorphic to a standard model.

Some standard models:

(a) Ck, real geometry (Ck-manifolds): The standards are open balls, U , in Rn and OX(U) is the sheaf of
germs of real Ck-functions on U . (Here, 1 ≤ k ≤ ∞, and k = ω is also allowed).

(b) Holomorphic geometry : k = ω. The standards are open balls, U , in Cn and OX(U) is the sheaf of
germs of complex Cω-functions on U (complex holomorphic manifolds).

(c) Algebraic geometry : The standard model is (SpecA, Ã).

Notice that we can “glue together” standard models to make the geometric objects that are locally
standard. Namely, given a family {(Uα,OUα

)}, of standard models of fixed kind, suppose for all α, β, there
exist some opens Uβα ⊆ Uα and Uαβ ⊆ Uβ and isomorphisms ϕβα : (Uβα ,OUα

� Uβα ) → (Uαβ ,OUβ
� Uαβ ), and

suppose we also have the gluing conditions: ϕβα = (ϕαβ)−1 and ϕγα = ϕγβ ◦ϕβα on Uα∩Uβ , then we can glue all
the (Uα,OUα

) together. That is, there is an LRS, (X,OX), and it is locally isomorphic to each (Uα,OUα
).

What about a geometric interpretation of some of our previous results?

Consider Lemma 3.41: Given a f.p. module, M , if Mp = (0) for some p ∈ SpecA, then there is some
s /∈ p so that Ms = (0) and sM = (0).

Observe that Mp = (0) iff (M̃)p = (0) iff the stalk of M̃ at p is (0). Moreover, Ms = (0) iff M̃s = (0) iff
M̃ � Xs vanishes. So, Lemma 3.41 says that if the stalk of M̃ vanishes punctually at p ∈ SpecA, then M̃
vanishes on some open subset, containing p, of SpecA.

Proposition 3.45 If A is a commutative ring and M is a f.g. A-module, assume one of

(i) M is projective, or

(ii) A is noetherian and Mp is free over Ap for some p ∈ SpecA.

Then

(a) There exist σ1, . . . , σt ∈ A so that Mσj
is free over Aσj

and X = SpecA =
⋃t
j=1Xσj

, or

(b) There is some σ ∈ A with p ∈ Xσ so that Mσ is free over Aσ.

Proof . We can write
0 −→ K −→ F −→M −→ 0,

for any f.g. module, M , with F f.g. and free. If M is projective, then the sequence splits. Therefore, K
(being an image of F ) is f.g., and so, M is f.p.

In (ii), the ring A is noetherian and M is f.g, which implies that M is f.p., here, too. Thus, we will
assume that M is f.p. If we prove the (b) statement, then as a f.p. projective is locally free everywhere, the
(b) conclusion holds everywhere on SpecA. As X = SpecA is quasi-compact, we only need finitely many
opens to cover X. Therefore, we only need prove (b).

There exists a free module and a map, θ : F →M , so that at p, we have Fp
∼= Mp. The sequence

0 −→ Ker θ −→ F −→M −→ Coker θ −→ 0 is exact.



144 CHAPTER 3. COMMUTATIVE RINGS

Now, Coker θ is f.g. and (Coker θ)p = (0). So, there is some s ∈ A with (Coker θ)s = (0). If we restrict to
Xs
∼= SpecAs, we get

0 −→ Ker θ −→ F −→M −→ Coker θ −→ 0 is exact on Xs.

By Proposition 2.41, as M is f.p. and F is f.g., we see that Ker θ is f.g. But, (Ker θ)p = (0), and by the
lemma, again, (Ker θ)t = (0), for some t ∈ A. If we let σ = st, then Xσ = Xs ∩Xt, and on Xσ, we have an
isomorphism Fσ −̃→Mσ.

Given an A-module, M , we can make the OX -module, M̃ . This is a sheaf of OX -modules. There exist
index sets, I and J , so that

A(J) −→ A(I) −→M −→ 0, is exact.

(Here, A(I) is an abbreviation for the coproduct
∐
I A.) So, we get

O(J)
X −→ O(I)

X −→ M̃ −→ 0,

an exact sequence of sheaves. Now, M is free iff M̃ ∼= O(I)
X , for some I. We say that an OX -module, F , is

locally-free iff for every p ∈ SpecA, the module Fp is a free OX,p-module. Our proposition says: If F = M̃
and F is f.p. then F is projective3 iff F is locally-free. One can characterize the OX -modules, F , that are
of the form M̃ for some module, M ; these are called quasi-coherent OX-modules.

We proved that if Fp is a free module of finite rank and if A is noetherian and F is quasi-coherent, then
there is some open set, Xσ, with p ∈ Xσ, so that F � Xσ = OnX � Xσ. Actually, we only used f.p., so the
statement also holds if F is projective (A not necessarily noetherian) and then it holds everywhere on small
opens, U , so that

F � U = On(U)
X � U.

Let’s assume that M is projective and f.g. over A. Define rk(M̃) = rk(F), a function from SpecA to Z,
by

(rkF)(p) = rk(Fp).

We showed that this function is locally constant on SpecA, i.e., rkF is a continuous function from SpecA
to Z, where Z has the discrete topology. Hence, if SpecA is connected, then the rank is a constant.

Proposition 3.46 Suppose M is a f.g. projective A-module (so, M is f.p.), and let F = M̃ on X = SpecA.
Then, the function rk(F) takes on only finitely many values, n1, . . . , nt (in Z) and there exist ideals A1, . . . ,At
of A, each a commutative ring with unity, so that

(a) A =
∏t
j=1 Aj; so 1 = e1+ · · ·+et, with the ej’s being orthogonal idempotents (which means that e2i = ei

and eiej = 0 for i �= j) and Aj = Aej.

(b) If Xej
is the usual open corresponding to the element ej, then X =

⋃· tj=1Xej
.

(c) If Mj = AjM , then M =
∐t
j=1Mj and each Mj is A and Aj-projective.

(d) SuppMj = Xej
, and rk(Mj) on Xej

is the constant nj.

The following lemma is needed:

Lemma 3.47 If X = SpecA and X = X1

⋃· X2 is a disconnection, then there exist e1, e2 ∈ A so that
Xj = Xej

and 1 = e1 + e2; e21 = e1; e22 = e2; e1e2 = 0.

3In the full subcategory of the OX -modules consisting of those of the form fM .
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Proof . (DX)

Proof of Proposition 3.46. Let Xn = rk(F)−1({n}) for every n ≥ 0. Each Xn is an open and closed subset
of X, by continuity. The Xn cover X and by quasi-compactness only finitely many are necessary. Yet, they
are mutually disjoint. It follows that rk(F) = n1, . . . , nt and rk(F) � Xj = nj . (Here, Xj = Xnj

.) By
Lemma 3.47, there exist e1, . . . , et, orthogonal idempotents with sum 1 and Xj = Xej

, for j = 1, . . . , t. Let
Aj = Aej , this is an ideal, a ring and ej ∈ Aj is its unit element. Thus, parts (a) and (b) are proved.

Write Mj = AjM ; then, M =
∐t
j=1Mj , each Mj is a cofactor of M and, as M is A-projective, each Mj

is A-projective. The ring A acts on M via Aj ; therefore, Mj is Aj-projective.

Pick any q ∈ Spec Aj and write p = q
∐
i�=j Ai. This ideal, p, is a prime ideal of A. Note, ei with i �= j

lies in p, but ej /∈ p, so p ∈ Xj . Since eiej = 0, we also have eiej = 0 in Ap. Yet, ej /∈ p, so ej is a unit in
Ap; it follows that ei = 0 in Ap for all i �= j. Then, we have

Mp =
∐
i

(Mi)p =
∐
i

(AiM)p =
∐
i

(AeiM)p = (Mj)p.

The reader should check that (Mj)p = (Mj)q. Since p ∈ Xj , we deduce that (rkMj)(q) = (rkM)(p) = nj ,
so, (rkMj)(q) = nj . As ei = 0 iff i �= j in Ap, we get Supp(Mj) = Xej

= Xj .

The simplest case, therefore, is: the A-module M is f.g., projective and rkM ≡ 1 on X = SpecA. We
say that M is an invertible module or a line bundle if we wish to view it geometrically.

Note: If M and M ′ are invertible, then M ⊗AM ′ is again a rank 1 projective A-module because
(M ⊗A M ′)p = Mp ⊗Ap M

′
p. Thus, these modules form a semigroup under ⊗A and A (the free module) is

the unit element. Do they form a group?

Proposition 3.48 If A is a commutative ring and M is a f.g. A-module, then M is rank 1 projective
iff there is another module, M ′, so that M ⊗A M ′ ∼= A. When the latter condition holds, we can take
M ′ = MD = HomA(M,A).

Proof . (=⇒) The module M is rank 1 projective and as it is projective, it is f.p. Look at M ⊗AMD. There
exists a module map,

M ⊗AMD −→ A,

namely, the linear map induced by the bilinear map (m, f) 	→ f(m). Localize at each p. We get

Mp ⊗Ap M
D
p −→ Ap,

and MD
p = HomA(M,A)p −̃→ HomAp(Mp, Ap), as M is f.p. and Ap is flat over A. But, Mp

∼= Ap, by
hypothesis and the reader should check that Mp⊗Ap M

D
p −→ Ap is an isomorphism. As this holds for every

p ∈ SpecA, the map M ⊗AMD −→ A is an isomorphism.

(⇐=) Now, we have some A-module, M ′, and M ⊗AM ′ ∼= A. We can write

0 −→ K −→ F −→M −→ 0,

for some f.g. free module, F . Look at the last three terms in this sequence, and write F =
∐

finiteA:∐
finite

A −→M −→ 0.

If we tensor with M ′, we get ∐
finite

M ′ −→M ⊗AM ′ ∼= A −→ 0.
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But A is free, so the sequence splits and there is a map A −→∐
finiteM

′. Now, tensor with M . We get∐
finite

A −→M −→ 0,

and there is a splitting map M −→ ∐
finiteA. Thus, M is a cofactor of a free and f.g. module, so, M is f.g.

and projective, and hence, f.p. Now look at

M ⊗AM ′ ∼= A

and localize at p. We get
Mp ⊗Ap M

′
p
∼= Ap,

and if we reduce mod pe, we get

Mp/p
eMp ⊗κ(Ap) M

′
p/p

eM ′
p
∼= κ(Ap). (†)

All the modules in (†) are vector spaces and, by counting dimensions, we get

dimκ(Ap)Mp/p
eMp = 1.

Since Mp is a free Ap-module, by Nakayama, we get rk(Mp) = 1. Lastly,

M ′ ∼= A⊗AM ′ ∼= (MD ⊗AM)⊗AM ′ ∼= MD ⊗A (M ⊗AM ′) ∼= MD ⊗A A ∼= MD.

Therefore, M ′ ∼= MD.

The group of (isomorphism classes) of the rank 1 projectives, M , is called the Picard group of A, denoted
Pic(A).

Corollary 3.49 If k is a field or a PID, then Pic(A) = (0).

The group Pic(A) is a subtle invariant of a ring (generally hard to compute).



3.5. INTEGRAL DEPENDENCE 147

3.5 Integral Dependence

The notion of integral dependence first arose in number theory; later, thanks to Zariski, it found application
in algebraic geometry. Throughout this section as throughout this chapter, all rings are commutative with
unity.

Definition 3.5 Suppose ϕ : A→ B is a ring homomorphism and b ∈ B. The element, b, is integral over A
iff there is a non-trivial monic polynomial, f(X) ∈ A[X], so that f(b) = 0. (Here, f(b) is bn + ϕ(a1)bn−1 +
· · ·+ϕ(an−1)b+ϕ(an) if f(X) is Xn + a1X

n−1 + · · ·+ an−1X + an.) The A-algebra B is integral over A iff
all its elements are integral over A and, in this case, ϕ is an integral morphism.

Clearly, each ring surjection is an integral morphism, but this is not what is really intended. Each
homomorphism, ϕ, as above factors into a surjection whose image, Ã, is a subring of B followed by the
inclusion Ã ↪→ B. It is for inclusions that integrality is a real question and is decisive for certain situations.
As usual, there are a number of equivalent ways to say integrality and their equivalence is quite useful
technically.

Proposition 3.50 Suppose ϕ : A→ B is a ring homomorphism and b ∈ B. Then the following are equiva-
lent conditions:

(1) b is integral over A

(2) The A-algebra A[b] (a sub-A-algebra of B) is finitely generated as A-module.

(3) There exists a sub-A-algebra, B̃, of B which is a finitely generated A-module and b ∈ B̃.

(4) There exists a finitely generated sub-A-module, B̃, of B so that α) bB̃ ⊆ B̃ and β) Ã[b]∩Ann(B̃) = (0).

Proof . (1) =⇒ (2). We have the equation of integral dependence

bn + a1b
n−1 + · · ·+ an−1b+ an = 0

(here, we drop ϕ(aj) and just denote it by aj). Hence, bn ∈ A-module generated by 1, b, . . . , bn−1. But
then, bn+1 is also in this A-module, etc. Thus, A[b] is the finitely generated A-module given by generators
1, b, . . . , bn−1.

(2) =⇒ (3). We take B̃ = A[b].

(3) =⇒ (4). We use our subalgebra, B̃, of (3) for the module of (4). Of course, α) holds as B̃ is a ring
by (3) and β) is clear as a ∈ B̃.

(4) =⇒ (1). Let ξ1, . . . , ξt be generators for B̃ as A-module. Since bB̃ ⊆ B̃, we see that for each i, the
element bξi is an A-linear combination of the ξ’s:

bξi =
t∑

j=1

zijξj .

That is,

t∑
j=1

(δijb− zij)ξj = 0, for i = 1, 2, . . . , t. (∗)

Write ∆ for det(δijb−zij), then by linear algebra we get ∆ξj = 0 for all j, i.e., ∆ ∈ Ann(B̃). Upon expanding
∆ by minors, we find that ∆ ∈ Ã[b]; so, β) implies ∆ = 0. But the expansion by minors shows ∆ has the
form bt+ lower powers of b and this gives (1).
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There are many corollaries, but first notice that if A is noetherian, we may replace (3) by the weaker
condition

(3
′
) There is a finitely generated sub-A-module, B̃, of B and A[b] ⊆ B̃.

Let’s write
IntA(B) = {b ∈ B | b is integral over A}

and refer to IntA(B) as the integral closure of A in B (we assume ϕ is given a priori).

Corollary 3.51 Say A and B are given as above and b1, . . . , bt are elements of B. Then, b1, . . . bt ∈ IntA(B)
iff the A-algebra A[b1, . . . , bt] is a finitely generated A-module. In particular, IntA(B) is a A-algebra.

Proof . (⇐=). Here, A[bj ] ⊆ A[b1, . . . , bt] and we apply (3) of Proposition 3.50 to get bj ∈ IntA(B).

(=⇒). We have the chain of A-algebras

A[b1, . . . , bt] ⊇ · · · ⊇ A[b1] ⊇ Ã
each a finite module over its predecessor by (2) of Proposition 3.50. Then, it is clear that A[b1, . . . , bt] is a
finite A-module. Lastly, if x, y ∈ IntA(B), we see that x ± y and xy lie in A[x, y]. By the above, the latter
is a finite A-module and (3) of Proposition 3.50 completes the proof.

Corollary 3.52 (Transitivity of Integral Dependence) Suppose that B is an A-algebra and C is a B-algebra.
Then,

IntIntA(B)(C) = IntA(C).

In particular, if C is integral over B and B is integral over A, then C is integral over A.

Proof . If ξ ∈ C and ξ is integral over A, then ξ is a fortiori integral over the “bigger’ ring IntA(B), and so

IntA(C) ⊆ IntIntA(B)(C).

Now, if ξ is integral over IntA(B), then ξ is integral over A[b1, . . . , bt] where the bi are coefficients in the
polynomial of integral dependence for ξ. Each bi is in IntA(B), so Corollary 3.51 shows A[b1, . . . , bt] is a
finite A-module. Yet A[b1, . . . , bt][ξ] is a finite A[b1, . . . , bt]-module by integrality of ξ. Therefore ξ is in the
finitely generated A-module A[b1, . . . , bt, ξ] which is an A-algebra and we apply (3) of Proposition 3.50. The
element ξ is then in IntA(C), as required.

When C is integral overB andB is integral overA, we get C = IntB(C) andB = IntA(B); so C = IntA(C)
by the above.

When IntA(B) is Ã (image of A in B) itself, we say A is integrally closed in B. (Usually, for this
terminology, one assume ϕ is an inclusion A ↪→ B.) If S is the set of non-zero divisors of A, then S is a
multiplicative set and S−1A is the total fraction ring of A. We denote it by Frac(A). When A in integrally
closed in Frac(A), we call A a normal ring or an integrally closed ring . For example

Proposition 3.53 Every unique factorization domain is a normal ring.

Proof . We suppose A is a UFD, write K = Frac(A) (in this case K is a field as A is a domain). Let ξ = α/β
be integral over A, and put α/β in lowest terms. Then,

ξn + a1ξ
n−1 + · · ·+ an−1ξ + an = 0, the aj ∈ A.

Insert the value of ξ (= α/β) and clear denominators. We get

αn + a1α
n−1β + · · ·+ an−1αβ

n−1 + anβ
n = 0.

If p is a prime element of A and p divides β, our equation shows p | αn; i.e., p | α. This is a contradiction
on lowest terms and so no p divides β. This means β is a unit; so, ξ ∈ A.
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Proposition 3.54 If A is a normal domain and S is any multiplicative subset of A, then S−1A is also a
normal domain.

Proof . We know Frac(A) = Frac(S−1A). So, choose ξ ∈ Frac(A) integral over S−1A. Then,

ξn +
a1

s1
ξn−1 + · · ·+ an−1

sn−1
ξ +

an
sn

= 0.

We can write this with common denominator s =
∏
sj , then

ξn +
a1

s
ξn−1 + · · ·+ an−1

s
ξ +

an
s

= 0.

Upon multiplication by sn, we find (sξ) is integral over A. By hypothesis, sξ ∈ A; so, ξ ∈ S−1A.

Two easy facts are useful to know. Their proof are easy and will be left to the reader (DX):

Fact A. If B is integral over A and I is any ideal of B, then B/I is integral over A/ϕ−1(I).

Fact B . If B is integral over A and S is a multiplicative set in A with S ∩ Ker ϕ = ∅, then S−1B is
integral over S−1A.

� However, observe that if A is a normal ring and A is one of its ideals, then A/A need not be normal .
A standard example is a “singular curve”.

Here, we take C[X,Y ] which is a normal ring as it is a UFD. Let A = (Y 2−X3), then C[X,Y ]/A is not
normal (though it is a domain (DX)). For, the element Y /X (in FracA/A) is integral over A/A as its square
is X, yet it is not itself in A/A (DX). The interpretation is this: Y 2−X3 = 0 describes a curve in the plane
over C and Y/X defines by restriction a function holomorphic on the curve except at (0, 0). But, Y /X is
bounded near (0, 0) on the curve, so it ought to be extendable to a holomorphic (and algebraic) function.
Yet, the set of such (near (0, 0)) is just (AA)p, where p = {f ∈ A/A | f(0, 0) = 0}. Of course, Y /X /∈ (AA)p.
The trouble is that Y 2 = X3 has a “singular point” at (0, 0), it is not a complex manifold there (but it is
everywhere else). This shows up in the fact that (AA)p is not normal.

When A is a noetherian ring, we can be more precise, but we need some of the material (on primary
decomposition from Sections 3.6 and 3.7. The two main things necessary are the statement

If V is a submodule of the A-module, M , then V = (0) iff Vp = (0) for all p ∈ Ass(M) (see Section 3.6,
Corollary 3.102 of Theorem 3.99); and Krull’s Principal Ideal Theorem (Section 3.7, Theorem 3.120).

You should skip the proof of Lemma 3.55, Theorem 3.56 and Corollary 3.57 until you read this later
material; pick up the thread in Theorem 3.58, below.

Write, for a ring A,

Pass(A) = {p | p ∈ Ass(A/(a)), for some non-zero divisor , a, of A}.

Lemma 3.55 If A is a reduced Noetherian ring, then an element ξ ∈ Frac(A) is actually in A if and only
if for every, p ∈ Pass(A), the image of ξ ∈ Frac(A)p is in Ap.

Proof . If ξ ∈ A, then of course its image in Frac(A)p lies in Ap for all p. So, assume

ξ ∈
⋂
{Ap | p ∈ Pass(A)}

(here, of course, we mean the images of ξ in Frac(A) are in Ap). We write ξ = α/β, where β is a non-zero
divisor and suppose that ξ /∈ A. Then, α is not in (β), so V = Aα ⊆ A/(β) is non-zero. By the statement
italicized above, there is a p ∈ Ass(A/(β)) with (Aα)p �= (0). This means α/1 /∈ (β)p; that is, ξ = α/β /∈ Ap.
Yet, p ∈ Pass(A), a contradiction.

Here is a characterization of normality for Noetherian domains:
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Theorem 3.56 Suppose that A is a noetherian domain, then the following conditions are equivalent:

(1) A is normal

(2) For every p ∈ Pass(A), the ideal pe is a principal ideal of Ap

(3) (a) Every p ∈ Pass(A) has height 1 and

(b) For all height one primes, p, of A, the ring Ap is a PID.

Proof . We first prove (2)⇐⇒ (3). Suppose p is any prime ideal of A. If p is a principal ideal of Ap. it is an
isolated prime of itself and Krull’s Principal Ideal Theorem shows that ht(p) = 1. So by (2),

Pass(A) ⊆ {p | ht(p) = 1}.

But, ht(p) = 1 implies p is an isolated prime ideal of any of its non-zero elements and, since A is a domain,
this shows p ∈ Pass(A). We’ve proved that (2) implies that

Pass(A) = {p | ht(p) = 1}. (∗)

This shows that (2) implies (3a) and for all height one primes, p, the maximal ideal, p, of Ap is principal.
We’ll now show that Ap is a PID. Pick an ideal, A, of Ap and write m = pe. As m is the maximal ideal of Ap,
we have A ⊆ m, and as m is principal we may assume (0) < A < m. Now mn is principal for all n ≥ 0 with
generator πn, where π generates m; we’ll show A = mn for some n. Now, were A ⊆ mn for all n, the Krull
Intersection Theorem (Theorem 3.113) would show A = (0), contrary to assumption. So, pick n minimal so
that A ⊆ mn. Then, every ξ ∈ A has the form aπn, and for at least one ξ, the element a is a unit (else a ∈ m
implies a = bπ and all ξ have shape bπn+1). But then,

A ⊇ (ξ) = (πn) = mn ⊇ A

and A is indeed principal. Therefore, (2) implies (3a) and (3b). It is clear that (3a) and (3b) imply (3).

We come then to the main point of our theorem, that (1) is equivalent to both parts of (3). Observe that
the argument in the very early part of the proof shows that we always have

{p | ht(p) = 1} ⊆ Pass(A).

(3) =⇒ (1). By (3a), Pass(A) = {p | ht(p) = 1}; so⋂
{Ap | ht(p) = 1} =

⋂
{Ap | p ∈ Pass(A)} (∗∗)

By Lemma 3.55, the right hand side of (∗∗) is A and by (3b) each Ap is a normal domain (Proposition 3.53).
Hence, A, as an intersection of noremal domains in Frac(A), is itself normal.

(1) =⇒ (3). Here, we will actually show (1) ⇐⇒ (2), then we will be done. Pick p ∈ Pass(A), say
p ∈ Ass(A/(a)). Then, there exists an element ξ ∈ A so that p is the annihilator of ξ (mod (a)). We need to
prove pe is principal, so we may replace A by Ap and p by pe. Thus, our situation is that A is local and p is
its maximal ideal. Write

A = {η ∈ Frac(A) | ηp ⊆ A} = (p −→ A) (in Frac(A)).

Of course, Ap is an ideal of A and A ⊆ A shows that p = Ap ⊆ Ap. Hence, there are only two possibilities:
Ap = p or Ap = A. I claim that the first cannot hold. If it did, condition (4) of Proposition 3.50 applied
to each η of A (with B̃ = p and B = Frac(A)) would show that all these η are integral over A. By (1), the
η lies in A; so A = A. Now p annihilates the element ξ (mod (a)) and ξ /∈ (a); that is, ξp = pξ ⊆ (a); so
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(ξ/a)p ⊆ A. But then ξ/a ∈ A, i.e., ξ/a ∈ A. The last assertion is that ξ ∈ (a), contrary to the choice of ξ.
We deduce, therefore, that Ap = A. Now, the map

A⊗A p −→ Ap

is an isomorphism because if
∑
i qi ⊗ pi goes to zero in A, then using a common denominator, say d, for the

qi, we find (1/d)
∑

i αi ⊗ pi is 0, too. Clearly, A⊗A p −→ Ap is surjective. Proposition 3.48 now shows p is
a free rank one A-module (remember A is local), i.e., a principal ideal.

Corollary 3.57 If A is a Noetherian normal domain, then

A =
⋂
{Ap | ht(p) = 1}.

Proof . Theorem 3.56, condition (3a) shows

Pass(A) = {p | ht(p) = 1}

and we then apply Lemma 3.55.

There are relations between the prime ideals of A and B when B is integral over A. These are expressed
in the three Cohen-Seidenberg Theorems. Here is the first of them:

Theorem 3.58 (Lying over Theorem; Cohen-Seidenberg, I) If B is integral over A and p is any prime
ideal of A, then there is a prime ideal, Q, of B lying over p (that is, ϕ−1(Q) = p, where ϕ : A→ B).

Proof . Of course, we may and do assume A ⊆ B. Let S be the collection of all ideals, B, of B with
B∩A ⊆ p; partially order S by inclusion. As S �= ∅ ((0) ∈ S) and clealry inductive, Zorn’s Lemma furnishes
a maximal element, say Q, in S. We must show both Q ∩A = p and Q is a prime ideal.

Were Q ∩ A < p, we could find ξ ∈ p with ξ /∈ Q ∩ A. Write Q̃ for the ideal Q + Bξ; as ξ /∈ Q, we get
Q̃ > Q. So, Q̃ /∈ S and thus Q̃ ∩ A �⊆ p. Therefore, there is some η ∈ Q̃ ∩ A (thus η ∈ A) yet η /∈ p. Now η

is in Q̃, so looks like q + bξ, for some b ∈ B. Note that η − bξ = q ∈ Q.

The element b is integral over A:

bn + a1b
n−1 + · · ·+ an−1b+ an = 0, all aj ∈ A.

If we multiply by ξn, we find

(bξ)n + a1ξ(bξ)n−1 + · · ·+ an−1ξ
n−1(bξ) + anξ

n = 0. (∗)

View (∗) in B/Q; there η = bξ, and so,

(η)n + a1ξ(η)n−1 + · · ·+ an−1ξn−1η + anξn = 0 in A/Q. (∗∗)

But now, all elements on the left hand side of (∗∗) when read in B actually lie in A; so the left hand side of
(∗∗) is in Q ∩A. We get

ηn + a1ξη
n−1 + · · ·+ an−1ξ

n−1η + anξ
n ∈ p.

Remembering that ξ ∈ p, we find η ∈ p, a contradiction. This shows Q ∩A = p.

To show Q is a prime ideal, write S for the multiplicatice set A − p; S is a multiplicative subset of B.
Of course, Q ∩ S = ∅. Suppose Q were not maximal among ideals of B whose intersection with S is empty.
We’d find Q̃ > Q and Q∩ S = ∅. But then Q∩A = p and so Q̃ lies in S where Q is maximal contradicting
Q̃ > Q. Therefore, Q is maximal among ideals of B with Q ∩ S = ∅. Now, Proposition 3.8 (the implication
(6) =⇒ (1)) shows Q is prime.
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Theorem 3.59 (Going-up Theorem; Cohen-Seidenberg, II) Suppose B is integral over A and p ⊆ q are
two prime ideals of A. If P is a prime ideal of B lying over p, there exists a prime ideal, Q, of B lying over
q with P ⊆ Q.

Proof . This is just a corollary of the lying over theorem. For once again, we may assume A ⊆ B and we
consider A/p and B/P. As P∩A = p and B is integral over A, we find B/P is integral over A/p and apply
Cohen-Seidenberg I to A/p and B/P, using q as our ideal of A/p. There is Q, a prime of B/P, over q and
the pull-back of Q in B is what we want.

Corollary 3.60 If A and B are integral domains and B is integral over A, then A is a field iff B is a field.

Proof . Suppose A is a field and ξ �= 0 is in B. The element ξ is integral over A; so

ξn + a1ξ
n−1 + · · ·+ an−1ξ + an = 0

for some a1, . . . , an ∈ A. Of course, we may assume that an �= 0. Then

ξ(ξn−1 + a1ξ
n−2 + · · ·+ an−1) = −an;

and, as A is field, the element

− 1
an

(ξn−1 + a1ξ
n−2 + · · ·+ an−1)

lies in B and is the inverse of ξ.

If B is a field and A is not, there are prime ideals (0) < q of A. The going-up theorem gives us prime
ideals (0) and Q of B lying over (0) and A—but, B is a field; contradiction.

(We may also argue directly as in the first implication of the proof: Given ξ ∈ A, the element ξ is in B
and B is a field. So, 1/ξ ∈B; thus 1/ξ is integral over A. We have(

1
ξ

)n
+ a1

(
1
ξ

)n−1

+ · · ·+ an−1

(
1
ξ

)
+ an = 0.

Multiply through by ξn; we find

1 = −ξ(a1 + · · ·+ an−1ξ
n−2 + anξ

n−1);

so ξ has an inverse in A.)

Corollary 3.61 If B is integral over A and P ∈ SpecB lies over p ∈ SpecA, then p is maximal iff P is
maximal.

This is merely a restatement of Corollary 3.60. A more important remark is the incomparability of two
primes lying over a fixed prime:

Proposition 3.62 Say B is integral over A and P, Q are two primes of B lying over the same prime, p,
of A. Then P and Q are incomparable; that is we cannot have either P ⊆ Q or Q ⊆ P without P = Q.

Proof . Assume P < Q and reduce A mod p and B mod P. Then we may assume A and B are domains and
we have to prove no non-zero prime contracts to the zero ideal of A. In fact, we prove: If A,B are domains
with B integral over A and if B is a non-zero ideal of B, then B contracts to a non-zero ideal of A .

Choose b ∈ B with b �= 0. Then we find

bn + a1b
n−1 + · · ·+ an−1b+ an = 0.
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and we may assume an �= 0 (else we could divide out b and lower the degree, n; etc.) But then an ∈ B ∩A;
so B ∩A �= (0), as required.

Now we come to the circle of ideas around the third (and deepest) of the Cohen-Seidenberg Theorems, the
so-called “Going–Down Theorem”. This is a study of prime ideals in integral extensions where the bottom
ring is a normal ring. For the proof of the theorem, we need some simple ideas from Galois theory) most
of which are already familiar) which are covered in full in Chapter 4, sections one through four. Readers
are urged to skip the proofs of Propositions 3.63 and 3.64 and Theorem 3.65, and come back to these after
having read Sections 4.2–4.5 of Chapter 4. Once again, one can pick up the thread of our discussion in
Proposition 3.66. Nonetherless the statements of all results below are clear.

Recall that if k is a field and B is a k-algebra, and element ξ, of B is algebraic over B iff it satisfies a
(non-zero) polynomial f(X) ∈ k[X]. Of course, the set of all polynomials, g(X), with g(ξ) = 0 is a principal
ideal of k[X] and the monic polynomial generating this ideal is the minimal polynomial of ξ over k. If B
has zero divisors, the minimal polynomial of ξ over k will not, in general, be irreducible in k[X]. Even if no
non-zero element of k becomes a zero divisor in B, still the minimal polynomial might be reducible.4 But
when B is at least a domain the minimal polyomial will be irreducible. We also want to consider in k an
integral domain, A, with k = Frac(A).

So, let ξ ∈ B be integral over A, assume B is a domain. Then we can factor the minimal polynomial
f(X), for ξ over k = Frac(A) in some big field over B (Section 4.4 of Chapter 4) and it will have exactly
n roots where n = deg(f). Write these as ξ = ξ1, ξ2, . . . , ξn. By Section 4.3, Chapter 4, each ni is repated
pe times where p = char(k) and e ≥ 0; pe is the degree of inseparability of ξ over k. Moreover, there is
an automorphism fixing the elements of k taking each ξ to ξ; so each ξi satisfies the equation of integral
dependence which ξ satisfies (Section 4.4, Chapter 4 again). Now when we write f(X) as a product of the
linear factors (X − ξi) we get

f(X) =
n∏
i=1

(X − ξi) =
n∑
j=0

σj(ξ1, . . . , ξn)(−1)jXn−j ,

here the σj are the elementary symmetric functions of the ξi, given as

σ0(ξ1, . . . , ξn) = 1
σ1(ξ1, . . . , ξn) = ξ1 + · · ·+ ξn

σ2(ξ1, . . . , ξn) =
∑
i<j

ξiξj

...
σr(ξ1, . . . , ξn) =

∑
i1<i2<···<ir

ξi1ξi2 · · · ξir

...
σn(ξ1, . . . , ξn) = ξ1ξ2 · · · ξn.

Thus, when ξ is integral over A, so are all the ξi and all the elements σj(ξ1, . . . , ξn), for j = 1, 2, . . . , n.
But each σj(ξ1, . . . , ξn) is in k, therefore each σj is in Autk(A). The symmetric functions σ1 and σn have
special designation—they are the trace and norm of ξ over k, respectively. This argument gives the first
two statements of

Proposition 3.63 If A is a domain and k = Frac(A), write B for an overing of A and K for Frac(B).
Then,

4A standard example is the “ring of dual numbers over k”, namely, k[X]/(X2). The minimal polynomial of X is X2.
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(1) When K is a field and ξ ∈ K is integral over A, all the coefficients of the minimal polynomial for ξ over
k are integral over A (so the norm and trace of ξ are integral over A).

(2) If A is a normal domain and K is a field, the minimal k-polynomial for an element ξ ∈ K which is
integral over A already lies in A[X] and is an equation of integral dependence for ξ.

(3) If A is a normal domain and f(X), g(X) are two monic polynomials in k[X] so that f(X)g(X) is in
A[X], then each of f(X) and g(X) is already in A[X].

(4) If A is a normal domain and B is an overring of Frac(A), and if ξ ∈ B is integral over A, then the
minimal k-polynomial of ξ is already in A[X] and is an integral dependence relation for ξ. That is, (2) holds
even K is not a field (B is an integral domain), provided K ⊆ k.

(5) If A is a normal domain and B is an overring of A, with ξ ∈ B integral over A, and if non non-zero
element of A becomes a zero divisor in B, then again the minimal k-polynomial for ξ is already in
A[X] and is an integral dependence.

Proof . (1) and (2) are already proved; consider (3). Write f(X) =
∏
i(X − ξ) and g(X) =

∏
j(X − ηj) in

some big overfield. Now f(X)g(X) is a monic polynomial in A[X] all xii and ηj satisfy it. But such a monic
polynomial is an integral dependence relation; so, all ξi are integral over A and all the ηj are integral over
A. By the argument for (1) each of the σi(ξ1, . . . , ξt) and σj(η1, . . . , ηr) are integral over A; hence they are
in A by the normality of A. But, these are (up to sign) the coefficients of f(X) and g(X) and (3) is proved.

(4) B is a k-algebra, so ξ has a minimal polynomial, f(X) ∈ k[X]. Now ξ is also integral over A,
therefore there is a monic polynomial, h(X) ∈ A[X], with h(ξ) = 0. As f generates the principal k[X] ideal
of polynomials vanishing at ξ, there is a g(X) ∈ k[X] with f(X)g(X) = h(X) and clearly g(X) is monic.
Then, (3) shows f(X) ∈ A[X] and is an equation of integral dependence.

(5) Here, if S is the multiplicative set of nonzero elements of A, then each s ∈ S is a non-zero divisor of
B and so k = Frac(A) ⊆ S−1B ⊆ Frac(B). We can then apply (4) to S−1B and conclude (5).

Remark: Notice that the statement of (3) contains the essential ideal of Gauss’ classical proof that if A is
a UFD so is A[X].

The hypothesis of (5) follows from a perhaps more easily checked condition:

Proposition 3.64 If B is an A-algebra and B is flat over A, then no non-zero divisor of A becomes a
non-trivial zero divisor in B.

Proof . To say ξ is a non-zero divisor is to say

0 −→ A
ξ−→ A −→ A/Aξ −→ 0

is exact. Now, tensor this exact sequence with B over A and use flatness to get

0 −→ B
ξ−→ B −→ B/Bξ −→ 0

is exact.

Theorem 3.65 (Going-down Theorem; Cohen-Seidenberg, III) Suppose A is a normal domain and B is
an overring of A. Assume either

(1) B is integral over A and

(2) No non-zero element of A becomes a zero divisor of B

or
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(1′) B is integral over A and

(2′) B is flat over A.

Then, given prime ideals p ⊆ q of A and a prime ideal Q of B over q, there is a prime ideal, P, of B, over
p so that P ⊆ Q.

Proof . If Ã is the image of A in B and (2′) holds, then B is flat over Ã and so, by Proposition 3.64, (2)
holds. Therefore, we will assume (1) and (2).

The key to the proof is to find an apt multiplicative set, S, of B and to consider S−1B. Take S to be
the collection of products, aα, where a ∈ A− p and α ∈ B −Q. Of course, S is closed under multiplication
and 1 ∈ S; further 0 /∈ S else a, an element of A, would be a zero divisor of B contrary to (2). Observe, by
taking a = 1 or α = 1, we find A− p ⊆ S and B −Q ⊆ S.

I claim the extended ideal, pe, of p in S−1B is not the unit ideal. Suppose, for the momemt, the claim is
proved; we finish the proof as follows: The ideal pe is contained in some maximal ideal, M, of S−1B, and so
Mc is a prime ideal of B. (As each ideal of S−1B is extended, M is Ae and so Mce = Aece = Ae = M �= S−1B;
therefore, Me �= B.) Since M �= S−1B, the ideal Mc cannot intersect S and B−Q ⊆ S shows that Mc ⊆ Q.
Now consider Mc ∩A, it is a prime ideal of A and cannot intersect S. Again, A− p ⊆ S implies Mc ∩A ⊆ p.
Yet

p ⊆ pB ∩A ⊆ pec ∩A ⊆Mc ∩A,
therefore Mc ∩A = p and we can set P = Mc.

We are therefore down to proving our claim, that is that pB ∩S = ∅. Pick ξ ∈ pB, write ξ =
∑
bipi with

pi ∈ p and bi ∈ B. Let B̃ = A[b1, . . . , bt]; it is a f.g. A-module (as well as A-algebra) by the integrality of B
over A. We have ξB̃ ⊆ pB̃ and if ξ1, . . . , ξr form a set of A-module generators for B̃, we find from ξξj ∈ pB̃
the linear equations:

ξξj =
r∑
i=1

pijξi, pij ∈ p.

Just as in the argument (4) ⇐⇒ (1) of Proposition 3.50, this leads to ∆ξi = 0 for i = 1, . . . , r, where
∆ = det(δijξ − pij). Thus, ∆B̃ = 0, yet 1 ∈ B̃; so ∆ = 0. By the minor expansion of ∆, we deduce the
integral dependence

h(ξ) = ξr + π1ξ
n−1 + · · ·+ πr−1ξ + πr = 0

and here all the πi ∈ p.

Say ξ is in S, then it has the form aα, with a ∈ A− p and α ∈ B −Q. By part (5) of Proposition 3.63,
the minimal polynomial, f(X) ∈ k[X], for ξ is already in A[X] and is an integral dependence for ξ. But,
also f(X) divides h(X) in k[X] as h(ξ) = 0; so

f(X)g(X) = h(X) in k[X]

and g(X) is monic. Apply part (3) of Proposition 3.63 and get that g(X) ∈ A[X], too. This means we can
reduce the coefficients of f, g, h mod p. The polynomial h(X) becomes h(X) = Xr. But A/p is a domain
and h = fg; so f(X) = Xp, that is

f(X) = Xs + δ1X
s−1 + · · ·+ δs−1X + δs,

and all the δi lie in p.

Now ξ = aα and by (5) of Proposition 3.63 once again, we see that the k-minimal polynomial for α is
actually in A[X] and is an integral dependence for α. Write this polynomial, m(X), as

m(X) = Xv + u1X
v−1 + · · ·+ uv−1X + uv
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with each ui ∈ A. Now multiply m(X) by av, we get

avm(X) = (aX)v + au1(aX)v−1 + · · ·+ av−1uv−1(aX) + avuv.

So, for the polynomial
f̃(X) = Xv + au1X

v−1 + · · ·+ av−1uv−1X + avuv

we find f̃(ξ) = avm(α) = 0 and therefore f(X) divides f̃(X) in k[X]: f̃(X) = z(X)f(X). By (3) of
Proposition 3.63, we see z(X) is monic and in A[X], and v = deg(f̃) ≥ deg(f) = s. However, by the same
token if we divide f(X) by as, we get(

X

a

)s
+
δ1
a

(
X

a

)s−1

+ · · ·+ δs−1

as−1

(
X

a

)
+
δs
as

giving us the k-polynomial

F (X) = Xs +
δ1
a
Xs−1 + · · ·+ δs−1

as−1
X +

δs
as
.

We have F (α) = (1/as)f(ξ) = 0; so m | F in k[X]. Therefore,

s = deg(F ) ≥ deg(m) = v;

coupled with the above this shows s = v and Z(X) = 1. Therefore, f(X) = f̃(X) so that

δj = ajuj , j = 1, 2, . . . , s.

Now δj ∈ p and, by choice of S, a /∈ p. Therefore, all the uj belong to p.

Finally, m(α) = 0; so,
αs + u1α

s−1 + · · ·+ us−1α+ us = 0.

This shows αs ∈ pB ⊆ qB ⊆ Q; whence α ∈ Q—a contradiction.

The Cohen-Seidenberg Theorems have geometric content. It turns out that for a commutative ring A
(over the complex numbers), SpecA can be made into a (generalized) complex space (perhaps of infinite
dimension); that is into a complex manifold with some singularities (perhaps). For us, the important point
is that SpecA is a topological space (see Section 3.3) and we’ll only draw topological content from the
Cohen-Seidenberg Theorems.

So, first say B is integral over A. The ring map ϕ : A → B gives a continuous map SpecB −→ SpecA,
namely: P 	→ ϕ−1(P). The lying over theorem can now be expressed as:

If B is integral over A, the continuous map SpecB −→ SpecA is surjective.

Remark: We’ve used a Cohen-Seidenberg Theorem; so, we’ve assumed A −→ B is an injection in the
above.

The question of A −→ B being an injection and the “real” content of integrality can be teased apart as
follows:

Proposition 3.66 Say A −→ B is an injection. Then the continuous map SpecB −→ SpecA has dense
image. If A −→ B is surjective, then the continuous map SpecB −→ SpecA is a homeomorphism onto a
closed subset of SpecA.
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Proof . Write ϕ for the homomorphism A −→ B and |ϕ| for the continuous map SpecB −→ SpecA. Pick
any p ∈ SpecA and any f /∈ p (so that p ∈ Xf in SpecA). We must find q ∈ SpecB so that |ϕ|(q) ∈ Xf .
Now f is not nilpotent; so, as ϕ is injective, neither is ϕ(f). But then there is a prime ideal, q, of B, and
ϕ(f) /∈ q (cf. either Proposition 3.8 #(6) or remark #(4) after Proposition 3.11); that is f /∈ |ϕ|(q), which
is what we needed.

Recall, from the discussion on the Zariski topology following Proposition 3.11, that the closed sets in
SpecA are all of the form V (A) for some ideal A, of A. Now there is the usual one-to-one correspondence
of ideals, B, of A which contain A and all ideals of A/A. If we take for A the kernel of ϕ, then the first
consequence is that p 	→ |ϕ|(p) is a continuous bijection of SpecB (= SpecA/A) and the closed set, V (A),
of SpecA. But, this is also a closed map, because for B, an ideal of B, the map |ϕ| takes V (B) onto
V (ϕ−1(B)) ⊆ SpecA.

Proposition 3.67 If B is integral over A, where ϕ : A → B need not be injective, then the map |ϕ| from
SpecB to SpecA is a closed map. In fact, it is universally closed; that is, the map
|ϕC | : Spec(B ⊗A C)→ SpecC is a closed map for every A-algebra, C.

Proof . Note that if B is integral over A, then B⊗A C is integral over C. To see this, observe that a general
element of B ⊗A C is a sum of terms b ⊗ c with b ∈ B and c ∈ C. If b ⊗ c is integral over C so is any sum
of such terms. But, b ⊗ c = (b ⊗ 1)(1 ⊗ c) and 1 ⊗ c is in C (= A ⊗A C) so all we need check is that b ⊗ 1
is integral over C. Write the integral dependence for b over A, then tensor with 1 (as in b⊗ 1) and get the
integral dependence of b⊗ 1 over C.

This remark reduces us to proving the first statement. Now the map A −→ B factors as

A −→ Ã = A/A ↪→ B,

so for the spaces SpecA, etc., we get

SpecB −→ Spec Ã −→ SpecA.

By Proposition 3.66, the second of thesex maps is closed, therefore we are reduced to the case where A −→ B
is injective. A closed set of SpecB is V (B) and we know by Fact A following Proposition 3.54 that B/B is
integral over A/(B ∩A). The interpretation of Cohen–Seidenberg II shows that
Spec(B/B) −→ Spec(A/(B ∩A)) is surjective. Coupled with the homeomorphisms

Spec(B/B) ∼= V (B); Spec(A/(B ∩A)) ∼= V (B ∩A),

this finishes the proof.

Let’s continue with these topological considerations a bit further. Take p ∈ SpecA, one wants to consider
{p} as Spec(?) for some A-algebra “?”. At first Ap seems reasonable, but SpecAp consist of all the primes
contained in p. We can get rid of all these extraneous primes by factoring out by pe and forming

κ(p) = Ap/p
e.

The A-algebra, κ(p), is a field; so, Specκ(p) is one-point—it corresponds to p. Indeed, in the map
κ(p) −→ SpecA coming from the ring map

A −→ Ap −→ Ap/p
e = κ(p),

the one point of Specκ(p) goes to p in SpecA. If B is an A-algebra, then B ⊗A κ(p) is a κ(p)-algebra
isomorphic to Bp/pBp. The commutative diagram

B �� B ⊗A κ(p)

A

��

�� κ(p)

��
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shows that the elements of Spec(B⊗Aκ(p)) all go to p under the map Spec(B⊗Aκ(p) −→ SpecA. Therefore,
Spec(B ⊗A κ(p) is the fibre of the map SpecB −→ SpecA over {p}.
Proposition 3.68 Suppose B is a finitely generated A-algebra and is also integral over A. Then, each fibre
of the map SpecB −→ SpecA is finite.

Proof . The algebra B has the form A[b1, . . . , bt] and each bj is integral over A. Thus, B is a finitely-generated
A-module. So, each B ⊗A κ(p) is a finitely generated κ(p)-vector space and therefore has the D.C.C. By
Lemma 3.37, Spec(B ⊗A κ(p)) is a finite set.

We have more than stated: B is not only a finitely generated A-algebra it is a f.g. A-module. This
is stronger than the condition that all the fibres of |ϕ| : SpecB → SpecA be finite. Indeed, consider the
inclusion Z ↪→ Q. The points of Spec Z are {0}, {2}, {3}, . . ., {p}, . . ., and the fibres of Spec Q over Spec Z are
respectively {0}, ∅, ∅, . . ., ∅, . . .. Of course, Q is not integral over Z nor is it finitely–generated as Z-algebra.

A more germane example is C[X] as included in C[X,Y ]/(XY − 1). The primes of C[X] are {0} and the
principal ideals (X−λ), where λ ranges over C. The fibre over {0} is {0}, that over (X−λ) for λ �= 0, is the
principal ideal which is the kernel of X 	→ λ; Y 	→ 1/λ. But, over (X), the fibre is ∅. So, all fibres are finite,
B = C[X,Y ]/(XY − 1) is a finitely generated C[X]-algebra yet B is not a finitely generated C[X]-module;
hence B is not integral over A = C[X] under the standard inclusion. Observe also that SpecB −→ SpecA is
not a closed map in this case—this turns out to be the key. For, we have the following fact due to Chevalley:

Fact. If B is a finitely-generated A-algebra under a map ϕ and if |ϕ| is both universally closed and has
finite fibres, then B is a finite A-module (in particular, B is integral over A).

The proof of this is very far from obvious and is not part of our purview. However, the discussion does
suggest the following question: Say A is a domain and write k for FracA. if K/k is a finite degree field
extension, is IntA(K) a finitely generated A-algebra (hence, a f.g. A-module)? The answer is “no”, which
perhaps is to be expected. But, even if A is noetherian, the answer is still “no”. This is somewhat surprising
and suggests that the finite generation of IntA(K) is a delicate and deep matter. If we are willing to assume
a bit more about K/k we get a very satisfying answer. We’ll need some material from Chapter 4, Section
4.2 and 4.3 for this.

Theorem 3.69 Suppose A is a normal domain with fraction field k and say K/k is a finite separable
extension. Then, IntA(K) is contained in a f.g. A-module in K. In fact, a basis for K/k can be found which
generates the latter A-module. If A is, in addition, noetherian, then IntA(K) is itself a finite A-module;
hence is noetherian.

Proof . We use the trace from K to k (see Chapter 4, Section 4.7), this is a k-linear map, tr : K → k. We
set for x, y ∈ K

〈x, y〉 = trK/k(xy).

The fact we need is that the separability of K/k entails the non-degeneracy of the pairing 〈x, y〉. (Actually,
this is not proved in Section 4.7 of Chapter 4 but is an easy consequence of Newton’s Identities connecting
sums of powers of elements x1, . . . , xt with elementary symmetric functions in x1, . . . , xt.) This being said,
we see that K is self-dual as vector space over k, via our pairing 〈x, y〉.

Let B = IntA(K), then in fact Frac(B) = K. To see this, choose x ∈ K, then x has a minimal
k-polynomial m(T ) ∈ k[T ], say

m(x) = xr + α1x
r−1 + · · ·+ αr−1x+ αr = 0, αi ∈ k. (†)

As k = Frac(A), for each i, there is si ∈ A with siαi ∈ A. We take s =
∏
si, then sαi ∈ A for all i; so

multiply (†) by sr, we get

(sx)r + sα1(sx)r−1 + · · ·+ sr−1αr−1(sx) + srαr = 0.
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This shows that xs ∈ IntA(K) = B, so x ∈ Frac(B). (It shows more. Namely, K = (A − {0})−1B.) It
follows that we may choose a k-basis for K from B; say this is b1, . . . , bt. By the non-degeneracy of 〈x, y〉,
the dual basis consists of elements of K, say they are c1, . . . , ct. Thus,

〈bi, cj〉 = δij .

Now, choose x ∈ B and write x in terms of the basis c1, . . . , ct. We have x =
∑
γici, with the γi ∈ k.

As x and the bi lie in B, we see that xbi ∈ B and statement (1) of Proposition 3.63 shows that 〈x, bi〉 ∈ A
because A was assumed normal. But

〈x, bi〉 = 〈
∑
j

γjcj , bi〉 =
∑
j

γjδji = γi

so all γi ∈ A. Therefore B ⊆ Ac1 + · · · + Act, as required in the first two conclusions of our theorem. Of
course, if A is noetherian, then B, as a sub-module of a f.g. A-module, is itself finitely generated.

Remark: We cannot expect B to be generated by just t elements as its containing module Ac1 + · · ·+Act
is so generated. On the other hand, it can never be generated by fewer than t elements. For if it were, say
B = Ad1 + · · ·+Adr, with r < t, then

(A− {0})−1B = k ⊗A B = k-span of d1, . . . , dr.

Yet the left hand side is just K and so
t = dimK ≤ r,

a contradiction. When B is generated by t elements, this shows they must be a basis for K/k. If A is a
P.I.D., one knows from B ≤ Ac1

∐ · · ·∐Act that B is generated by t or fewer elements, and so we’ve proved

Corollary 3.70 If A is a P.I.D. and K is a finite separable extension of k = FracA, then there exist
elements β1, . . . , βt of B = IntA(K) so that

(1) B is the free A-module on β1, . . . , βt and

(2) β1, . . . , βt are a k-basis for K.

A set of elements β1, . . . , βt having properties (1) and (2) above is called an integral basis for K/k. An
integral basis might exist for a given normal, noetherian A and an extension K/k, but it is guaranteed if A
is a P.I.D.

Theorem 3.69 shows that the difficulty of the finite generation of IntA(K) resides in the possible insepa-
rability of the layer K/k. It can happen that we must continue to add more and more elements without end
in a tower

A ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bn ⊆ · · · ⊆ B = IntA(K)

and examples (due to Nagata) exist of just this phenomenon. Fortunately, for a big class of integral domains
of interest in both number theory and algebraic geometry, this does not happen—they are well-behaved.
These are the integral domains, A, that are finitely generated k-algebras, where k is a field . We’ll refer to
them as finitely generated domains over k. We will also need some material from Chapter 4 Section 4.11,
namely the notion of transcendence basis. This is just a subset of our domain, algebraically independent
over k (i.e. satisfying no non-trivial polynomial in finitely many variables over k) and maximal with respect
to this property. Every set of generators contains a transcendence basis and all transcendence bases have
the same cardinality—called the transcendence degree of A over k. You should skip the proofs of Theorem
3.71 and 3.72 and come back to read them after Chapter 4.

A main step in proving that the finitely generated domains over k are well-behaved is the following
important theorem due to E. Noether:
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Theorem 3.71 (Noether Normalization Lemma.) If A is a finitely generated domain over the field k, say
A = k[t1, . . . , tn], and if d is the transcendence degree of A over k, then there exists a change of coordinates

yj = fj(t1, . . . , tn),

in A so that

(1) y1, . . . , yd are a transcendence basis for A over k and

(2) the injection k[y1, . . . , yd] ↪→ A = k[y1, . . . , yn] makes A integral over k[y1, . . . , yd].

If k is infinite, then fj may be taken to be linear. If FracA is separably generated over k, then the yj may
be chosen to be a separating transcendence basis for FracA over k.

Proof . (Nagata). We prove the theorem by induction on n; the cases n = 0 or n = 1 are trivial. So, assume
the theorem holds up to n− 1. If d = n, the remarks about transcendence bases just before our proof show
that A is already the polynomial ring in n variables; so, again, nothing need be proved. Therefore, we may
assume d < n. We’ll show there exists y2, . . . , yn so that k[y2, . . . , yn] ↪→ k[t1, . . . , tn] = A is an integral
morphism (separable in the separating transcendence basis case). If so, then the induction hypothesis applies
to k[y2, . . . , yn] and this, together with transitivity of integral dependence and separability, will complete the
proof.

Now d < n, so relabel the t1, . . . , tn to make t1 algebraically dependent on t2, . . . , tn. We have a non-trivial
polynomial relation ∑

(α)

c(α)t
(α) = 0,

where (α) = (α1, . . . , αn) is a multi-index and t(α) = tα1
1 · · · tαn

n . Set

yj = tj − tmj

1 , j = 2, . . . , n,

where the mj are as yet undetermined integers (≥ 0). Then tj = yj + t
mj

1 and so∑
(α)

c(α)t
α1
1 (y2 + tm2

1 )α2 · · · (yn + tmn
1 )αn = 0.

Expand the latter equation by the binomial theorem to obtain the relation∑
(α)

c(α)t
(α)·(m)
1 +G(t1, y2, . . . , yn) = 0, (†)

where (m) = (1,m2, . . . ,mn) and (α) · (m) stands for the dot product α1 + α2m2 + · · · + αnmn. The
polynomial G has degree in t1 less than the maximum of the exponents (α) · (m). If we can choose the
integers m2, . . . ,mn so that the products (α) · (m) are all distinct, then (†) is an integral dependence of t1
over k[y2, . . . , yn] as k is a field. But each tj is expressed as yj + t

mj

1 for j = 2, . . . , n; so each tj is integral
over k[y2, . . . , yn] and therefore k[t1, . . . , tn] is integral over k[y2, . . . , yn]. When k[t1, . . . , tn] is separably
generated over k, Mac Lane’s Theorem (Theorem 4.90) shows we may choose t1 separable algebraic over
k[t2, . . . , tn]. Then the relation

∑
(α) c(α)t

(α) = 0 may be chosen to be a separable polynomial in t1 and the
way we will choose the m’s (below) will show t1 is separable over k[y2, . . . , yn]. As tj = yj + t

mj

1 , we get the
separability of k[t1, . . . , tn] over k[y2, . . . , yn].

Now we must choose the integers m2, . . . ,mn. For this, consider the differences

(δ)αα′ = (δ1, . . . , δn)αα′ = (α)− (α′)
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for all possible choices of our distinct multi-indices (α), except that we do not include (α′)− (α) if we have
included (α)− (α′). Say there are N such differences, label them δ1, . . . , δN . Form the polynomial

H(T2, . . . , Tn) =
N∏
j=1

(δ1j + δ2jT2 + · · ·+ δnjTn)

here, δj = (δ1j , . . . , δnj) and T2, . . . , Tn are indeterminates. None of the δj are zero, so H is a non-zero
polynomial and it has integer coefficients. It is well-known that there are non-negative integers m2, . . . ,mn

so that H(m2, . . . ,mn) �= 0. Indeed, if b is a non-negative integer larger than any component of any of
our (α)’s, then b, b2, . . . , bm−1 is such a choice. It is also a choice which gives separability. The fact that
H(m2, . . . ,mn) �= 0 means that the (α) · (m) are distinct.

Finally, assume k is infinite. Just as before, arrange matters so that t1 depends algebraically (and sepa-
rably in the separably generated case) on t2, . . . , tn. Write the minimal polynomial for t1 over k(t2, . . . , tn)
as

P (U, t2, . . . , tn) = 0.

We may asume the coefficients of P (U, t2, . . . , tn) are in k[t2, . . . , tn] so that the polynomial P (U, t2, . . . , tn)
is the result of substituting U, t2, . . . , tn for T1, . . . , Tn in some non-zero polynomial, P (T1, . . . , Tn), having
coefficients in k. Now perform the linear change of variables

yj = tj − ajt1, j = 2, . . . , n,

where a2, . . . , an are elements of k to be determined later. As before, each tj is yj + ajt1; so it suffices to
prove that t1 is integral (and separable in the separably generated case) over k[y2, . . . , yn].

We have
P (t1, y2 + a2t1, . . . , yn + ant1) = 0

which gives us

tq1f(1, a2, . . . , an) +Q(t1, y2, . . . , yn) = 0, (∗)

where f(T1, . . . , Tn) is the highest degree form of P (T1, . . . , Tn) and q is its degree The polynomial, Q,
contains just terms of degree lower than q in t1. If we produce elements aj in k (j = 2, 3, . . . , n) so that
f(1, a2, . . . , an) �= 0, then (∗) is the required integral dependence of t1 on the y’s. In the separable case, we
also need t1 to be a simple root of its minimal polynomial, i.e.,

dP

dt1
(t1, y2, . . . , yn) �= 0

(c.f. Theorem 4.5 of Chapter 4). By the chain rule, the latter condition is

dP

dt1
(t1, y) =

∂P

∂t1
+ a2

∂P

∂t2
+ · · ·+ an

∂P

∂tn
�= 0. (∗∗)

Now the middle term of (∗∗) is a linear form in a2, . . . , an and it is not identically zero since on a2 =
a3 = · · · = an = 0 it takes the value ∂P/∂t1 and the latter is not zero because t1 is separable over
k(t2, . . . , tn) (Theorem 4.5, again). Thus, the vanishing of the middle term of (∗∗) defines a translate of
a (linear) hyperplane in n − 1 space over k, and on the complement of this hyperplane translate we have
dP/dt1(t1, y) �= 0. The latter complement is an infinite set because k is an infinite field. But from an
infinite set we can always choose a2, . . . , an so that f(1, a2, . . . , an) �= 0; therefore both our conditions
dP/dt1(t1, y) �= 0 and f(1, a2, . . . , an) �= 0 will hold, and the proof is finished.
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The example discussed previously of C[X] embedded (in the standard way) in C[X,Y ]/(XY − 1) is an
extremely simple instance of the normalization lemma. Namely, rotate the coordinates

X 	→ X + Y ; Y 	→ X − Y
and let T = 1/2(X + Y ); W = 1/2(X − Y ). Then our situation becomes CT embedded in
C[T,W ]/(T 2 −W 2 − 1), an integral extension. See Figures 3.1 and 3.2 below:

Figure 3.1: Before Normalization: A non-integral morphism

becomes after π/4 rotation

Figure 3.2: After Normalization: An integral morphism

Theorem 3.71 is not the sharpest form of the normalization lemma. Here’s an improvement due to
Eisenbud based on a previous improvement of Nagata’s. We offer no proof as we won’t use this sharper
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version.

Theorem 3.72 If A = k[t1, . . . , tn] is a finitely generated integral domain over a field k with tr.dk A = d
and if we are given a maximal length descending chain of prime ideals of A

p0 > p1 > · · · > pd−1 > (0),

then there exists a change of coordinates

yj = fj(t1, . . . , tn)

so that

(1) y1, . . . , yd are a transcendence basis for A over k,

(2) the injection k[y1, . . . , yd] ↪→ A makes A integral over k[y1, . . . , yd], and

(3) pj ∩ k[y1, . . . , yd] = (y1, . . . , yd−j).

Here is the promised application of Theorem 3.71 to the well behavedness of finitely generated integral
domains over fields.

Theorem 3.73 When A is a finitely generated integral domain over k and K is a finite extension field over
Frac(A), then IntA(K) is both a finitely generated integral domain over k and a finite A-module.

Proof . We first make two reductions and then treat the main case:

(1) We may assume K = FracA. For if it is known that the integral closure of A in its own fraction
field satisfies the conclusions of the theorem, then choose a basis y1, . . . , ys forK over FracA which basis
consists of elements from IntA(K). This can be done by the argument in the middle of the proof of Theorem
3.69, which argument made no use of any separability hypothesis. Of course, A[y1, . . . , ys]is both a finite
A-module and a finitely generated integral domain over k and its fraction field is K. So by our assumption
IntA[y1,...,ys](K) satisfies the conclusions of the theorem. But, clearly, IntA(K) = IntA[y1,...,ys](K), which
achieves our first reduction.

(2) We may assume both that k is infinite and that FracA is separably generated over k. (Here, we are
already using reduction (1) having replaced K by FracA.) To see this, write Ω for the algebraic closure of
FracA (see Theorem 4.77) and note that Ω contains k, the algebraic closure of k. Now k is both infinite and
perfect, so by Corollary 4.91, the field k(t1, . . . , tn) is separably generated over k; here, A = k[t1, . . . , tn]. By
our assumption, Intk[t1,...,tn](k(t1, . . . , tn)) is a finite k[t1, . . . , tn]-module and a finitely generated k-algebra,
say k[w1, . . . , wq].

Now by the normalization lemma (in the infinite, separable case) there are z1, . . . , zd, algebraically inde-
pendent, which are linear combinations

zj =
n∑
i=1

αijti

of the t1, . . . , tn so that k[t1, . . . , tn] is integral and separable over k[z1, . . . , zd]. Each wj satisfies a separable,
integral dependence

gj(wj , z1, . . . , zd) = 0, j = 1, 2, . . . , q,

over the polynomial ring k[z1, . . . , zd]. Also,

Intk[z1,...,zd](k(t1, . . . , tn)) = k[w1, . . . , wq].
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Adjoin to k all the coefficients of these q polynomials and all the αij to get a field, k̃, of finite degree over
k. The entire situation involving k[z’s] and k[w’s] comes from the same situation involving k̃[z’s] and k̃[w’s];
so, by the algebraic independence of the z’s, we find

Intek[z1,...,zd](k̃(t1, . . . , tn)) = k̃[w1, . . . , wq]

and we know
Intek[z1,...,zd](k̃(t1, . . . , tn)) = Intk[t1,...,tn](k̃(t1, . . . , tn)).

Of course, k̃[w1, . . . , wq] is a finite k̃[t1, . . . , tn]-module and k̃[t1, . . . , tn] is a finite k[t1, . . . , tn] = A-module
as k̃ has finite degree over k. Thus, k̃[w1, . . . , wq] is a finite A-module as are all of its submodules, A being
noetherian. But IntA(FracA)) is the submodule Frac(A) ∩ k̃[w1, . . . , wq] and as A is a finitely generated
k-algebra so is any A-algebra which is a finite A-module. This achieves reduction (2).

Finally we have the case K = FracA, k is infinite and FracA is separably generated over k. By the
normalization lemma, there are linear combinations

zj =
n∑
i=1

βijti, j = 1, . . . , d

so that z1, . . . , zd are algebraically independent and A is integral and separable over k[z1, . . . , zd]. By Theorem
3.69, Intk[z1,...,zd](FracA) is a finite k[z1, . . . , zd]-module; hence, a finite A-module. Yet, by transitivity of
integral dependence,

Intk[z1,...,zd](FracA) = IntA(FracA).

So, IntA(FracA) is a finite A-module; thereby a finitely generated k-algebra, as required.

The somewhat involved nature of the two finiteness Theorems (Theorems 3.69 and 3.73) indicates the
delicate nature of the finiteness of IntA(K) as A-module. If the Krull dimension of A is 3 or larger, it can even
happen that IntA(K) is not noetherian (even if A is so). The Japanese school around Nagata studied these
questions and Grothendieck in his algebraic geometry treatise (EGA, IV, part 1, [21]) called attention to the
class of domains having the finiteness property together with all their finitely generated algebra extensions.
He used the terminology universally Japanese rings, but it seems that Nagata rings is the one used most
often now. The formal definition is this

Definition 3.6 An integral domain, A, is a Nagata ring if and only if for every finitely generated A-algebra,
B, which is a domain and any finite extension, K, of FracB, the ring IntB(K) is a finite B-module.

As a corollary of Theorem 3.69, we see immediately the following

Proposition 3.74 If A is the ring of integers in a number field (i.e., A = InZ(K), where K is a finite
extension of Q), then A is a Nagata ring as is A[t1, . . . , tn].

A main theorem, proved by Nagata, concerning these matters is the following:

Theorem 3.75 (Nagata) Say A is a complete, noetherian local domain, and K is a finite degree extension
field of Frac(A), then IntA(K) is a finitely generated A-algebra and a finite A-module.

This theorem is not part of our purview, nor will we use it; so, its proof is omitted.

There is another finiteness result involving integrality which has many uses.

Proposition 3.76 (E. Noether) If B is a finitely generated A-algebra, A being noetherian, and if C is a
sub A-algebra of B so that B is integral over C, then C is a finitely generated A-algebra.
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Proof . Write B = A[t1, . . . , tn]; each tj satisfies an integral dependence over C

gj(tj) = 0, j = 1, . . . , n.

If α1, . . . , αq are the coefficients (∈ C) of all these equations, form A[α1, . . . , αq] ⊆ C. The ti are integral
over A[α1, . . . , αq] and they generate B; so, B is a finite A[α1, . . . , αq]-module. But C is a sub A[α1, . . . , αq]-
module of B and A[α1, . . . , αq] is noetherian. Therefore, C is a finitely generated A[α1, . . . , αq]-module, say
C = A[α1, . . . , αq][z1, . . . , zs]; we are done.

What happens if A ⊆ Frac(A) is not a normal domain? Of course we’ll form IntA(Frac(A)) = Ã, then
we want to study the relations between A and Ã. For example look at

A = Z[ni], n ∈ Z and n > 0

and
Ã = IntA(Q(i)) = Z[i].

The main invariant controlling the relations between A and Ã is the transporter (Ã −→ A) in A. That is,
we examine

f = (Ã −→ A) = {ξ ∈ A | ξÃ ⊆ A}.
The set f is, of course, an ideal of A; it is called the conductor of A in Ã or just the conductor of the integral
closure of A. The symbol f comes from the German word for conductor: Führer. But, clearly, f is also an
ideal of Ã. In the example above,

f = {ξ ∈ Z[ni] | n|�(ξ)}.

Remark: The domain, A, is normal if and only if f is the unit ideal. An ideal, A, of A which is also an
ideal of Ã must necessarily be contained in the conductor, f . That is, f is the unique largest ideal of A
which is simultaneously an ideal of Ã.

The first of these statetements is obvious; for the second, we have AÃ ⊆ A as A is an Ã-ideal and A ⊆ A
as A is an A-ideal. Thus,

AÃ ⊆ A ⊆ A
and this says A ⊆ (Ã −→ A) = f .

The connection between A and Ã vis a vis localization and prime ideals is this:

Proposition 3.77 For a domain, A, its integral closure Ã and the conductor, f , of A in Ã we have

(1) If S is a multiplicative set in A, then S−1Ã = IntS−1A(Frac(A))

(2) If f ∩ S �= ∅, then S−1A = S−1Ã, that is S−1A is normal.

(3) If Ã is a finite A-module then the conductor of S−1A in S−1Ã is f · S−1A = fe.

(4) If Ã is a finite A-module, them S−1A is normal if and only if f ∩ S �= ∅.

(5) If Ã is a finite A-module, then

{p ∈ SpecA | Ap is not normal}

is closed in SpecA; indeed it is V (f). Hence, in this case, Ap is a normal ring on an open dense set
of SpecA.
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Proof . (1) This is clear from Proposition 3.54 and Fact B following it.

(2) Write s ∈ f ∩ S and choose α ∈ Ã. We know sα = a ∈ A; so, α = a/s ∈ S−1A. We find Ã ⊆ S−1A,
hence S−1Ã ⊆ S−1A. The other inclusion is clear.

(3) Write α1, . . . , αt for a finite set of A-module generators for Ã in this part and in part (4). To check
that an element x ∈ S−1A lies in (S−1Ã −→ S−1A), it suffices to see that it is in (Ã −→ S−1A). For the
latter, all we need is xαj ∈ S−1A for j = 1, . . . , t. Conversely, if x ∈ (S−1Ã −→ S−1A), then certainly
xαj ∈ S−1A, all j.

Now xαj ∈ S−1A implies there is some sj ∈ S with sjxαj ∈ A. If s = s1 · · · st, then sxαj ∈ A therefore
sx ∈ f , i.e., x ∈ fe. The converse is clear.

(4) The “if” part of our conclusion is (2), so say S−1A is normal. Then the conductor (S−1Ã −→ S−1A)
is the unit ideal; so, (3) shows fe = unit ideal. This implies f ∩ S �= ∅.

(5) Write S(p) for A − p, then Ap is not normal iff f ∩ S(p) = ∅ which holds iff f ⊆ p; that is iff
p ∈ V (f). To finish the proof we need only show that any non-empty open set of SpecA is dense when A is a
domain. But, this will hold if we show Xf ∩Xg �= ∅ (provided neither Xf nor Xg is empty) (DX). However,
Xf ∩Xg = Xfg, and, as neither f nor g is zero, their product is non-zero (and not nilpotent). Now apply
Proposition 3.12 part (3).

Corollary 3.78 For a domain A and its integral closure, Ã, assume Ã is a finite A-module. Then, for a
prime p of SpecA not in V (f), there exists one and only one prime ideal, p̃, of Ã lying over A. This prime
ideal is pAp ∩ Ã.

Proof . Existence is clear either by the Lying Over Theorem or by the fact that pAp is prime and Ap ⊇ Ã.
(The latter holds as Ap is normal since p /∈ V (f).) To see uniqueness, observe as p �⊇ f there is δ ∈ f with
δ /∈ p. Then for any ideal, A, of Ã

δA ⊆ δÃ ⊆ A
and δA ⊆ A, too. Therefore δA ⊆ A ∩ A; so if A is an ideal contracting to p we get δA ⊆ p. Now, δ /∈ p,
therefore A ⊆ pAp, so A ⊆ pAp ∩ Ã = p̃. Suppose, in fact, A is prime yet A < p̃, then we’d have a
contradiction to non-comparability (Proposition 3.62).

Note: Generally, pÃ is not a prime ideal of Ã; but, of course, pÃ is always contained in p̃.
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3.6 Primary Decomposition

In Z, we have unique factorization and we know this is not valid in an arbitrary (even Noetherian) commuta-
tive ring. Can one generalize so as to obtain a “decomposition” of ideals (or submodules) into special ideals
(resp. modules) which resemble prime powers? Surprisingly, the answer is connected with a generalization
of Fitting’s lemma from linear algebra.

Lemma 3.79 (Fitting’s lemma) If V is a finite dimensional vector space over a field, k, and θ : V → V is
an endomorphism, then there exist subspaces W and Z of V so that

(1) V = W
∐
Z.

(2) θ �W is an isomorphism.

(3) θ � Z is nilpotent.

Proof . See any introductory algebra text.

Look at Z. Pick n, then we have the ideal A = nZ. Factor n as n = pe11 p
e2
2 · · · pet

t , where p1, . . . , pt
are distinct prime numbers. We get A = Pe1

1 · · ·Pet
t , where Pj is the prime ideal pjZ. Now, we also have

A =
⋂t
j=1 P

ej

j , since the Pj are pairwise comaximal.

This last equality is still wrong, say in C[X,Y ], and the fault is the Pei
i . They are not general enough.

Let A be a commutative ring, M an A-module and N ⊆M a submodule. Set

RadM (N) =
√

(M −→ N) =
√
{x ∈ A | xM ⊆ N} = {x ∈ A | (∃k > 0)(xkM ⊆ N)}.

This is the relative radical of N in M . The following properties are easily checked:

(1) RadM/N ((0)) = RadM (N).

(2) RadM ((0)) =
√

Ann(M).

(3) RadA(q) =
√

q.

(3a) RadA/q((0)) =
√

q.

(4) RadM (N ∩ P ) = RadM (N) ∩ RadM (P ).

(5) RadM (AN) ⊇ √A ∩ RadM (N).
Here, A is an ideal of A; M is an A-module; N is a submodule of M .

Definition 3.7 A module, M , is coprimary iff for every a ∈ A, the map σa : M → M via σa(m) = am is
either injective or nilpotent. (The map σa is called a homothety .) An ideal, q, of A is a primary ideal iff the
module, A/q, is coprimary.

Notice the clear connection of this idea with Fitting’s lemma.

Proposition 3.80 For any commutative ring, A, and any ideal, q, the following are equivalent:

(α) For all x, y ∈ A if xy ∈ q but y /∈ q, then xk ∈ q, for some k ≥ 1.

(β) For all y /∈ q, we have (y −→ q) ⊆ √q.

(γ)
⋃
y �∈q(y −→ q) =

√
q.

(δ) Every zero divisor of the ring A/q is nilpotent.
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(ε) The ideal q is primary.

Proof . The equivalence (α)⇐⇒ (β) is clear and the implication (γ) =⇒ (β) is a tautology. If (β), then pick
ξ ∈ √q. If ξ ∈ q, then ξ ∈ (y −→ q) for all y. Thus, we may assume that ξ /∈ q and so, there is a minimum
k ≥ 2 so that ξk ∈ q. Let y = ξk−1 /∈ q. We have ξy = ξk ∈ q, so, ξ ∈ (ξk−1 −→ q) and (γ) holds.

(α) =⇒ (δ). Pick x ∈ A/q, a zero divisor, which means that there is some y �= 0 with x y = 0. It follows
that y /∈ q and xy ∈ q; by (α), we get xk ∈ q, for some k, and so, xk = 0.

(δ) =⇒ (ε). Pick a ∈ A. We need to show that σa is injective or nilpotent in A/q. Say σa is not injective.
Then, there is some y �= 0 in A/q and ay = 0 in A/q, i.e. a y = 0. But, y �= 0, so, by (δ), a is nilpotent.
Consequently, ak = 0, and so, (σa)k = 0 in A/q.

(ε) =⇒ (α). Pick x, y with xy ∈ q and y /∈ q. Look at σx on A/q. We have

σx(y) = x y = xy = 0, as xy ∈ q.

As y �= 0, the map σx is not injective on A/q. By (ε), the map σx is nilpotent. This means that
(σx)k = σxk = 0 in A/q. In particular, σxk(1) = xk1 = 0, i.e., xk = 0. Therefore, xk ∈ q.

Corollary 3.81 If
√

q is maximal, then q is primary. In particular, if m is a maximal ideal, then mn is
primary for all n > 0.

Proof . The image of
√

q in A/q is the nilradical of A/q. Since
√

q is maximal in A, the ring A/q has a
unique maximal ideal. It follows that every element of A/q is either a unit or nilpotent, so Proposition 3.80
(3) applies. The second part of the statement follows from the first since

√
pn = p for every prime ideal, p.

� There exist prime ideals, p, such that pn is not primary. There exist primary ideals, q, not of the form
pn, where p ∈ SpecA.

Corollary 3.82 Say q is a primary ideal of A, then
√

q is a prime ideal.

Proof . Pick x, y ∈ A with xy ∈ √q and y /∈ √q. Then, xkyk = (xy)k ∈ q, for some k > 0. So, σxk(yk) = 0
in A/q and yk �= 0 in A/q. Therefore, our homothety, σxk , is nilpotent, so, σx is nilpotent, i.e., (σx)l ≡ 0 on
A/q. Then, (σx)l(1) = xl · 1 = xl = 0 in A/q, and so, xl ∈ q, i.e., x ∈ √q.

� There exist non-primary ideals, A, yet
√

A is prime.

Definition 3.8 A submodule, N , of a module, M , is primary in M iff M/N is co-primary. Then, RadM (N)
is prime (same argument), say p. In this case, we say N is p-primary when M/N is p-coprimary, i.e., M/N
is coprimary and RadM (N) = p.

Say M is an A-module, N is a submodule of M and S is a multiplicative set in A. Look at

Nec = {m ∈M | (∃s ∈ S)(sm ∈ N)} = S(N),

and call it the S-component of N or S-saturation of N .

Further Properties:

(6) S((0)) = Ker (M −→ S−1M).

(7) S(
⋂t
i=1Ni) =

⋂t
i=1 S(Ni).

(8) S(V −→ N) = (V −→ S(N)).
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Proposition 3.83 If A is a commutative ring, M is a f.g. A-module and N a submodule of M , then the
following are equivalent:

(1) N is primary in M .

(2) For all multiplicative sets, S ⊆ A, we have

S(N) =

{
N

or
M.

(3) For all multiplicative sets, S ⊆ A, the map M/N −→ S−1(M/N) is either injective or zero.

Proof . Note that SM/N (0) = S(N) = Ker (M/N −→ S−1(M/N)). Therefore, (2) and (3) are equivalent.

(1) =⇒ (2). Take any S and examine
√

(M −→ N) = RadM/N ((0)). There are two cases:
(1) S ∩ RadM/N ((0)) = ∅ or (2) S ∩ RadM/N ((0)) �= ∅.

Case 2. There is some s ∈ S with s ∈ RadM/N ((0)). So, sk ∈ (M −→ N) and then sk ∈ S implies that
M ⊆ S(N); thus, M = S(N).

Case 1. Pick s ∈ S and look at σs. If σs is nilpotent on M/N , then (σs)k = σsk ≡ 0 on M/N , which
implies that skM ⊆ N . So, s ∈√

(M −→ N)∩S, a contradiction. Therefore, σs must be injective on M/N ,
by (1). This means given any m ∈ M , we have σs(m) = sm = 0 in M/N iff m ∈ N , already, i.e., sm ∈ N
iff m ∈ N . As this holds for all s ∈ S, we have S(N) = N .

(2) =⇒ (1). Pick s ∈ A and look at S = {sk | k ≥ 0}. If s ∈ N (A), then (σs)k = σsk ≡ 0 on any
module. So, we may assume s /∈ N (A) and then, S is a multiplicative set. Thus, (2) holds for S. We have
to show that M/N is coprimary, i.e., σs is either nilpotent or injective. Say, σs is not injective on M/N ,
i.e., S(N) �= N . By (2), we have S(N) = M . Pick generators, m1, . . . ,mt for M . As S(N) = M , each
mj ∈ S(N); so, there is some kj with skjmj ∈ N , for j = 1, . . . , t. Let k = max{k1, . . . , kt}, then skmj ∈ N ,
for j = 1, . . . , t. It follows that skM ⊆ N and so, sk kills M/N , i.e. σs is nilpotent on M/N .

Proposition 3.84 (E. Noether, 1921) If M is a noetherian module, then any non-primary submodule, N ,
of M is reducible, i.e., N is the intersection, N = Q1 ∩Q2, of proper submodules of M properly containing
N .

Proof . (Adapted from Fitting’s lemma.) Since N is non-primary, M/N is not coprimary. So, there is some
a ∈ A so that σa is not injective and not nilpotent on M/N . Write Mj = Ker (σa)j = Ker (σaj ) on M/N .
We have an ascending chain

M1 ⊆M2 ⊆M3 ⊆ · · · .
By the ACC, the chain stops, say at r. We have Mr = Mr+1 = · · · = M2r. Let ϕ = σar ∈ EndA(M/N).
We have Ker ϕ �= M/N , else (σa)r ≡ 0, contradicting the non-nilpotence of σa. So, Im ϕ �= (0). Also,
Ker ϕ ⊇ Ker σa �= (0), as σa is not injective. I claim that Ker ϕ ∩ Im ϕ = (0).

Pick ξ ∈ Ker ϕ ∩ Im ϕ. So, ξ = ϕ(η) = arη. As ϕ(ξ) = 0, we have ϕ(arη) = 0; thus arϕ(η) = 0, and so,
a2rη = 0, i.e., η ∈ M2r = Mr. Consequently, arη = 0, i.e., ξ = 0, as desired. But, now, Ker ϕ ∩ Im ϕ = (0)
implies that

N = π−1(Ker ϕ) ∩ π−1(Im ϕ),

where π : M →M/N is the natural projection.

We need a restatement of a Proposition 3.83 for the reduction process:

Proposition 3.85 Say N is a submodule of M , and p is a given prime ideal.
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(a) N is p-primary in M iff for all multiplicative sets, S, of A, we have

S(N) =
{
N iff p ∩N = ∅
M iff p ∩N �= ∅.

(b) If N1, . . . , Nt are all p-primary, then N1 ∩ · · · ∩Nt is again p-primary.

(c) If V is any submodule of M , then when N is p-primary, we have

S(V −→ N) =
{
A iff V ⊆ N
p-primary ideal iff V �⊆ N .

Proof . (a) The module N is primary iff M/N is coprimary iff S((0)) = (0) or S((0)) = M/N , for any
multiplicative subset, S (where (0) ⊆ M/N) iff S(N) = N or S(N) = M , for any such S. (Recall,
S((0)) = S(N).) But, the dichotomy: S(N) = N or M , depends on S ∩ RadM (N) = S ∩ RadM/N ((0)) =
S ∩√

(M −→ N). Namely, S(N) = N iff S ∩ RadM (N) = ∅ and S(N) = M iff S ∩ RadM (N) �= ∅. But
here, p = RadM (N), so (a) is proved.

(b) Now, S(
⋂t
i=1Ni) =

⋂t
i=1 S(Ni), so (a) implies (b).

(c) If V ⊆ N , then (V −→ N) = A, so, S(V −→ N) = A. So, we may assume V �⊆ N . Recall that
S(V −→ N) = (V −→ S(N)). We will test S(V −→ N) by part (a) (here, M = A). But,

S(N) =
{
M iff S ∩ p �= ∅
N iff S ∩ p = ∅.

In the case S ∩ p �= ∅, we have S(V −→ N) = (V −→M) = A. If S ∩ p = ∅, then S(V −→ N) = (V −→ N),
and the test of (a) shows (c).

Reduction Process for Primary Decomposition

Say N = Q1 ∩Q2 ∩ · · · ∩Qt is a decomposition of N as a finite intersection of pi-primary modules, Qi.

� No assertion pi �= pj is made.

(1) Remove all Qj from the intersection
⋂t
i=1Qi, whose removal does not affect the intersection.

(2) Lump together as an intersection all the Qi’s for which the pi’s agree. By (b), the “new” intersection
satisfies:

(α) No Q̃j , still primary, can be removed without changing the intersection.

(β) All the pj

(
=

√
(M −→ Q̃j)

)
are distinct.

Such a primary decomposition is called reduced .

Theorem 3.86 (Lasker-Noether Decomposition Theorem, 1921) Every submodule, N , of a noetherian mod-
ule, M , can be represented as a reduced primary decomposition:

N = Q1 ∩Q2 ∩ · · · ∩Qt.
Proof . (Noetherian induction—invented for this theorem.) Let

S = {N ⊆M | N is not a finite intersection of primary submodules}.
If S �= ∅, by the ACC, the set S has maximal element. Call it N . Of course, N is not primary. By Noether’s
proposition (Proposition 3.84), there exist Q1, Q2 > N , so that N = Q1 ∩ Q2. But N is maximal in S, so
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Qj /∈ S for j = 1, 2. Thus, we can write Q1 =
⋂t1
j=1Q

(1)
j and Q2 =

⋂t2
k=1Q

(2)
j , where the Q(i)

j are primary
(i = 1, 2, finitely many j’s). Consequently, we get

N = Q
(1)
1 ∩ · · · ∩Q(1)

t1 ∩Q(2)
1 ∩ · · · ∩Q(2)

t2 ,

contradicting N ∈ S. Therefore, S = ∅. Now apply the reduction process to a primary decomposition of N
and we get the conclusion.

Corollary 3.87 (Lasker’s Decomposition Theorem, original form, 1905) If A = C[X1, . . . , Xn], then every
ideal, A, admits a reduced primary decomposition: A = q1 ∩ · · · ∩ qt.

Corollary 3.88 (Noether’s statement) If A is any noetherian ring and A is any ideal of A, then A admits
a reduced primary decomposition: A = q1 ∩ · · · ∩ qt.

Now, what about uniqueness?

Proposition 3.89 Say that N is an A-submodule of M , and N = Q1 ∩ · · · ∩ Qt is a reduced primary
decomposition for N . Let I = {1, . . . , t} and given any multiplicative subset, S, of A, write

S(I) = {i ∈ I | S ∩ pi = ∅}.
Here, pi = RadM (Qi) is the prime associated to Qi. Then,

(a) S(N) =
⋂

j∈S(I)

Qj .

(b) S−1Qi =
{
S−1M if i /∈ S(I)
pei -primary submodule of S−1M if i ∈ S(I).

(c) S−1N =
⋂

j∈S(I)

S−1Qj ,

and this is a reduced primary decomposition for S−1N as submodule of S−1M .

Proof . (a) We know that S(N) =
⋂t
j=1 S(Qj) and S(Qj) = M when j /∈ S(I) and S(Qj) = Qj for j ∈ S(I)

(previous proposition). Thus, it is clear that (a) holds.

(b) Now, Qi is pi-primary, so S(Qi) = M if pi ∩ S �= ∅ else S(Qi) = Qi or equivalently, S((0)) = M/Qi
if i /∈ S(I) else S((0)) = (0) (where (0) is the zero ideal in M/Qi). Say, i /∈ S(I), then S(Qi) = M , and
so, for every m ∈ M , there is some s = s(m) ∈ S with sm ∈ Qi. Hence, m/1 ∈ S−1Qi and it follows that
S−1M ⊆ S−1Qi; yet, of course, S−1Qi ⊆ S−1M , so S−1Qi = S−1M , as required. Now, say i ∈ S(I), so
pi ∩ S = ∅. Observe, every multiplicative set, say T , of S−1A, has the form S−1T0, for some multiplicative
set, T0, of A. But, M/Qi is coprimary which means that M/Qi −→ T−1

0 (M/Qi) is either injective (case:
T0((0)) = (0)) or zero (case: T0((0)) = M/Qi)). Therefore, as S−1A is flat over A, we get

S−1(M/Qi) −→ S−1T−1
0 (M/Qi) is injective or zero, (∗)

the first if T0 ∩ pi = ∅, i.e., T (= S−1T0) ∩ pei = ∅, the second if T0 ∩ pi �= ∅, i.e., T (= S−1T0) ∩ pei �= ∅. But,
S−1T−1

0 (M/Qi) = T−1(S−1M/S−1Qi) and S−1M/S−1Qi = S−1(M/Qi), so

S−1M/S−1Qi −→ T−1(S−1M/S−1Qi) is injective or zero

depending on T ∩ pei being empty or not. Therefore, S−1Qi satisfies our test for pei -primariness.

(c) We know from (b) that S−1Qj is pej-primary and pei �= pej if i �= j, as i, j ∈ S(I) and there is a
one-to-one correspondence between the p’s so that p∩S = ∅ and the pe of S−1A. The rest should be obvious
(DX).
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Theorem 3.90 (First Uniqueness Theorem) If N , an A-submodule of M , has a reduced primary decompo-
sition N = Q1 ∩ · · · ∩Qt, then the prime ideals p1, . . . , pt (pi =

√
(M −→ Qi)) are uniquely determined by

N and M , up to the order of their listing.

Proof . Assume that N = Q1 ∩ · · · ∩ Qs = Q′
1 ∩ · · · ∩ Q′

t are two reduced decompositions for N in M . We
use induction on s+ t. When s+ t = 2, we have s = t = 1 and Q1 = Q′

1 and uniqueness is obvious. Assume
that uniqueness holds for all submodules, N , for which s + t ≤ r − 1. Consider N and two decompositions
with s+ t = r and let

S = A−
s−1⋃
i=1

pi −
⋃

p′
j �=ps

p′j .

Now, S ∩ pi = ∅ for i = 1, . . . , s− 1 and S ∩ p′j = ∅ for all j with p′j �= ps. So,

S(N) =
s⋂
i=1

S(Qi) =
s−1⋂
i=1

Qi

as S(Qi) = Qi whenever S ∩ pi = ∅. Also,

S(N) =
⋂

p′
j �=ps

S(Q′
j) =

⋂
p′

j �=ps

Q′
j .

For S(N), the sum of the number of components is at most s−1+ t < r; so, the induction hypothesis implies
S(N) has the uniqueness property. However, can it be that p′j �= ps for j = 1, . . . , t? Were that true, the
second intersection would give S(N) =

⋂t
j=1Q

′
j = N . Thus, we would have

s⋂
i=1

Qi = N = S(N) =
s−1⋂
j=1

Qj ,

contradicting the fact that the first decomposition is reduced. Therefore, there is some j with p′j = ps, and
now the induction hypothesis implies

{p1, . . . , ps−1} = {p′j | p′j �= ps},
and the proof is complete.

Definition 3.9 If N is a submodule of M and N has a primary decomposition, then the primes p1, . . . , ps
corresponding to the Qj ’s which appear in the decomposition are called the essential primes of N in M .
The set of such is denoted EssM (N). When N = (0), the primes appearing are called associated primes of
M and this set is denoted Ass(M). Of course, Ass(M/N) = EssM (N). The minimal elements of EssM (N)
or Ass(M) are called isolated essential primes of N in M (resp. isolated associated primes of M). The Qi
corresponding to isolated primes of either type are called isolated primary components of N in M or isolated
primary components of M .

Theorem 3.91 (Second Uniqueness Theorem) The isolated primary components of N in M are uniquely
determined by M and N .

Proof . Let Q be such an isolated component of N in M and let p be the corresponding minimal prime. Look
at S = A− p. If P ∈ EssM (N), then P > p implies that P ∩ S �= ∅ and as p is minimal, all other P touch
S. It follows from Proposition 3.89 that S(N) = Q.

The Lasker-Noether theorem has an immediate application to number theory. This concerns factorization
and it shows clearly how Lasker-Noether provides a generalization to Noetherian rings of unique factorization
in UFD’s.
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Definition 3.10 A Dedekind domain is a noetherian, normal domain of Krull dimension 1.

Examples of Dedekind domains.

(1) Every P.I.D. is a Dedekind domain.

(2) If K is a finite extension of Q (that is, K is a number field) and OK = IntZ(K) (the integral closure
of Z in K), then OK is a Dedekind domain. The ring OK is called the ring of integers in K.

(3) Let X be a compact Riemann surface and x ∈ X, any point in X. Let

A = {f ∈Mer(X) | poles of f are only at x}.
Then, A is a Dedekind domain.

(3a) Let X be an open Riemann surface of finite character, which means that X = X∪ finite set of points
is a compact Riemann surface. Then, Hol(X)(= the ring of all holomorphic functions on X) is a Dedekind
domain.

Say A is a Dedekind domain. If p ∈ SpecA but p �= (0), then dimension 1 implies that p ∈ Max(A). From
Theorem 3.56, Ap is a PID. Take any non-zero ideal, A, then by Lasker-Noether, we can write A = q1∩· · ·∩qt,
a reduced primary decomposition. Now,

pj =
√

qj ⊇ A > (0),

so each of the pj ’s is a maximal ideal. It follows that each pj is isolated and, by the second uniqueness
theorem, the qj ’s are unique. Moreover, whenever i �= j,√

qi + qj =
√

pi + pj = A,

so that 1 ∈ qi + qj . We deduce that the qj are pairwise comaximal and the Chinese Remainder Theorem
says

A =
t⋂
i=1

qi =
t∏
i=1

qi.

The ring A/qi is noetherian and any p ∈ Spec(A/qi) corresponds to a prime of A containing pi; that is,
p must be pi. Consequently, A/qi is a local ring with the DCC and by Nagata’s Theorem pi (= image pi in
A/qi) is nilpotent. Let ei be its index of nilpotence so that

pei
i ⊆ qi < pei−1

i .

But, Api
is a PID, and Proposition 3.5 shows that qi = pei

i . In summary, we get the following theorem of
Dedekind:

Theorem 3.92 (Dedekind, 1878) In a Dedekind domain, every nonzero ideal, A, is a unique product of
powers of prime ideals: A = pe11 pe22 · · · pet

t .

Corollary 3.93 (Kummer, 1833) In the ring of integers of a number field, every nonzero ideal is a unique
product of powers of prime ideals.

After this little excursion into number theory and the connection of primary decomposition to questions
of factorization, we resume our study of primary decomposition for modules—especially its applications to
the structure of modules.

Lemma 3.94 Say M is a p-coprimary module and N ( �= (0)) is a submodule of M . Then, N is also
p-coprimary.
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Proof . Pick a ∈ A with σa not injective on N . Then, σa is not injective on M , so, σa is nilpotent on M
(as M is coprimary). Therefore, σa � N is also nilpotent; so, N is coprimary. Let p̃ be the prime associated
with N while p is the prime for M . We know that p =

√
Ann(M), while p̃ =

√
Ann(N). If x ∈ p, then

xk ∈ Ann(M); so, xk ∈ Ann(N), i.e, x ∈ p̃. Thus, p ⊆ p̃.

Now, pick x with σx not injective on N . This implies that (σx)k ≡ 0 on N , that is, xk ∈ Ann(N), i.e.,
x ∈ p̃. Thus, x ∈ p̃ implies σx is not injective on N , hence σx is not injective on M , and so (σx)k ≡ 0 on M
as M is coprimary which implies that x ∈ p. Therefore, we also have p̃ ⊆ p, and p̃ = p.

Proposition 3.95 A necessary and sufficient condition that M be p-coprimary is that Ass(M) = {p}. Let
N ⊆M , for arbitrary M and N , then Ass(N) ⊆ Ass(M).

Proof . Assume M is p-coprimary. Then (0) is p-primary in M . By the first uniqueness theorem, Ass(M) =
{p}. Conversely, if Ass(M) = {p}, then (0) has just one primary component, whose prime is p. So, (0) is
p-primary and it follows that M is p-coprimary.

Assume N ⊆ M . Write (0) = Q1 ∩ · · · ∩ Qt, a reduced primary decomposition of (0) in M . Then,
Ass(M) = {p1, . . . , pt}. By intersecting (0) = Q1 ∩ · · · ∩Qt with N , we get

(0) = (Q1 ∩N) ∩ · · · ∩ (Qt ∩N).

Observe that we have the composite map

N ↪→M −→M/Qi

and its kernel is N ∩Qi. Hence, N/(N ∩Qi) ↪→M/Qi. But, M/Qi is pi-coprimary; so, from the argument
above, N/(N ∩Qi) is also pi-coprimary, provided that N/(N ∩Qi) �= (0). Now, we have N/(N ∩Qi) = (0)
iff Qi ⊇ N . Consequently, we have

(0) = (Qi1 ∩N) ∩ · · · ∩ (Qis ∩N) in N,

where Qil �⊇ N , for each il, and Qil ∩ N is pil -primary in N . By the first uniqueness theorem, we deduce
that

Ass(N) = {p ∈ Ass(M) | Q �⊇ N, where Q corresponds to p}.

Corollary 3.96 (of the proof) If N ⊆M , then

Ass(N) = {p ∈ Ass(M) | Q �⊇ N, where Q corresponds to p}.

Proposition 3.97 Say (0) =
⋂t
i=1Qi is a reduced primary decomposition of (0) in M and let N be a

submodule of M . Then, N is pi-coprimary if and only if N ∩ Qi = (0). In particular, there exist pi-
coprimary submodules of M , namely,

⋂
j �=iQj. In fact, p ∈ Ass(M) iff M contains a submodule which is

p-coprimary. Lastly, if N ∩ (Qi + Qj) = (0), then N = (0). Therefore, M is an essential extension of
Qi +Qj.

Proof . Say N ∩Qi = (0), then
N = N/(N ∩Qi) ↪→M/Qi.

Therefore, N is a submodule of the pi-coprimary moduleM/Qi. But then, N is pi-coprimary (as a submodule
of a pi-coprimary is pi-coprimary). Conversely, since (0) =

⋂
iQi, we get

(0) =
⋂
i

(Qi ∩N), (∗)
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and we know that Qi ∩ N is pi-primary if Qi ∩ N �= N , and that (∗) is a reduced decomposition. Since
N is pi-coprimary, by the first uniqueness theorem, there can be only one term in (∗), i.e., Qj ⊇ N for all
j �= i; then (0) = Qi ∩ N . The second statement is now obvious. If N ∩ (Qi + Qj) = (0), then, of course,
N ∩Qi = N ∩Qj = (0). Then, pi and pj would be primes of N , yet, N is coprimary by the first statement.
Consequently, pi = pj , a contradiction. So, N = (0).

To finish this chain of ideas, we need the “power lemma”:

Lemma 3.98 (Power lemma) Say A is a commutative ring with unity and M,F are A-module with F ⊆M .
Write A =

√
(M −→ F ) and assume A is f.g. as ideal. Then, there is some ρ >> 0 so that AρM ⊆ F .

Proof . Let α1, . . . , αt be generators for A. For l = 1, . . . , t, there is some kl > 0 so that αkl

l M ⊆ F . Let
ρ = k1 + · · · + kt. Every element of A has the form r1α1 + · · · + rtαt, where ri ∈ A. Every element of
Aρ is a sum of terms s(a1a2 · · · aρ); s ∈ A; a1, . . . , aρ ∈ A. Then, a1 · · · aρ is a sum of monomials of the
form cαi11 · · ·αitt , where c ∈ A and i1 + · · · + it = ρ. Now, at least one il ≥ kl in the last sum, and then,
αi11 · · ·αitt M ⊆ F . Therefore, AρM ⊆ F .

Theorem 3.99 If A is a noetherian ring and M is a f.g. A-module, then for all submodules, N , of M , all
the prime ideals of Ann(N) are in Ass(M). A prime ideal, p, is in Ass(M) iff there is some x ∈M so that
p = Ann(x) iff A/p is isomorphic to a submodule of M .

Proof . In M , we have (0) =
⋂
iQi, a reduced primary decomposition, and we let pi correspond to Qi. The

first uniqueness theorem implies Ass(M) = {p1, . . . , pt}. Also,

Ann(N) = (N −→ (0)) =
⋂
i

(N −→ Qi).

But, we know that

(N −→ Qi) =
{
A if N ⊆ Qi
pi-primary ideal otherwise.

We get a reduced primary decomposition of Ann(N):

Ann(N) =
⋂

j|Qj �⊇N
(N −→ Qj).

By the first uniqueness theorem, the primes of Ann(N) are the pj ’s for which Qj �⊇ N , so, they are contained
in Ass(M).

We have p = Ann(A/p) and A/p = Aξ, for some ξ (where ξ is the image of 1 modulo p). Given x with
Ann(x) = p, the map ξ 	→ x gives A/p ∼= Ax ⊆ M and conversely. Say p kills some x exactly, then, as A/p
is p-coprimary, Ass(Ax) = {p}. Yet Ax ⊆M , so, p ∈ Ass(M).

Conversely, say p ∈ Ass(M). We must find x ∈M with Ann(x) = p.

By Proposition 3.97, if p ∈ Ass(M), then there is a submodule, P , so that P is p-coprimary. Thus,
p =

√
Ann(P ), i.e., p =

√
(P −→ (0)). In the power lemma, set p = A, P = M , (0) = F . As A is

noetherian, p is f.g. and by the power lemma, there is some ρ >> 0 with pρP = (0). If we choose ρ minimal
with the above property, we have pρP = (0) and pρ−1P �= (0). Pick any x �= 0 in pρ−1P . Then,

px ⊆ ppρ−1P = pρP = (0),

so, p ⊆ Ann(x). But x ∈ P implies Ax ⊆ P and P is p-coprimary; consequently, Ax is also p-coprimary. It
follows that √

Ann(Ax) =
√

Ann(x) = p.

So, we get p ⊆ Ann(x) ⊆√
Ann(x) = p.

In all of the following corollaries, A is a noetherian ring and M is a f.g. A-module. By taking N = M in
Theorem 3.99, we get:
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Corollary 3.100 The primes of Ann(M) are in Ass(M).

Corollary 3.101 Say 0 −→ N −→M −→M/N −→ 0 is exact. Then,

Ass(M) ⊆ Ass(N) ∪Ass(M/N).

Proof . Pick p ∈ Ass(M) and say p /∈ Ass(N). By Theorem 3.99, there is some x ∈ M so that p = Ann(x).
Look at (Ax) ∩ N . We claim that (Ax) ∩ N = (0). If not, (Ax) ∩ N ⊆ Ax and Ax is p-coprimary. Thus,
(Ax) ∩N is also p-coprimary and Ass((Ax) ∩N) = {p}, But, (Ax) ∩N ⊆ N ; so, Ass((Ax) ∩N) ⊆ Ass(N).
It follows that p ∈ Ass(N), a contradiction.

Therefore, (Ax) ∩N = (0). Thus, we have

Ax −̃→ Ax/((Ax) ∩N) ↪→M/N,

which means that Ax is a submodule of M/N . By Theorem 3.99, we have p ∈ Ass(M/N).

Corollary 3.102 We have Ass(M) ⊆ Supp(M).

Proof . If p ∈ Ass(M), then p = Ass(Ax), for some x ∈ M , i.e., we have the inclusion A/p −→ M . By
localizing, we get (A/p)p ⊆Mp, yet

(A/p)p = Frac(A/p) �= (0).

Thus, Mp �= (0), i.e., p ∈ Supp(M).

Corollary 3.103 Each of our M ’s possesses a chain (of submodules)

(0) = M0 < M1 < M2 < · · · < Mn = M (†)

for which Mj/Mj−1
∼= A/pj, for some pj ∈ SpecA. Every p ∈ Ass(M) appears as at least one of these pj in

each such chain.

Proof . If p ∈ Ass(M), there is some x ∈ M so that A/p ∼= Ax ⊆ M . If we let M1 = Ax, it follows that
M1/M0

∼= A/p. Look at M/M1. If p̃ ∈ Ass(M/M1), repeat the argument to get M2 ⊆M/M1 with M2 = Ay,
for some y ∈M/M1, and A/p̃ ∼= Ay. By the second homomorphism theorem, M2 = M2/M1. Then, we have
(0) < M1 < M2; M2/M1

∼= A/p̃; M1/M0
∼= A/p. If we continue this process, we obtain an ascending chain

of the desired type
(0) = M0 < M1 < M2 < · · · < Mn < · · · .

As M is noetherian, this chain stops. This proves the first statement.

We prove the last statement by induction on the length of a given chain.

Hypothesis: If M has a chain, (†), of length n, each p ∈ Ass(M) appears among the primes from (†).
If n = 1, then M ∼= A/p̃. As A/p̃ is p̃-coprimary, we have Ass(M) = {p̃}; yet p ∈ Ass(M), so, p = p̃.

Assume the induction hypothesis holds up to n− 1. Given a chain, (†), of length n and p ∈ Ass(M), we
know there exists some x ∈M with p = Ann(x), i.e., we have an inclusion A/p ↪→M . There is some j such
that x ∈ Mj and x /∈ Mj−1, where the Mj ’s are in (†). If j < n, then apply the induction hypothesis to
Mn−1 to conclude that p is among p1, . . . , pn−1.

So, we may assume x ∈Mn and x /∈Mn−1. Look at (Ax) ∩Mn−1. There are two cases.

(a) (Ax) ∩ Mn−1 �= (0). Then, (Ax) ∩ Mn−1 ⊆ Ax, where the latter is p-coprimary; it follows that
(Ax) ∩Mn−1 is p-coprimary and Ass((Ax) ∩Mn−1) = {p}. Yet, (Ax) ∩Mn−1 ⊆Mn−1, so,

Ass((Ax) ∩Mn−1) ⊆ Ass(Mn−1).
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Therefore, p is among p1, . . . , pn−1, by the induction hypothesis.

(b) (Ax) ∩Mn−1 = (0). In this case, Ax ∼= Ax/((Ax) ∩Mn−1) ↪→M/Mn−1
∼= A/pn, so,

Ass(Ax) = {p} ⊆ Ass(A/pn) = {pn}. Therefore, p = pn.

The chain, (†), shows that M is a multiple extension of the “easy” modules A/aj . That is, we have exact
sequences

0 −→M1 = A/p1 −→M2 −→M2/M1 = A/p2 −→ 0
0 −→M2 −→M3 −→ A/p3 −→ 0

...
0 −→Mn−1 −→M −→ A/pn −→ 0

We define Ext(M/N,N) as the set

{M | 0 −→ N −→M −→M/N −→ 0}/ ∼,
where the equivalence relation ∼ is defined as in the case of group extensions. It turns out that not only is
Ext(M/N,N) an abelian group, it is an A-module. If the A-modules Ext(A/pj ,Mj−1) can be successively
computed, we can classify all f.g. A-modules, M .

To attempt such a task, one should note the following:

Remarks:

(1) Say 0 −→ N −→M −→M/N −→ 0 is exact, then

Supp(M) = Supp(N) ∪ Supp(M/N).

Proof . Localize at any prime p. We get

0 −→ Np −→Mp −→ (M/N)p −→ 0 is exact.

From this, (1) is clear.

(2) If M and N are two f.g. modules, then

Supp(M ⊗A N) = Supp(M) ∩ Supp(N).

Proof . We always have
(M ⊗A N)p

∼= Mp ⊗Ap Np.

So, if p ∈ Supp(M ⊗A N), the left hand side is nonzero which implies that Mp �= (0) and Np �= (0).
Consequently,

Supp(M ⊗A N) ⊆ Supp(M) ∩ Supp(N).

Now, assume p ∈ Supp(M) ∩ Supp(N), then Mp �= (0) and Np �= (0). As Mp and Np are f.g. Ap-modules
(since M and N are f.g. A-modules), Nakayama’s lemma implies

Mp/mMp �= (0) and Np/mNp �= (0).

As these are vector spaces over κ(Ap), we deduce that

Mp/mMp ⊗Ap Np/mNp �= (0).

But, this is just (Mp ⊗Ap Np)/m(Mp ⊗Ap Np); so, Mp ⊗Ap Np �= (0).
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(3) If M is a f.g. A-module, then p ∈ Supp(M) iff there exists a chain

(0) = M0 < M1 < M2 · · · < Mn = M (†)

with Mj/Mj−1
∼= A/pj and p is one of these pj .

Proof . If we have a chain (†) and p = pj for some j, then A/pj = A/p and (A/p)p = Frac(A/p). Therefore,
(Mj/Mj−1)p �= (0). By exactness, (Mj)p �= (0). As Mj ↪→ M and localization is exact, Mp �= (0) and
p ∈ Supp(M).

Conversely, if p ∈ Supp(M), then there is some q ∈ Ass(M) and p ⊇ q. So, A/q is in a chain and
A/p = (A/q)/(p/q) implies (DX) p is in a chain.

Corollary 3.104 The following are equivalent conditions:

(1) p ∈ Ass(M/N), for some submodule, N , of M .

(2) p ∈ Supp(M).

(3) p ⊇ Ann(M) (p ∈ V (Ann(M))).

(4) p contains some associated prime of M .

Proof . (1)⇒ (2). We have p ∈ Ass(M/N) ⊆ Supp(M/N) and remark (1) shows that p ∈ Supp(M).

(2)⇒ (3). This has already been proved in Section 3.3, Proposition 3.21.

(3)⇒ (4). If p ⊇ Ann(M), then p ⊇√
Ann(M). However,

√
Ann(M) =

⋂t
j=1 pj , where the pj ’s are the

primes associated with Ann(M). So,

p ⊇
t⋂

j=1

pj ⊇
t∏

j=1

pj ,

and it follows that p ⊇ pj , for some j. By Corollary 3.100, we have pj ∈ Ass(M) and p ⊇ pj , proving (4).

(4) ⇒ (1). Say p ⊇ q and q ∈ Ass(M). By our theorem, we know that there is some x ∈ M so that
q = Ann(x), i.e., A/q ↪→M . But, p/q ↪→ A/q ↪→M . Let N = p/q, then,

A/p ∼= (A/q)/(p/q) ↪→M/N,

so {p} = Ass(A/p) ⊆ Ass(M/N).

Corollary 3.105 The minimal elements of Supp(M) and the minimal elements of Ass(M) are the same
set.

Proof . Let p ∈ Supp(M) be minimal. By Corollary 3.104 (4), we have p ⊇ q, for some q ∈ Ass(M). But
Ass(M) ⊆ Supp(M), so, q ∈ Supp(M). Since p is minimal, we get p = q ∈ Ass(M). Now, p is minimal in
Supp(M), so it is also minimal in Ass(M).

Now, let p ∈ Ass(M) be minimal. As Ass(M) ⊆ Supp(M), we have p ∈ Supp(M). If p ⊇ q for some
q ∈ Supp(M), then, by Corollary 3.104 (4), we have q ⊇ q̃, for some q̃ ∈ Ass(M). So, p ⊇ q̃; since p is
minimal, we get p = q̃.

Remark: We saw in Section 3.3 that Supp(M) is closed in SpecA. In fact, Supp(M) is a finite (irredundant)
union of irreducible subsets (recall, a set is irreducible iff it is not the union of two proper closed subsets).
In this decomposition, the irreducible components are V (p), for p an isolated prime in Ass(M) (= a minimal
element of Supp(M)). Thus, the minimal elements of Ass(M) are exactly the generic points of Supp(M).
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Corollary 3.106 If A is a noetherian ring, then

{x ∈ A | x is a zero divisor in A} =
⋃

p∈Ass(A)

p.

Proof . Say ξ ∈ ⋃
p∈Ass(A) p, so ξ ∈ p for some p ∈ Ass(A). By Theorem 3.99, we have p = Ann(y), for some

y ∈ A. Clearly y �= 0 and yξ ∈ yp = (0), so ξ is a zero divisor.

Conversely, pick x /∈ ⋃
p∈Ass(A) p and let S = A − ⋃

p∈Ass(A) p. We know from previous work that S is
a multiplicative set. Now, we have a primary decomposition (0) =

⋂
q, where

√
q = p ∈ Ass(A). We get

S((0)) =
⋂

q S(q) and we know that S(q) = q iff S∩p = ∅. By definition of S, we conclude that S((0)) = (0).
If xy = 0, as x ∈ S, we get y ∈ S((0)) = (0). Therefore, y = 0 and x is not a zero divisor.

Corollary 3.107 Say M =
⋃
αMα, for some submodules, Mα, of M . Then,

Ass(M) =
⋃
α

Ass(Mα).

Proof . Since Mα ⊆ M , we get Ass(Mα) ⊆ Ass(M), so,
⋃
α Ass(Mα) ⊆ Ass(M). If p ∈ Ass(M), then there

is some m ∈M so that p = Ann(m). But, m ∈Mα for some α; Theorem 3.99 implies that p ∈ Ass(Mα).

Corollary 3.108 Given an A-module, M , and any nonempty subset, Φ ⊆ Ass(M), then there is some
submodule, N , of M so that Ass(N) = Φ.

Proof . Let Φ = {p1, . . . , pt}. By proposition 3.97, there are some submodules, Pj , of M so that Ass(Pj) =
{pj}. I claim, the map

∐t
j=1 Pj −→ M is injective and Ass(

∐t
j=1 Pj) = Φ. First, consider the case t = 2.

Look at the map P1

∐
P2 −→ P1 + P2 ⊆ M . This is an isomorphism iff P1 ∩ P2 = (0). But, P1 ∩ P2 ⊆ Pj

for j = 1, 2, so, Ass(P1 ∩ P2) ⊆ {p1} and Ass(P1 ∩ P2) ⊆ {p2}; as p1 �= p2, we conclude that P1 ∩ P2 = (0).
Then, the sequence

0 −→ P1 −→ P1

∐
P2 −→ P2 −→ 0

is exact and split. Consequently, Ass(P1

∐
P2) = {p1, p2}. For t > 2, we proceed by induction (DX).

Proposition 3.109 If N ⊆M and N possesses a primary decomposition in M , then

RadM (N) =
⋂

p∈EssN (M)
p isolated

p.

In fact, the isolated primes of RadM (N) are just the isolated essential primes of N in M (The hypothesis
holds if A is noetherian and M is f.g.).

Proof . As RadM (N) = RadM/N ((0)) =
√

Ann(M/N) and EssM (N) = Ass(M/N), we may assume that
N = (0). We must show that √

Ann(M) =
⋂

p∈Ass(M)
p isolated

p.

Now, we have a reduced primary decomposition (0) =
⋂t
j=1Qj , so

Ann(M) = (M −→ (0) =
t⋂

j=1

(M −→ Qj).

But, (M −→ Qj) is pj-primary, by previous work, so,√
Ann(M) =

√
(M −→ (0) =

t⋂
j=1

√
(M −→ Qj) =

⋂
p∈Ass(M)

p =
⋂

p∈Ass(M)
p isolated

p.

The rest should be clear.



180 CHAPTER 3. COMMUTATIVE RINGS

3.7 Theorems of Krull and Artin–Rees

We begin with a generalization of the power lemma.

Lemma 3.110 (Herstein’s Lemma) If A is a noetherian ring, A is some ideal, M is a f.g. A-module and
N is a submodule of M , then there is some n >> 0 (depending on A, A, M , N) so that

AnM ∩N ⊆ AN.

Proof . By reducing modulo AN , we may assume AN = (0) and we must prove AnM ∩ N = (0). Let
S = {F ⊆ M | F ∩ N = (0)}. Clearly, S is nonempty and since M is f.g. and A is noetherian, S has a
maximal element, call it F , again. Let m1, . . . ,mt be generators of M and pick a ∈ A. Given mj , for any
n ≥ 0, consider

F (j)
n (a) = (anmj −→ F ) = {x ∈ A | xanmj ∈ F}.

The F (j)
n (a)’s are ideals of A and we have

F
(j)
1 (a) ⊆ F (j)

2 (a) ⊆ F (j)
3 (a) ⊆ · · · .

By the ACC in A, there is some Nj(a) so that

F
(j)
Nj(a)

(a) = F
(j)
Nj(a)+1(a), for j = 1, . . . , t.

Let N(a) = max1≤j≤t{Nj(a)}. I claim that aN(a)M ⊆ F .

Of course, if we show that aN(a)mj ∈ F for j = 1, . . . , t, we will have proved the claim.

If the claim is false, there is some j so that aN(a)mj /∈ F . Then, F +AaN(a)mj > F , and by maximality
of F , we must have (F +AaN(a)mj) ∩N �= (0). So, there is some f ∈ F and some α ∈ A so that

0 �= f + αaN(a)mj ∈ N. (†)
If we multiply (†) by a, we get

af + αaN(a)+1mj ∈ aN = (0),

since AN = (0) and a ∈ A. Thus, αaN(a)+1mj = −af ∈ F , and so,

α ∈ (aN(a)+1mj −→ F ) = F
(j)
N(a)+1(a) = F

(j)
N(a)(a).

It follows that αaN(a)mj ∈ F ; so, f + αaN(a)mj ∈ F , which means that F ∩ N �= (0), a contradiction.
Therefore, a ∈√

(M −→ F ); as A is f.g., by the power lemma, we get AρM ⊆ F . Thus, finally,
AρM ∩N ⊆ F ∩N = (0).

Theorem 3.111 (Krull Intersection Theorem) Say A is a noetherian ring, M is a f.g. A-module and A is
an ideal of A. Write S = 1− A (= {1− α | α ∈ A}). Then,⋂

n≥0

AnM = S(0) = Ker (M −→ S−1M).

Proof . Write N =
⋂

AnM . By Herstein’s lemma there exists ρ > 0 so that AρM∩N ⊆ AN . But, N ⊆ AρM ,
so AρM ∩N = N and it follows that N ⊆ AN . Of course, we get AN = N . Now, N is f.g., say n1, . . . , nt
are some generators. As AN = N , there exist some αij ∈ A so that

nj =
t∑
i=1

αijni, for j = 1, . . . , t.
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Therefore, 0 =
∑t
i=1(αij − δij)ni, for j = 1, . . . , t; so, the matrix (δij − αij) kills the vector (n1, . . . , nt). By

linear algebra, if ∆ = det(δij − αij) ∈ A, then

∆nj = 0, for j = 1, . . . , t.

(This can be seen as follows: If T is the linear map given by the matrix (δij − αij), then by the Cayley–
Hamilton theorem, χ(T ) = T t + β1T

t−1 + · · · + βt−1T + βtI = 0. But, βt = ±∆ and if we apply χ(T ) to
(n1, . . . , nt), then χ(T ) and all the nonnegative powers of T kill it. Consequently, βtI(n1, . . . , nt) = 0.) Now,
∆ = 1− d, for some d ∈ A. Thus, ∆ ∈ S. For all j, we have nj ∈ S(0), so N ⊆ S(0). On the other hand, if
ξ ∈ S(0), then there is some s ∈ S with sξ = 0. Yet, s = 1 − α, for some α ∈ A. Thus, (1 − α)ξ = 0, i.e.,
ξ = αξ. An immediate induction yields ξ = αnξ, for all n ≥ 0. However, αnξ ∈ AnM , for every n ≥ 0, so
ξ ∈ ⋂

AnM ; this proves that S(0) ⊆ N .

Corollary 3.112 Under the hypotheses of Theorem 3.111, if A ⊆ J (A), then
⋂

AnM = (0).

Proof . Since S = 1− A ⊆ 1− J (A) ⊆ units of A, we get S(0) = (0).

Corollary 3.113 (Original Krull theorem) If A is local noetherian and m is its maximal ideal, then⋂
mn = (0).

Proof . As A is local, m = J (A); the result follows from Corollary 3.112 applied to M = A.

Corollary 3.114 Say X is a real or complex manifold and x ∈ X. Write OX,x for the local ring of germs
of C∞-functions at x. Then, OX,x is never noetherian.

Proof . As the question is local on X, we may assume X is an open ball in Rn and x = 0 in this ball (with
n even in case of a complex manifold). Let

f(x) =
{
e−1/(x,x) for x ∈ Rn, x �= 0
0 if x = 0.

(Here, (x, y) is the usual euclidean inner product on Rn.) We have f(x) ∈ C∞(ball). Moreover f (n)(0) = 0,
for all n ≥ 0. But, in OX,x, observe that mn consists of the classes of functions defined near zero so that the
n-th derivative and all previous derivatives are 0 at the origin. So, germ(f) ∈ ⋂

mn; by the Krull intersection
theorem, our ring OX,x is not noetherian.

A-adic Topologies.

Let A be a ring, A be an ideal in A and M be an A-module. At the origin in M , take as basis of
opens (= fundamental system of neighborhoods at 0) the subsets AnM , for n = 0, 1, 2, . . .. Topologise M
by translating these so that {m + AnM}n≥0 is a neighborhood basis around m. When M = A, the ring A
receives a topology and A is a topological ring in this topology which is called the A-adic topology . Similarly,
the module M is a topological module in this topology also called the A-adic topology . The A-adic topology
is pseudo-metric, i.e., set

ordA(m) =
{
n if m ∈ AnM , yet m /∈ An+1M
∞ if m ∈ ⋂

n≥0 AnM ,

and define
d(m1,m2) = e−ordA(m1−m2).

Then, we have

(1) d(m1,m2) ≥ 0.

(2) d(m1,m2) = d(m2,m1).



182 CHAPTER 3. COMMUTATIVE RINGS

(3) d(m1,m3) ≤ max(d(m1,m2), d(m2,m3)) (ultrametric property).

Yet, it can happen that d(m1,m2) = 0 and m1 �= m2. The A-adic topology is Hausdorff iff d is a metric
(i.e., d(m1,m2) = 0 iff m1 = m2)) iff

⋂
n≥0 AnM = (0).

If the A-adic topology is Hausdorff, then we have Cauchy sequences, completeness and completions. The
reader should check: The completion of M in the A-adic topology (Hausdorff case) is equal to

lim←−
n

M/AnM
def= M̂ . The first person to make use of these ideas was Kurt Hensel (1898) in the case A = Z,

M = Q, p = (p), where p is a prime. But here, Hensel used ordp( rs ) = ordp(r)− ordp(s).

Corollary 3.115 The A-adic topology on a f.g. module M over a noetherian ring is Hausdorff if A ⊆ J (A).
In particular, this holds if A is local and A = mA.

Corollary 3.116 Say A is a noetherian domain and A is any proper ideal (i.e., A �= A). Then, the A-adic
topology on A is Hausdorff.

Proof . We have S = 1−A ⊆ nonzero elements of A. Thus, S consists of nonzero divisors. If ξ ∈ S(0), then
sξ = 0, for some s ∈ S, so, ξ = 0. Therefore, S(0) = (0) and the topology is Hausdorff.

Theorem 3.117 (Artin–Rees) Let A be a noetherian ring, A be some ideal, M be a f.g. A-module and N
a submodule of M . Then, there is some k (depending on A, A, M and N) so that for all n ≥ k,

AnM ∩N = An−k(AkM ∩N).

Proof . Define the graded ring PowA(A) ⊆ A[X], where X is an indeterminate by

PowA(A) =
∐
n≥0

AnXn

= {z0 + z1X + · · ·+ zrX
r | r ≥ 0, zj ∈ Aj}.

Now, M gives rise to a graded module, M ′, over PowA(A), namely

M ′ =
∐
n≥0

AnMXn

= {z0 + z1X + · · ·+ zrX
r | r ≥ 0, zj ∈ AjM}.

Observe that PowA(A) is a noetherian ring. For, if α1, . . . , αq generate A in A, then the elements of An are
sums of degree n monomials in the αj ’s, i.e., if Y1, . . . , Yq are independent indeterminates the map

A[Y1, . . . , Yq] −→ PowA(A)

via Yj 	→ αjX is surjective, and as A[Y1, . . . , Yq] is noetherian, so is PowA(A).

Let m1, . . . ,mt generate M over A. Then, m1, . . . ,mt generate M ′ over PowA(A). Therefore, M ′ is a
noetherian module. Set

N ′ =
∐
n≥0

(AnM ∩N)Xn ⊆M ′,

a submodule of M ′. Moreover, N ′ is a homogeneous submodule of M and it is f.g. as M ′ is noetherian.
Consequently, N ′ possesses a finite number of homogeneous generators: u1X

n1 , . . . , usX
ns , where uj ∈

AnjM ∩N . Let k = max{n1, . . . , ns}. Given any n ≥ k and any z ∈ AnM ∩N , look at zXn ∈ N ′
n. We have

zXn =
s∑
l=1

alX
n−nlulX

nl ,
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where alXn−nl ∈ (
PowA(A)

)
n−nl

. Thus,

al ∈ An−nl = An−kAk−nl

and
alul ∈ An−k(Ak−nlul) ⊆ An−k(Ak−nl(AnlM ∩N)) ⊆ An−k(AkM ∩N).

It follows that z =
∑s
l=1 alul ∈ An−k(AkM ∩N), so

AnM ∩N ⊆ An−k(AkM ∩N).

Now, it is clear that the righthand side is contained in AnM ∩N , as An−kN ⊆ N .

Remark: If we choose n = k+1 in the Artin–Rees theorem, we get AnM ∩N = A(AkM ∩N) ⊆ AN , hence
a new proof of Herstein’s lemma.

Corollary 3.118 If A is a noetherian ring, A is an ideal, M is a f.g. module and N is a submodule, then
the topology on N induced by the A-adic topology on M is just the A-adic topology on N .

Proof . The induced topology has as neighborhood basis at 0 the sets AnM ∩N . By the Artin–Rees theorem,

AnM ∩N = An−k(AkM ∩N) ⊆ An−kN,

for all n ≥ k, for some fixed k. It follows that the induced topology is finer. But, AρN ⊆ AρM ∩N , for all
ρ; so, the A-adic topology on N is in its turn finer than the induced topology.

We turn now to two very famous theorems of Wolfgang Krull. Recall that a power of a prime ideal need
not be primary. In the proof of the first of the Krull theorems, the principal ideal theorem, we need to
remedy this situation. We are led to the notion of the symbolic powers, p(n), of a prime ideal, p.

Let A be a ring and let p ∈ SpecA. Look at Ap = S−1A, where S = A− p. Take the powers of p, extend
and contract them to and from Ap, to get

p(n) def= (pn)ec = S(pn).

Lemma 3.119 The ideal p(n) is always a p-primary ideal.

Proof . The ideal pe is maximal in Ap. Hence, (pe)n is pe-primary, by previous work. But, (pe)n = (pn)e.
Therefore, (pn)e is pe-primary. Now, S ∩ p = ∅, so (pn)ec is p-primary.

Further, we have the descending chain

p ⊇ p(2) ⊇ p(3) ⊇ · · · .

Theorem 3.120 (Krull Principal Ideal Theorem (1928)) If A is a noetherian domain and p ∈ SpecA, then
ht(p) ≤ 1 iff p is an isolated prime of a principal ideal.

Proof . (⇒) (easy part). By hypothesis, ht(p) ≤ 1 and p ⊇ (0); hence, if ht(p) = 0, then p = (0), an isolated
prime of (0). If ht(p) = 1, pick a �= 0 in p. As p ⊇ (a), the ideal p must contain one of the isolated primes
of (a), say P. So, p ⊇ P > (0), and as ht(p) = 1, we must have p = P.

(⇐) (hard part). Here, we may assume p is an isolated prime of (a), where a �= 0 (else, if a = 0, then
p = (0) and ht(p) = 0). We must show ht(p) = 1. Hence, we must prove that

if P ∈ SpecA and p > P, then P = (0). (†)
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Step 1. If we localize at p, there is a one-to-one correspondence between primes contained in p and all
primes in Ap. Therefore, we may assume A = Ap, i.e., A is local, p is maximal and p is an isolated prime
of (a), with a �= 0. We must prove (†). Now, given P ∈ SpecA with p > P, could a ∈ P? If so, we would
have p > P ⊇ (a). As p is isolated, p = P, a contradiction; so, a /∈ P. It follows that the ring A/(a) has
precisely one prime ideal and it is maximal. Since A is noetherian, by Akizuki’s theorem, A/(a) is artinian
(i.e., it has the DCC).

Step 2. Pick P ∈ SpecA with P < p. Of course, a /∈ P. Examine the symbolic powers P(n). We have

P ⊇ P(2) ⊇ P(3) ⊇ · · · .
I claim this chain stops. To see this, consider the descending chain

P + (a) ⊇ P(2) + (a) ⊇ P(3) + (a) ⊇ · · · .
This chain is in one-to-one correspondence with a chain in A/(a). By step 1, the ring A/(a) has the DCC,
so, there is some n0 so that for all n ≥ n0,

P(n) ⊆ P(n+1) + aA.

Given x ∈ P(n), there is some y ∈ P(n+1) and some z ∈ A so that x = y + za. As x − y ∈ P(n), we have
za ∈ P(n); since a /∈ P =

√
P(n), we get z ∈ P(n). Hence,

P(n) ⊆ P(n+1) + P(n)a ⊆ P(n+1) + P(n)p.

Read this in the local ring A = A/P(n+1) whose maximal ideal is p. We get

P(n) = P(n) p. (††)
As P(n) is a f.g. A-module, by Nakayama’s lemma, P(n) = (0). Therefore,

P(n) = P(n+1), for all n ≥ n0. (∗)

Step 3. By (∗), we get
⋂
n≥1 P(n) = P(n0). But, (P(n0))e =

(⋂
n≥1 P(n)

)e
⊆ ⋂

n≥1(P
(n))e. Consequently,

(P(n0))e ⊆
⋂
n≥1

(Pn)e =
⋂
n≥1

(Pe)n.

However, Pe is the maximal ideal of A, so by the Krull intersection theorem, the righthand side is (0).
Therefore,

(Pe)n0 = (Pn0)e = (0).

But, A is an integral domain, therefore, Pe = (0); so, P = (0), as contended.

Now, consider the case where A is just a ring (not necessarily an integral domain).

Corollary 3.121 If A is a noetherian ring and p is an isolated prime of some (a) ⊆ A, then ht(p) ≤ 1.

Proof . Now, p is an isolated prime of some (a) ⊆ A. If a = 0, then p is a minimal prime, i.e., ht(p) = 0.
Therefore, we may assume a �= 0. Suppose ht(p) ≥ 2, then we must have a chain

p > q > q′.

Look in A = A/q′, a noetherian domain. Here, we have

p > q > (0) = q′, (∗∗)
yet, p is an isolated prime of (a), so the theorem in the domain case implies that ht(p) = 1, contradicting
(∗∗).

To prove the next and last Krull theorem, we need the chain detour lemma:
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Lemma 3.122 (Chain detour lemma) Say A is a noetherian ring and

p0 > p1 > · · · pm−1 > pm

is a given chain in SpecA. Given a finite set of primes S = {q1, . . . , qt}, suppose p0 �⊆ qi, for i = 1, . . . , t.
Then, there exists an alternate chain (the detour)

p0 > p̃1 > · · · p̃m−1 > pm

so that no p̃i is contained in any qj.

Proof . Say the lemma is known when m = 2, i.e., given a chain p0 > p1 > p2, we can change p1. Given our
chain

p0 > p1 > · · · pm−1 > pm

and the set S, we can replace p1 by p̃1 with p̃1 �⊆ qi for i = 1, . . . , t. But, then, we have the chain

p̃1 > p2 > · · · pm−1 > pm

and we can use induction to obtain the desired chain.

Thus, we are reduced to the main case: p0 > p1 > p2. Now, p0 > p2 and p0 �⊆ qj for j = 1, . . . , t. By the
prime avoidance lemma,

p0 �⊆ p2 ∪
t⋃

j=1

qj .

Hence, there is some x ∈ p0 so that x /∈ p2 and x /∈ qj for j = 1, . . . , t. Look in A = A/p2, a noetherian
domain. In A, we have

p0 > p1 > p2 = (0)

and so, ht(p1) ≥ 2. Now, x ∈ p0 and it follows that some isolated prime of x, say B, is contained in p0.
As x /∈ p2, we have x �= 0 and B is an isolated prime of x; by the principal ideal theorem, ht(B) = 1. As
ht(p0) ≥ 2, we have p0 > B > (0) and x ∈ B. Let p̃1 be the inverse image of B in A. We get:

(1) p0 > p̃1 > p2.

(2) x ∈ p̃1; x /∈ qj , for j = 1, . . . , t.

(3) p̃1 �⊆ qj , for j = 1, . . . , t.

Theorem 3.123 (Krull Height Theorem (1928)) If A is an ideal of the noetherian ring, A, suppose A is
generated by r elements and p is an isolated prime of A. Then ht(p) ≤ r.
Proof . We proceed by induction on r. Hypothesis: The theorem holds for all isolated primes, p, of A and
all A generated by at most r elements.

The principal ideal theorem yields the cases r = 0, 1. Next, let A = (x1, . . . , xr) and B = (x1, . . . , xr−1).
If A = B, there is nothing to prove. Thus, we may assume that xr /∈ B. If p (some isolated prime of A)
is an isolated prime of B, the induction hypothesis implies ht(p) ≤ r − 1. So, we may assume that p is an
isolated prime of A, not an isolated prime of B and xr /∈ B (obviously, A �= B). Let S = {q1, . . . , qt} be the
finite set of isolated primes of B, let p = p0 and look at some chain

p = p0 > p1 > · · · pm−1 > pm

of SpecA, so that ht(p0) ≥ m. If p0 ⊆ qj , then

B ⊆ A ⊆ p0 ⊆ qj ,
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contradicting the fact that p0 is not an isolated prime of B. Therefore, p0 �⊆ qj , for j = 1, . . . , t, and by the
detour lemma, there is a chain of the same length

p0 > p̃1 > · · · p̃m−1 > pm

so that no p̃i is contained in any qj . Our goal is to show that m ≤ r. let A = A/B. Then A becomes
principal (Axr) in A and as p0 is an isolated prime of A, the principal ideal theorem in A implies ht(p0) = 1.
(ht(p0) > 0 because p0 is not an isolated prime of B).

Now, p0 ⊇ p̃m−1 and p0 ⊇ B, so,
p0 ⊇ p̃m−1 + B.

Then, observe that p0 ⊇ p̃m−1 + B and as B ⊆ qi, for all i and p̃m−1 �⊆ qi, for all i, we have p̃m−1 + B �⊆ qi,
for all i; thus, p̃m−1 + B �⊆ qi, for all i (here, the qi are the isolated primes of (0) in A, i.e., those of height
0 in A).

Claim. The ideal p0 is an isolated prime of p̃m−1 + B.

As p0 ⊇ p̃m−1 + B, we find p0 ⊇ m, where m is some isolated prime of p̃m−1 + B. If p0 �= m, then as
ht(m) ≥ 1 (because p̃m−1 + B �⊆ qi, for all i) we’d see that ht(p0) ≥ 2. But, ht(p0) = 1, a contradiction.
Therefore, p0 = m, as claimed.

Now, let A = A/p̃m−1. As p0 ⊇ p̃m−1 + B, we get

p0 ⊇ p̃m−1 + B = B.

Moreover, as p0 is an isolated prime of p̃m−1 + B, we see that p0 is an isolated prime of p̃m−1 + B = B.
But, the number of generators of B is at most r − 1. If we apply the induction hypothesis to A, we get
ht(p0) ≤ r − 1. Finally, by applying double bar to our detored chain, we get

p0 > p̃1 > · · · > p̃m−2 > (0),

a chain of length m− 1. Therefore, m− 1 ≤ r − 1, that is, m ≤ r.
Corollary 3.124 In a noetherian ring, the prime ideals satisfy the descending chain condition. In particular,
every prime ideal contains a minimal prime.

Proof . Given a prime, p, it is finitely generated, say by r elements. Therefore, ht(p) ≤ r and any descending
chain starting at p must stop.

Corollary 3.125 If A is a noetherian ring, then for every p ∈ SpecA, the Krull dimension, dim(Ap), is
finite.

Corollary 3.126 Say A is noetherian, a �= 0 is any given element in A and p is an isolated prime of Aa.
Then, every prime ideal, q, strictly contained in p is an isolated prime of (0), i.e., consists of zero-divisors.

Proof . By the principal ideal theorem, ht(p) ≤ 1, and ht(p) = 1, as q < p. It follows that ht(q) = 0, which
means that q is an isolated prime of (0).

Proposition 3.127 (Converse of the height theorem) Let A be a noetherian ring. For every p ∈ SpecA, if
ht(p) ≤ r, then there is some ideal, A, of A generated by at most r elements and p is an isolated prime of A.

Proof . (DX).

3.8 Further Readings

There is a vast literature on commutative rings and commutative algebra. Besides some of the references
already given in Section 2.9, such as Atiyah MacDonald [3], Lafon [32, 33], Eisenbud [13], Matsumura [39],
Malliavin [38], let us mention Bourbaki [6, 8, 7] Zariski and Samuel [50, 51], Jacobson [28] and Serre [46].


