
Chapter 4

Fields and Galois Theory

4.1 Introduction

The rational, real, complex and, much later, the finite fields were the basic inspiration for the study of fields
in general. Their ideal theory and the module theory (vector spaces) over them are very simple; so, it was
natural to look more deeply inside them. In particular, one can consider solutions of polynomial equations
in a field, the automorphisms of a field, the relation of one field to another. We owe to E. Galois the capital
idea of applying symmetry in the form of group theory to the study of polynomial equations (coefficients
in a field) and their solutions in a (perhaps bigger) field. He was preceded in partial results by such figures
as Lagrange, Abel and Gauss and the impetus he provided has sustained the subject until the current day.
What concerns one now is not so much the “classical theory” (all of which in smooth modern form is treated
below), but questions of basically geometric origin that use an admixture of group theory, ring theory and
fields to try to settle vexing questions of apparently “simple” nature. For example, if we adjoin to the
rationals all the roots of unity and call the resulting field K, is it true that every homogeneous form of
degree d > 0 in more than d variables has a non-zero solution in K? This is a conjecture of E. Artin–still
open at present.

4.2 Algebraic Extensions

Recall that if A is a commutative ring and B is an over-ring of A (i.e., an A-algebra), an element β ∈ B is
algebraic over A iff the map A[X] −→ A[β] ⊆ B is not injective; the element β is transcendental over A iff the
map A[X] −→ A[β] is injective. Moreover, β1, . . . , βn are independent transcendentals over A (algebraically
independent over A) iff A[X1, . . . , Xn] −→ A[β1, . . . , βn] is injective. The case of interest here is: A = k, a
field, and B a subring of a field.

Algebraic elements admit of many characterizations:

Proposition 4.1 Say B is an integral domain containing a field k and α ∈ B. Then, the following are
equivalent:

(1) α is algebraic over k.

(2) k[α] (⊆ B) is a field.

(3) k(α) = k[α].

(4) 1/α ∈ k[α].

(5) k[α] (⊆ B) is a finite dimensional k-vector space.
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(6) k[α] ⊆ L, where L (⊆ B) is a subring of B and L is a finite dimensional k-vector space.

Proof . (1)⇒ (2). By definition there is some polynomial f ∈ k[X] so that f(α) = 0. By unique factorization
in k[X], we know that f = f1 · · · fr, where each fj is irreducible. So, 0 = f(α) =

∏r
j=1 fj(α) and as B is

a domain, fj(α) = 0, for some j; so, we may assume that f is irreducible. Look at k[X]/(f(X)). Now, as
k[X] is a P.I.D and f is irreducible, it follows that (f(X)) is a maximal ideal. Thus, k[X]/(f(X)) is a field;
moreover, k[α] ∼= k[X]/(f(X)) and (2) holds.

(2)⇒ (3) and (3)⇒ (4) are clear.

(4)⇒ (5). By (4),

1
α

=
N∑
j=0

ajα
j

(with αN �= 0) and this yields
∑N
j=0 ajα

j+1 = 1; we deduce

αN+1 =
1
aN
−
N−1∑
j=0

aj
aN

αj+1,

i.e., αN+1 depends linearly on 1, α, . . . , αN . By an obvious induction, αN+i depends linearly on 1, α, . . . , αN

for all i ≥ 1 and so, 1, α, . . . , αN span k[α].

(5)⇒ (6) is a tautology.

(6)⇒ (1). Since k[α] is a subspace of a finite dimensional vector space, k[α] is finite dimensional over k
(i.e., (5)). Look at 1, α, . . . , αN , αN+1, . . . There must be a linear dependence, so

aNα
N + · · ·+ a1α+ a0 = 0

and α is a root of f(X) = aNX
N + · · ·+ a1X + a0.

Proposition 4.2 Write Balg = {α ∈ B | α is algebraic over k}. Then, Balg is a ring (a domain).

Proof . Say α, β ∈ Balg. Then, k[α] is finite dimensional over k and k[α, β] = k[α][β] is finite dimensional
over k[α], which implies that k[α, β] is finite dimensional over k. As α± β and αβ belong to k[α, β], by (6),
they are algebraic over k.

Proposition 4.3 Say α, β ∈ Balg (with β �= 0), then α/β ∈ Balg. Therefore, Balg is actually a field.

Proof . As before, k[α, β] is finite dimensional over k[α]. But, k(α) = k[α] and k[α, β] = k[α][β], so k[α, β] =
k(α)[β]. Yet, β is algebraic over k(α); thus, k(α)[β] = k(α)(β) = k(α, β). Consequently, k[α, β] = k(α, β)
and it is finite dimensional over k. As α/β ∈ k(α, β), it is algebraic over k.

Proposition 4.4 Being algebraic is transitive.

Given an extension, K/k, the degree, deg(K/k) = [K : k], of K/k is the dimension of K as a vector
space over k. Observe that if [K : k] is finite, then K is algebraic over k (for every α ∈ K, there is a linear
dependence among 1, α, . . . , αn, . . ., so, α is the root of some polynomial in k[X]). However, an algebraic
extension K/k need not be finite.

Definition 4.1 Let K/k be a field extension (i.e., k ⊆ K where both are fields and K is a k-algebra). Say
α ∈ K is a root of f(X) ∈ k[X]. Then, α is a root of multiplicity, m, iff f(X) = (X −α)mg(X) in K[X] and
g(α) �= 0.
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Let A be a commutative ring, B be an A-algebra and C be a B-algebra.

Definition 4.2 An additive map δ : B → C is an A-derivation of B with values in C iff

(1) δ(ξη) = ξδ(η) + δ(ξ)η (Leibnitz)

(2) δ(α) = 0 whenever α ∈ A.

Notice that (1) and (2) imply the A-linearity of an A-derivation. The A-derivations of B with values in
C form a B-module denoted DerA(B,C).

Examples of Derivations.

(1) Let A be a commutative ring, let B = A[X] and let C = B.

δf = δ
( N∑
j=0

ajX
j
)

=
N∑
j=0

jajX
j−1 = f ′(X)

is an A-derivation.

(2) Let A be a commutative ring, B = A[{Xα}α∈I ], C = B and

δα =
∂

∂Xα
.

Remark: For Example 1, if h is an independent transcendental from X, we have (DX)

f(X + h) = f(X) + f ′(X)h+O(h2).

Theorem 4.5 (Jacobian criterion for multiplicity) Given f(X) ∈ k[X] and K/k a field extension, for any
root α of f(X), we have:

(1) If the multiplicity of α as a root is ≥ m, then

f(α) = f ′(α) = · · · = f (m−1)(α) = 0.

(2) If char(k) = 0 and if f(α) = f ′(α) = · · · = f (m−1)(α) = 0 but f (m)(α) �= 0, then α is a root of f of
exact multiplicity m.

Proof . We proceed by induction onm. Consider a root, α, of multiplicity 1. This means f(X) = (X−α)g(X)
in K[X] and g(α) �= 0. Thus,

f ′(X) = (X − α)g′(X) + g(X),

so, f ′(α) = g(α) and f ′(α) �= 0. Therefore, (2) holds independently of the characteristic of k in this one case
and (1) is trivial.

Now, assume α is a root of multiplicity at least m. As f(X) = (X − α)mg(X) in K[X], we get

f ′(X) = (X − α)m−1((X − α)g′(X) +mg(X)),

which shows that the multiplicity of α in f ′ is at least m− 1. By the induction hypothesis applied to f ′(X),
we have f ′(α) = f ′′(α) = · · · = f (m−1)(α) = 0. Also, f(α) = 0, so (1) holds.

(2) Again, we proceed by induction. Assume that f(α) = f ′(α) = · · · = f (m−1)(α) = 0 but f (m)(α) �= 0,
with char(k) = 0. Let q be the exact multiplicity of α. Then, f(X) = (X−α)qh(X) in K[X], with h(α) �= 0.
Now, f ′(α) = (f ′)′(α) = · · · = (f ′)(m−2)(α) = 0 and the induction hypothesis applied to f ′(X) shows that
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α is a root of exact multiplicity m− 1 of f ′. So, f ′(X) = (X −α)m−1g(X), with g(α) �= 0. We know that α
is a root of multiplicity q of f , so by (1), f(α) = f ′(α) = · · · = f (q−1)(α) = 0. If q > m, then q − 1 ≥ m, so
f (m)(α) = 0, a contradiction. Thus, q ≤ m. As

f ′(X) = (X − α)q−1((X − α)h′(X) + qh(X)),

we have
(X − α)m−1g(X) = (X − α)q−1((X − α)h′(X) + qh(X)),

and since q ≤ m, we get
(X − α)m−qg(X) = (X − α)h′(X) + qh(X).

If we let X = α, we have qh(α) �= 0, as h(α) �= 0 and char(k) = 0; but then, the left hand side must not be
zero, and this implies m = q.

Proposition 4.6 Say f ∈ k[X] (k = a field), then there is an extension K/k of finite degree and an element
θ ∈ K so that f(θ) = 0. If k̃ is another field and µ : k → k̃ is an isomorphism of fields, write f̃ ∈ k̃[X] for
the image of f under µ (i.e., µ

(∑
gjXj

)
=
∑
µ(gj)Xj), then f is irreducible over k[X] iff f̃ is irreducible

over k̃[X]. Let θ be a root of an irreducible polynomial, f(X), in some extension K/k and let θ̃ be a root of
f̃ in some extension Ω/k̃. Then, there exists a unique extension of µ to a field isomorphism k(θ) −→ k̃(θ̃),
so that µ(θ) = θ̃.

Proof . Factor f into irreducible factors in k[X], then a root of an irreducible factor is a root of f , so we
may assume that f is irreducible. Now, the ideal (f(X)) is maximal in k[X]. Therefore, K = k[X]/(f(X))
is a field and X = the image of X in K is θ, a root, and [K : k] = deg(f) <∞.

Next, we have µ : k → k̃ and f ∈ k[X]. Of course,

k[X] ∼= k ⊗Z Z[X] ∼= k̃ ⊗Z Z[X] ∼= k̃[X],

so f is irreducible iff f̃ is irreducible. Now, θ ∈ K is a root of an irreducible polynomial, f , and θ̃ ∈ Ω is a
root of an irreducible polynomial f̃ . But, k(θ) ∼= k[X]/(f(X))

µ−→ k̃[X]/(f̃(X)) ∼= k̃(θ̃). As θ generates k(θ)
over k, the element µ(θ) determines the extension of µ to k(θ).

Proposition 4.7 Say k is a field, f ∈ k[X] and K/k is a field extension. Then, f possesses at most deg(f)
roots in K counted with multiplicity and there exists an algebraic extension L/k (in fact, [L : k] <∞) where
f has exactly deg(f) roots counted with multiplicity.

Proof . We use induction on deg(f). If α ∈ K/k is a root of f , then in K[X], we have

f(X) = (X − α)g(X), where g(X) ∈ K[X]. (∗)

But, deg(g) = deg(f) − 1, so there exist at most deg(f) − 1 roots of g in the field, K, containing k. If β
is a root of f , either β = α or g(β) = 0 as K is a domain. Then, the first statement is proved. The last
statement is again proved by induction. In the above, we can take K = k(α), of finite degree over k. Then,
induction and (∗) imply our counting statement.

Corollary 4.8 (of the proof) The degree [K : k] of a minimum field containing all deg(f) roots of f always
satisfies [K : k] ≤ deg(f)!.

Remarks:
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(1) Proposition 4.7 is false if K is a ring but not a domain. For example, take

K = k
∏

k
∏
· · ·
∏

k︸ ︷︷ ︸
n

.

Then, if ej = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the j-th place, each ej solves X2 = X.

(2) Let K = k[T ]/(T 2). The elements α = λT ∈ K all satisfy X2 = 0. If k is infinite, there are infinitely
many solutions.

(3) Let k = R and K = H (the quaternions). We know that H is a division ring, i.e., every nonzero element
has a multiplicative inverse. Consider the equation X2 + 1 = 0. Then, every α = ai + bj + ck with
a2 + b2 + c2 = 1 satisfies our equation!

(4) Given a field, k, there exists a field extension K/k having two properties:

(a) K/k is algebraic (but in general, [K : k] =∞).

(b) For every f ∈ K[X], there exists θ ∈ K so that f(θ) = 0.

We’ll prove these facts at the end of the Chapter in Section 4.11

Such a field, K, is called an algebraic closure of k and if only (2) holds, K is called algebraically closed .
The field K is unique up to noncanonical isomorphism. The usual notation for an algebraic closure of k is k.
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4.3 Separable Extensions, Kähler Differentials,
Mac Lane’s Criterion

Definition 4.3 An algebraic element α over a field k (i.e., α ∈ K is algebraic over k for some field extension
K/k) is separable over k iff α is a simple root of its minimal k-polynomial.1 A polynomial, f , is separable iff
all its irreducible factors are distinct and separable, and an irreducible polynomial is separable if it has one
(hence all) separable roots. The field extension K/k is separable iff all α ∈ K are separable over k. We use
the adjective inseparable to mean not separable.

Proposition 4.9 Suppose α is inseparable over k. Then, char(k) = p > 0. If f is the minimal polynomial
for α, then there is some n ≥ 1 and some irreducible polynomial g(X) ∈ k[X] so that f(X) = g(Xpn

). If we
choose n maximal then

(1) g(X) is a separable polynomial and

(2) αp
n

is separable over k. Any root β of f has the property that βp
n

is separable over k.

Proof . The element α is inseparable iff f ′(α) = 0 by the n = 1 case of the Jacobian criterion. Thus, f
divides f ′, yet deg(f ′) < deg(f). Therefore, f ′ ≡ 0. If f(X) =

∑d
j=0 ajX

j , then f ′(X) =
∑d−1
j=0 jajX

j−1

and it follows that jaj = 0, for all j. If char(k) = 0, then aj = 0 for all j �= 0 and f ≡ 0, as α is a root.
Thus, we must have char(k) = p > 0 and if p does not divide j, then aj = 0. We deduce that

f(X) =
e∑
r=0

aprX
pr = h1(Xp),

where h1(X) =
∑e
r=0 aprX

r. Note that h1 must be irreducible and repeat the above procedure if necessary.
As deg(h1) < deg(f), this process must stop after finitely many steps. Thus, there is a maximum n with
f(X) = g(Xpn

) and g(X) is irreducible in k[X]. Were g(X) inseparable, the first part of the argument would
imply that g(X) = h(Xp) and so, f(X) = h(Xpn+1

), contradicting the maximality of n. Therefore, g(X) is
separable. Yet, g(αp

n

) = f(α) = 0, so αp
n

is a root of an irreducible separable polynomial and (2) holds.
Given β, we have βp

n

again a root of g.

Definition 4.4 A field k of characteristic p > 0 is perfect iff k = kp, i.e., for every λ ∈ k, the element λ has
a p-th root in k.

Examples of Perfect and Imperfect Fields.

(1) Fp = Z/pZ, where p is prime, is perfect.

(2) Any finite field is perfect.

(3) The field k(T ), where char(k) = p > 0 is always imperfect .

Proposition 4.10 If k is a field with characteristic char(k) = p > 0 and if c /∈ kp (with c ∈ k), then for
every n ≥ 0, the polynomial f(X) = Xpn − c is irreducible in k[X]. Conversely, if for some n > 0 the
polynomial Xpn − c is irreducible, then c /∈ kp.

Proof . Look at f(X) = Xpn − c and pick a field, K, with a root, α ∈ K, of f . Then, αp
n − c = 0, so

f(X) = Xpn − αpn

= (X − α)p
n

, since char(k) = p > 0. Say ϕ(X) ∈ k[X] is an irreducible factor of f(X),
then ϕ(X) | f(X) in k[X], and similarly inK[X]. By unique factorization inK[X], we have ϕ(X) = (X−α)r,
for some r > 0, where αp

n − c = 0 and α ∈ K.
1Recall that the minimal k-polynomial of α is the monic polynomial of minimal degree generating the principal ideal

consisting of the polynomials in k[X] that vanish on α.
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Claim: Xpn − c is a power of ϕ(X).

If not, there is some irreducible polynomial, ψ(X), relatively prime to ϕ(X) and ψ(X) | Xpn − c in
k[X] (DX). Then, there exist s(X), t(X) with s(X)ϕ(X) + t(X)ψ(X) = 1 in k[X]. However, ψ(X) divides
Xpn − c, so ψ(α) = 0. If we let X = α, we get 1 = s(α)ϕ(α) + t(α)ψ(α) = 0, a contradiction.

Therefore, ϕ(X)l = Xpn − c. It follows that rl = pn, so r = pa and l = pb with a+ b = n. Then,

ϕ(X) = (X − α)r = (X − α)p
a

= Xpa − αpa

,

which implies αp
a ∈ k. But then, c = (αp

a

)p
b ∈ kpb

, a contradiction if b ≥ 1. Thus, b = 0 and consequently,
a = n and f(X) = ϕ(X) is irreducible.

Conversely, if for some n > 0 the polynomial Xpn − c is irreducible and if c ∈ kp, then c = bp, for some
b ∈ k. It follows that

Xpn − c = Xpn − bp = (Xpn−1 − b)p

contradicting the irreducibility of Xpn − c.

Definition 4.5 An element α ∈ K/k is purely inseparable over k (char(k) = p > 0) iff there is some n ≥ 0
so that αp

n ∈ k. Equivalently, α is purely inseparable over k iff the minimal k-polynomial for α is of the
form Xpn − c, for some c ∈ k.

Remark: We have α ∈ k iff α is separable and purely inseparable over k.

Proposition 4.11 If k is a field, then k is perfect iff every algebraic extension of k is separable.

Proof . (⇒). Say k is perfect and pick α ∈ K/k, with α algebraic. We know that α has a minimal k-
polynomial f(X) and that f(X) = g(Xpn

), for some irreducible polynomial, g(X), and some n ≥ 0. We
have g(X) =

∑N
j=0 bjX

j , so f(X) =
∑N
j=0 bj(X

pn

)j . As k is perfect, k = kp = kp
2

= · · · = kp
n

. So,

bj = cp
n

j , for some cj ∈ k and we have

f(X) =
N∑
j=0

cp
n

j (Xpn

)j =
( N∑
j=0

cjX
j
)pn

.

This contradicts the irreducibility of f(X) unless n = 0, and we know that αp
0

= α is separable over k.

(⇐). In this case, all algebraic extensions of k are separable and say k is not perfect. Then, there is some
c ∈ k, with c /∈ kp. Hence, by Proposition 4.10, the polynomial Xp − c is irreducible over k. Let K = k(α)
where α is some root of Xp − c. Then, αp = c ∈ k and it follows that α is purely inseparable over k. But, α
is separable over k, a contradiction, as α /∈ k.

Corollary 4.12 For a field, k, the following are equivalent:

(1) k is imperfect.

(2) k possesses nontrivial inseparable extensions.

(3) k possesses purely inseparable extensions.

� Say K/k is algebraic and inseparable. It can happen that there does not exist α ∈ K with α purely
inseparable over k.
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To go further, we need derivations and Kähler differentials. Consider the situation where A,B are
commutative rings and B is an A-algebra. On B-modules, we have an endofunctor:

M � DerA(B,M).

Is the above functor representable? This means, does there exist a B-module, ΩB/A, and an element,
d ∈ DerA(B,ΩB/A), so that functorially in M

θM : HomB(ΩB/A,M) −̃→ DerA(B,M)?

(Note: For every ϕ ∈ HomB(ΩB/A,M), we have θM (ϕ) = ϕ ◦ d, see below).

B
d ��

θM (ϕ) ����
��

��
��

� ΩB/A

ϕ

��
M

Theorem 4.13 The functor M � DerA(B,M) is representable by a pair (ΩB/A, d), as above.

Proof . Consider B ⊗A B and the algebra map B ⊗A B µ−→ B, where µ is multiplication, i.e., µ(b⊗ b̃) = bb̃.
Let I = Ker µ and write I/I2 = ΩB/A. We let B act on B⊗A B via the left action b(ξ⊗ η) = bξ⊗ η. Then,
ΩB/A is a B-module. Given b ∈ B, set

db = d(b) = (1⊗ b− b⊗ 1) mod I2.

Now, for b, b̃ ∈ B, we have
(1⊗ b− b⊗ 1)(1⊗ b̃− b̃⊗ 1) ∈ I2,

and we get
1⊗ bb̃+ bb̃⊗ 1− (b⊗ b̃+ b̃⊗ b) ∈ I2.

So, modulo I2, the above is zero and

1⊗ bb̃− b̃⊗ b = b⊗ b̃− bb̃⊗ 1 in ΩB/A.

Obviously, d is additive and zero on A, so we only need to check the Leibnitz rule. We have

bd(̃b) = b(1⊗ b̃− b̃⊗ 1) mod I2

= b⊗ b̃− bb̃⊗ 1 in ΩB/A

= 1⊗ bb̃− b̃⊗ b in ΩB/A

= 1⊗ bb̃− bb̃⊗ 1 + bb̃⊗ 1− b̃⊗ b in ΩB/A

= d(bb̃)− b̃(1⊗ b− b⊗ 1) in ΩB/A.

So, bd(̃b) = d(bb̃)− b̃db in ΩB/A, namely d(bb̃) = b̃db+ bd(̃b). The rest of the proof is routine.

Definition 4.6 The B-module ΩB/A (together with the derivation d) is called the module of relative Kähler
differentials of B over A.

Examples of Relative Kähler Differentials.

(1) Let B = A[T1, . . . , Tn]. Say D is a derivation of B −→M trivial on A. So, we know D(T1), . . . , D(Tn);
these are some elements in M . Say we are given T rl ∈ B. Then,

D(Tl · · ·Tl︸ ︷︷ ︸
r

) = rT r−1
l D(Tl) =

∂

∂Tl
(T rl )D(Tl).
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Now,

D(T rkT
s
l ) = T rkD(T sl ) + T sl D(T rk ) = T rk

∂

∂Tl
(T sl )D(Tl) + T sl

∂

∂Tk
(T rk )D(Tk).

In general

D(T a1
1 · · ·T an

n ) =
n∑
j=1

T a1
1 · · · T̂ al

l · · ·T an
n

∂

∂Tl
(T al

l )D(Tl), (†)

and

D
(∑

α(a)T
(a)
)

=
∑
(a)

α(a)D(T (a))D(Tl), (††)

as D � A ≡ 0. Conversely, (†) on the linear base of monomials in the T1, . . . , Tn of B gives a derivation.
Therefore,

DerA(B,M) −→
n∐
i=1

M,

via D �→ (D(T1), . . . , D(Tn)) is a functorial isomorphism. Consequently,

ΩB/A ∼=
n∐
j=1

BdTj ,

where the dTj are A-linearly independent elements of ΩB/A (case M = ΩB/A).

(2) Let B be a f.g. algebra over A, i.e., B = A[T1, . . . , Tn]/(f1, . . . , fp). We have

DerA(B,M) = {ϕ ∈ DerA(A[T1, . . . , Tn],M) | ϕ(fi) = 0, i = 1, . . . , p}.

But,

ϕ(fi) =
n∑
j=1

∂fi
∂Tj

ϕ(Tj) =
n∑
j=1

∂fi
∂Tj

ϕ(dTj),

where ϕ : ΩB/A −→M (and ϕ = ϕ ◦ d). We let M = ΩB/A to determine it, and we see that

ϕ must kill dfi.

It follows that

ΩB/A =

(
n∐
j=1

BdTj

)/
(submodule df1 = · · · = dfn = 0).

(3) Let B = C[X,Y ]/(Y 2 −X3) and A = C. From (2) we get

ΩB/A = (BdX �BdY )/(2Y dY − 3X2dX).

The module ΩB/A is not a free B-module (due to the singularity at the origin of the curve Y 2 = X3).

(4) Let A = R or C and B = the ring of functions on a small neighborhood of a smooth r-dimensional
manifold (over A). Derivations on B over A have values in B. Let ξ1, . . . , ξr be coordinates on this neigh-
borhood. Then, ∂/∂ξj is a derivation defined so that

∂f

∂ξj
= lim
h−→0

f(. . . , ξj + h, . . .)− f(. . . , ξj , . . .)
h

.
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Look near a point, we may assume ξ1 = · · · = ξr = 0, there. By Taylor,

f(ξ1 + h1, . . . , ξr + hr) = f(ξ1, . . . , ξr) +
r∑
j=1

∂f

∂ξj
hj +O(‖h‖2).

Hence, ΩB/A is generated by dξ1, . . . , dξr and they are linearly independent over B because the implicit
function theorem would otherwise imply that some ξj is a function of the other ξi’s near our point, a
contradiction.

Definition 4.7 Given an A-algebra, B, the algebra B is étale over A iff

(1) The algebra B is flat over A.

(2) The algebra B is f.p. as an A-algebra.

(3) ΩB/A = (0).

The algebra B is smooth over A iff (1), (2) and (3′): ΩB/A is a locally-free B-module, hold.

Remark: Putting aside (2), we see that checking that an algebra is étale or smooth is local on A, i.e., it is
enough to check it for Bp over Ap for every p ∈ SpecA. This is because (DX)

(ΩB/A)p = ΩBp/Ap
.

It turns out that smooth means: Locally on A, the algebra B looks like

A ↪→ A[T1, . . . , Tr] −→ B

where B/A[T1, . . . , Tr] is étale.

We can apply the concepts of relative Kähler differentials and étale homomorphisms to field theory. For
this, given a field, write p = char(k) and if p > 0, let k1/p be the field

k1/p = {x ∈ k | xp ∈ k}.

Theorem 4.14 (Main theorem on separability (alg. case).) Let K/k be an algebraic extension. Then, in
the following statements: (1) implies any of the others; (2), (2a) and (3) are equivalent; (1) and (4) are
equivalent; all are equivalent if K/k is finite.

(1) The extension K/k is separable.

(2) For all K-modules, M , we have Derk(K,M) = (0).

(2a) ΩK/k = (0), i.e., when K/k is finite, it is étale.

(3) Every derivation of k to M (where M is a K-vector space) which admits an extension to K (i.e.,
becomes a derivation K −→M) admits a unique extension.

When char(k) = p > 0,

(4) Mac Lane I: The natural map k1/p ⊗k K −→ K1/p is injective.

(5) Mac Lane II: kKp = K.

In order to prove Theorem 4.14, we first need the following subsidiary statement:
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Proposition 4.15 If K/k is separable and if M is a K-vector space, then every derivation D : k → M
admits an extension to a derivation of K with values in M .

Proof . We use Zorn’s lemma. Let S be the set of all pairs, (L,DL), where

(1) L is a subextension of K/k (i.e., k ⊆ L ⊆ K).

(2) DL is an extension of D to L with values in M .

As (k,D) ∈ S, the set S is nonempty. Define a partial order on S by: (L,DL) ≤ (L′,DL′) iff L ⊆ L′

and DL′ � L = DL. The set S is inductive. (If {Lα}α is a chain, then L =
⋃
α Lα is a field, and define

DL(ξ) = DLα
(ξ), where ξ ∈ Lα; this is well-defined (DX).) By Zorn’s lemma, there exists a maximal

extension, say (L,DL).

If K �= L, then there is some β ∈ K with β /∈ L. Let g(X) ∈ L[X] be the minimum L-polynomial for
β. We try to extend DL to L(β). For this, we must define DL(β)(β) and the only requirement it needs to
satisfy is

0 = DL(β)(g(β)) = g′(β)DL(β)(β) +DL(g)(β).

Here, if g(X) =
∑r
j=1 ajX

j , then DL(g)(α) is
∑r
j=1 α

jDL(aj) ∈ M . Since β is separable, g′(β) �= 0, so we
can find the value of DL(β)(β), contradicting the maximality of our extension. Therefore, L = K.

Proof of Theorem 4.14. (1) ⇒ (2). Pick D ∈ Derk(K,M) and α ∈ K; by (1), the element α is separable
over k, i.e., α has a minimal k-polynomial, g(X), so that g(α) = 0 and g′(α) �= 0. As D is a derivation, the
argument of Proposition 4.15 implies that

0 = D(g(α)) = g′(α)D(α) +D(g)(α).

But, D(g) = 0, because the coefficients of g are in k and D � k ≡ 0. Since g′(α) �= 0, we get D(α) = 0, i.e.,
(2) holds.

(2) ⇒ (2a). We have the functor M � Derk(K,M) and Derk(K,M) = (0). By Yoneda’s lemma, the
representing object, ΩK/k, must vanish.

(2a)⇒ (2). We have Homk(ΩK/k,M) ∼= Derk(K,M) and ΩK/k = (0), so (2) holds.

(2) ⇒ (3). Say D and D̃ are two extensions of the same derivation on k. Then, D − D̃ is a derivation
and (D − D̃) � k ≡ 0. By (2), (D − D̃) ∈ Derk(K,M) = (0), so D − D̃ = 0.

(3) ⇒ (2). Choose D ∈ Derk(K,M), so D � k ≡ 0. But then, D extends 0 and 0 extends 0; by (3),
D ≡ 0.

(1)⇒ (5). If α ∈ K, then α is separable over k, so α is separable over kKp (as kKp ⊇ k). Yet, αp ∈ Kp,
so αp ∈ kKp; thus, α is purely inseparable over kKp. As α is both separable and purely inseparable over
kKp, by a previous remark, α ∈ kKp. This shows K ⊆ kKp. On the other hand, kKp ⊆ K, always.
Therefore, K = kKp, i.e., (5) holds.

Before discussing the equivalence of (4) with (1), we need to elucidate the meaning of the Mac Lane
conditions.

For (5), say {ξλ}λ spans K as a k-vector space. Then, {ξpλ}λ spans Kp as a kp-space. As kp ⊆ k, {ξpλ}λ
spans kKp as a k-space. Hence, Mac Lane II means: If {ξλ}λ spans K as a k-space, so does {ξpλ}λ.

For (4), say {ξλ}λ is a linearly independent family (for short, an l.i. family) over k in K. Then, we
know that the elements 1 ⊗ ξλ are linearly independent in k1/p ⊗k K as k1/p-vectors (k1/p acts on the left
on k1/p ⊗k K). The map k1/p ⊗k K −→ K1/p is just∑

λ

aλ ⊗ ξλ �→
∑
λ

aλξλ.
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If the map is injective and if there is a linear dependence of the ξλ (in K1/p) over k1/p, we get
∑
λ aλξλ = 0,

for some aλ ∈ k1/p. But then,
∑
λ aλ ⊗ ξλ would go to zero and by injectivity∑

λ

aλ ⊗ ξλ =
∑
λ

(aλ ⊗ 1)(1⊗ ξλ) = 0

in k1/p ⊗k K. But, {1 ⊗ ξλ}λ is linearly independent in k1/p ⊗k K, so aλ = 0, for all λ. Consequently, the
family {ξλ}λ is still linearly independent over k1/p. Conversely (DX), if any l.i. family {ξλ}λ (with ξλ ∈ K)
over k remains l.i. over k1/p, then our map k1/p ⊗k K −→ K1/p is injective. By using the isomorphism
x �→ xp, we get: Mac Lane I says that any l.i. family {ξλ}λ over k, has the property that {ξpλ}λ is still l.i.
over k.

Now, say K/k is finite, with [K : k] = n. Then, ξ1, . . . , ξn is l.i. over k iff ξ1, . . . , ξn span K. Condition
(4) implies ξp1 , . . . , ξ

p
n are l.i. and since there are n of them, they span K, i.e. (5) holds. Conversely, if (5)

holds then ξp1 , . . . , ξ
p
n span K and there are n of them, so they are l.i., i.e., (4) holds. Therefore, (4) and (5)

are equivalent if K/k is finite. We can show that (1) and (4) are equivalent (when char(k) = p > 0).

(4) ⇒ (1). Pick α ∈ K. We know that αp
n

is separable over k for some n ≥ 0. Further, the minimal
polynomial for β = αp

n

is h(X), where f(X) = h(Xpn

) and f is the minimal k-polynomial for α. Say,
deg(f) = d. So, d = pnd0, with d0 = deg(h). Now, 1, α, . . . , αd−1 are l.i. over k. By (4), repeatedly,
1, αp

n

, (α2)p
n

, . . . , (αd−1)p
n

are l.i., i.e., 1, β, . . . , βd−1 are l.i. Yet, 1, β, . . . , βd0 is the maximum l.i. family
for the powers of β, so d ≤ d0. This can only happen if n = 0 and α is separable over k.

(1)⇒ (4). Say {ξλ}λ is l.i. in K/k. As linear independence is checked by examining finite subfamilies, we
may assume that our family is ξ1, . . . , ξt. We must prove, ξp1 , . . . , ξ

p
t are still l.i. over k. Let L = k(ξ1, . . . , ξt),

then L/k is a finite extension. For such an extension, (4) and (5) are equivalent. But, we just proved that
(1) implies (5), so (1) implies (4).

Finally, in the case K/k is finite there remains the proof of (2)⇒ (1). For this, it is simplest to prove a
statement we’ll record as Corollary 4.16 below. This is:

Corollary 4.16 If α1, . . . , αt are each separable over k, then the field k(α1, . . . , αt) is separable over k. In
particular, if K/k is algebraic and Ksep denotes the set of all elements of K that are separable over k, then
Ksep is a field.

To prove these statements, we will apply Mac Lane II; this will suffice as L = k(α1, . . . , αt) is finite over
k. Now kLp = k(αp1, . . . , α

p
t ) and each αj is therefore purely inseparable over kLp. However, each αj is

separable over k and therefore over kLp. It follows that each αj ∈ kLp so that L = kLp and Mac Lane II
applies. For the proof, proper, that (2)⇒ (1), assume (2) and that (1) is false. Then Ksep �= K, so we can
find α1, . . . , αs ∈ K, each purely inseparable over Ksep, and so that

K = Ksep(α1, . . . , αs) > Ksep(α1, . . . , αs−1) > · · · > Ksep(α1) > Ksep.

Consider the zero derivation on Ksep(α1, . . . , αs−1). Now, β = αp
r

s ∈ Ksep(α1, . . . , αs−1) for some minimal
r > 0, thus to extend the zero derivation to K we need only assign a value to D(αs) so that
D(αp

r

s ) = prαp
r−1

s D(αs) = 0. Any nonzero element of M will do, contradicting (2).

Corollary 4.17 Every algebraic extension of a perfect field is perfect. In particular, every finite field is
perfect and every absolutely algebraic field (i.e., algebraic over a prime field) is perfect.

Proof . If K/k is algebraic and k is perfect, then K/k is separable. By Mac Lane II, we have K = kKp. But,
k = kp (k perfect), so K = kpKp = (kK)p = Kp. A finite field is algebraic over Fp and by little Fermat,
Fpp = Fp, i.e., perfect. (Second proof by counting: The map ξ �→ ξp is injective, taking Fq to itself. But, the
image has cardinality q; by finiteness, the image is all of Fq.) By the first part of the proof, an absolutely
algebraic field is perfect.
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Corollary 4.18 Say α1, . . . , αt are each separable over k. Then, the field k(α1, . . . , αt) is a separable ex-
tension of k. In particular, if K/k is algebraic and we set

Ksep = {α ∈ K | α is separable over k}

then Ksep is a subfield of K/k called the separable closure of k in K.

Corollary 4.19 Say K/k is an algebraic extension and α1, . . . , αt ∈ K. If each αj is separable over
k(α1, . . . , αj−1), then k(α1, . . . , αt) is separable over k. In particular, separability is transitive.

Proof . We use induction on t. When t = 1, this is Corollary 4.18. Assume that the induction hypothesis
holds for t− 1. So, L = k(α1, . . . , αt−1) is separable over k and it is a finite extension, therefore Mac Lane
II yields kLp = L. Let M = k(α1, . . . , αt), then M = L(αt). So, M is separable over L, by the case t = 1.
Therefore, M = LMp, by Mac Lane II. Now,

M = LMp = kLpMp = k(LM)p = kMp.

By Mac Lane II, again, M is separable over k.

Corollary 4.20 If K/k is an algebraic extension, then K is purely inseparable over Ksep.

Corollary 4.21 Pure inseparability is transitive.

� The implication (2)⇒ (1) does not hold if K/k is not finite. Here is an example: Set k = Fp(T ), where
T is an indeterminate. Define, inductively, the chain of fields

k = k0 < k1 < · · · < kn < · · ·

via the rule
α0 = T ; αj = α

1/p
j−1; kj = kj−1(αj).

Let K = k∞ =
⋃∞
j=0 kj . Then a derivation on K, trivial on k is determined by its values on the αj . Yet, we

have αpj+1 = αj , therefore D(αj) = 0 for every j; hence, Derk(K,−) = 0. But, K/k is not separable; indeed
it is purely inseparable.

Notation: For a field, k, of characteristic p > 0, set [K : k]s
def= [Ksep : k], the separable degree of K/k

and [K : k]i
def= [K : Ksep], the purely inseparable degree of K/k (if K/k is finite, [K : k]i is a power of p).

Clearly,
[K : k] = [K : k]i[K : k]s.
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4.4 The Extension Lemma and Splitting Fields

We begin with a seemingly “funny” notion: Two fields K,L are related , denoted K r̃el L, iff there is some
larger field, W , so that K ⊆ W and L ⊆ W (as sets, not isomorphic copies). This notion is reflexive and
symmetric, but not transitive.

Theorem 4.22 (Extension Lemma) Let K/k be a finite extension and say k̃ is another field isomorphic to
k via θ : k → k̃. Suppose Γ is another field related to k̃, but otherwise arbitrary. Then, there exists a finite
extension, K̃/k̃, with K̃ r̃el Γ and an extension of θ to an isomorphism θ̃ : K → K̃.

K
eθ �� K̃ r̃el Γ

k

finite

��

θ
�� k̃ r̃el Γ

finite

��

Proof . We proceed by induction on the number, n, of adjunctions needed to obtain K from k.

Case n = 1: K = k(α). Let g(X) ∈ k[X] be the minimum k-polynomial for α. Write g̃(X) ∈ k̃[X] for
the image, θ(g)(X), of g(X). Of course, g̃(X) is k̃-irreducible. Now, there exists a field, W , with W ⊇ k̃
and W ⊇ Γ. Thus, g̃(X) ∈ W [X]; moreover, there exists an extension W ′/W of W and some α̃ ∈ W ′, so
that g̃(α̃) = 0. It follows that k̃(α̃) ⊆ W ′ and Γ ⊆ W ⊆ W ′, so k̃(α̃) r̃el Γ. But we know by Proposition 4.6
that θ extends to an isomorphism θ̃ : k(α)→ k̃(α̃). This proves case 1.

Induction step. Assume that the induction hypothesis holds for all t ≤ n−1. We have K = k(α1, . . . , αn)
and let L = k(α1, . . . , αn−1). By the induction hypothesis, there is a finite extension, L̃, and an isomorphism,
θ′ : L→ L̃, extending θ;

L(αn) = K
eθ �� K̃ r̃el Γ

L

��

θ′ �� L̃ r̃el Γ

��

k

��

θ �� k̃ r̃el Γ

��

We complete the proof using the argument in case 1 (a single generator), as illustrated in the above diagram.

Corollary 4.23 If K/k is a finite extension and k r̃el Γ, then there is a k-isomorphism K/k −→ K̃/k̃ and
K̃ r̃el Γ.

Proof . This is the case k = k̃; θ = id.

Definition 4.8 A field extension L/k is a splitting field for the polynomial f(X) ∈ k[X] iff L = k(α1, . . . , αn)
and α1, . . . , αn are all the roots of f(X) in some larger field (n = deg(f)).

Remarks:
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(1) When we view f(X) ∈ L[X], then f(X) splits into linear factors

f(X) = c(X − α1) · · · (X − αn)
in L[X], hence the name. Conversely, if M/k is a field extension and in M [X], the polynomial f(X)
splits into linear factors, then M contains some splitting field for f . (Here, f(X) ∈ k[X].)

(2) Suppose L/k and L′/k are two splitting fields for the same polynomial f(X) ∈ k[X]. Then L = L′ iff
L r̃el L

′ (L and L′ are identical , not just isomorphic).

Proof . The implication (⇒) is obvious. Conversely, assume L r̃el L
′. Say Ω is a common extension

of L and L′ in which f(X) splits. In Ω, the polynomial f has just n roots, say β1, . . . , βn. Yet,
L = k(β1, . . . , βn) and L′ = k(β1, . . . , βn), too. Therefore, L = L′.

(3) Suppose L/k is a splitting field for f(X) ∈ k[X] and k ∼= k̃ via some isomorphism, θ. If f̃(X) is the
image of f(X) by θ, and if θ extends to an isomorphism L ∼= L̃ for some extension L̃/k̃, then L̃ is a
splitting field for f̃(X).

Proposition 4.24 Say f(X) ∈ k[X] and θ : k → k̃ is an isomorphism. Write f̃(X) for the image of f(X)
by θ. Then, θ extends to an isomorphism from any splitting field of f to any splitting field of f̃ . In particular,
any two splitting fields of f(X) are k-isomorphic (case k = k̃; f = f̃).

Proof . Apply the extension lemma to the case where K is any chosen splitting field for f and Γ is any
chosen splitting field for f̃ . The extension lemma yields an extension K̃/k̃ and an extension θ̃ : K → K̃ with
K̃ r̃el Γ. By Remark (3), the field K̃ is a splitting field for f̃ . By Remark (2), as K̃ and Γ are both splitting
fields and K̃ r̃el Γ, they are equal.

Definition 4.9 An algebraic field extension, M/k, is normal iff for all irreducible k-polynomials, g(X),
whenever some root of g is in M , all the roots of g are in M .

Proposition 4.25 Say M/k is a finite extension and write M = k(β1, . . . , βt). Then, the following are
equivalent:

(1) M/k is normal.

(2) M is the splitting field of a family, {gα}α, of k-polynomials (the family might be infinite).

(3) M is the splitting field of a single k-polynomial (not necessarily irreducible).

(4) M is identical to all its k-conjugates; here two fields are k-conjugate iff they are both related and
k-isomorphic.

Proof . (1) ⇒ (2). For each βi, there is an irreducible k-polynomial, say gi with gi(βi) = 0. By (1), all the
other roots of gi are in M . Therefore, M contains the splitting fields of each gi. But, clearly, M is contained
in the field generated by all these splitting fields. It follows that M is equal to the splitting field of the
(finite) family of k-polynomials g1, . . . , gt.

(2)⇒ (3). Say {gα} is the family of k-polynomials for which M is the splitting field. (Note that we may
assume that deg(gα) > 1 for all gα.) Pick a countable (at most) subset {g1, g2, . . . , } of our family. Then,
M contains the splitting field of g1, call it M1. We have M ⊇M1 ⊇ k and [M : M1] < [M : k]. If M �= M1,
then M contains the splitting field, M2, of g1 and g2, where we may assume that the splitting field of g2 is
distinct from M1. Thus, we have M ⊇M2 ⊇M1 ⊇ k. Since M is finite over k, the above process stops and
we deduce that M is the splitting field of a finite subfamily {g1, . . . , gt}. Then, take g =

∏t
i=1 gi, and (3)

holds.

(3)⇒ (4). If M̃ is a k-conjugate of M , then
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(a) M̃ is a splitting field (k-isomorphic to M)

(b) M̃ r̃el M .

But, we know that (a) and (b) imply that M̃ = M .

(4)⇒ (1). Pick an irreducible k-polynomial, g, and α ∈M with g(α) = 0. Consider the extension lemma
in the situation where k = k̃ and Γ = M . Pick in an algebraic closure, M , of M , any root β of g. We get
the diagram

M
eθ �� M̃ r̃el M

k(α)

��

θ �� k̃(β) r̃el M

��

k

��

k r̃el M.

��

By the extension lemma applied to the upper portion of the above diagram, there exists M̃ with M̃ r̃el M

and an extension θ̃ : M → M̃ . But, θ̃ � k = θ � k = id, so θ̃ is a k-isomorphism and M̃ r̃el M . By (4), we get
M̃ = M . Since β ∈ M̃ , we have β ∈M .

Corollary 4.26 Say M ⊇ K ⊇ k and M is normal over k. Then, M is normal over K.

Proof . Use (3), i.e., M is the splitting field of some g ∈ k[X]. Yet, g ∈ K[X], and use (3) again.

� M normal over K and K normal over k does not imply M normal over k.

Here is a counter-example to the transitivity of normality. Let k = Q; K = Q(
√

2); the extension K/k
is normal. Let α =

√
2 and L = K(

√
α); again, L/K is normal of degree 2. Observe that L is the splitting

field over K of X2 −α ∈ K[X]. But, L/Q is not normal. This is because the polynomial X4 − 2 has a root,√
α, in L, yet i

√
α is not in L because L ⊆ R.

� M normal over k and M ⊇ K ⊇ k does not imply K normal over k.

Corollary 4.27 (SMA, I2) Say M is normal over k and g is any irreducible k-polynomial with a root α ∈M .
Then, a n.a.s.c. that an element β ∈ M be a root of g is that there exists σ, a k-automorphism of M (i.e.,
σ � k = id) so that σ(α) = β.

Proof . (⇐). If α is a root and g ∈ k[X], then

0 = σ(0) = σ(g(α)) = g(σ(α)) = g(β).

So, β is a root.

2SMA = sufficiently many automorphisms.
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(⇒). Say β ∈ M is a root, then there is a k-isomorphism k(α) −→ k(β). Now, k(β) r̃el M ; so, in the
extension lemma, take Γ = M :

M
eθ �� M̃ r̃el M

k(α)

��

θ �� k̃(β) r̃el M

��

k

��

k r̃el M.

��

We get θ̃ : M → M̃ , a k-isomorphism and M r̃el M̃ . By (4), M = M̃ . So, θ̃ = σ is our required automorphism
(it takes α to β).

Corollary 4.28 (SMA, II) Let M be normal over k and say K,K ′ are subextensions of the layer M/k (i.e,
M ⊇ K ⊇ k and M ⊇ K ′ ⊇ k). If θ : K → K ′ is a k-isomorphism, then there is a k-automorphism, σ, of
M so that σ � K = θ.

Proof . Apply the extension lemma with Γ = M to the situation

M
eθ �� M̃ r̃el M

K

��

θ �� K ′
r̃el M.

��

There exist θ̃ and M̃ with θ̃ a k-isomorphism and M r̃el M̃ . By (4), M = M̃ . Therefore, σ = θ̃ is our
automorphism.

Corollary 4.29 Say K/k is a finite extension of degree [K : k] = n, then there exists M ⊇ K with

(1) M is normal over k and

(2) Whenever W is normal over k, W ⊇ K and W r̃el M , then automatically W ⊇M .

(3) [M : k] ≤ n!.

The field, M , is called a normal closure of K/k.

Proof . (DX).
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4.5 The Theorems of Dedekind and Artin; Galois Groups & the
Fundamental Theorem

Recollect that a K-representation of a group, G, is just a K[G]-module. So, a K-representation of a group,
G, is just a K-vector space plus a (linear) G-action on it (by K-automorphisms); that is, a homomorphism
G −→ Aut(V ). If dimK V < ∞, we have a finite dimensional representation. In this case, Aut(V ) =
GL(V ) ∼= GLn(K), where n = dimK(V ) is the degree of the representation. Say ρ : G → GLn(K) is
our representation. Then, χρ(σ) = tr(ρ(σ)), the trace of ρ(σ), is a function G −→ K independent of
the basis chosen, called the character of our representation. The case n = 1 is very important. In this
case, the characters are the representations, χρ = ρ. Therefore, we have functions χ : G → K∗, with
χ(στ) = χ(σ)χ(τ). From now on, we use only one-dimensional characters.

Definition 4.10 Suppose {χα}α is a given family of characters, χα : G → K∗, of the group G. Call the
family independent iff the relation

n∑
j=1

ajχj(σ) = 0, for all σ ∈ G

implies aj = 0, for j = 1, . . . , n (all applicable n).

Theorem 4.30 (R. Dedekind, about 1890) If G is a group and {χα}α is a family of mutually distinct
characters of G (with values in K∗), then they are independent.

Proof . We may assume our family is finite and we use induction on the number of elements, n, in this family.
The case n = 1 holds trivially. Assume that the result holds for all t ≤ n− 1 characters. Say χ1, . . . , χn are
distinct characters of G and suppose

n∑
j=1

ajχj(σ) = 0, for all σ ∈ G. (∗)

The induction hypothesis implies that if the conclusion of the theorem is false, then aj �= 0, for all j = 1, . . . , n.
Since the χj are distinct, there is some α �= 1 with χ1(α) �= χn(α). Divide (∗) by an �= 0, to obtain

n−1∑
j=1

bjχj(σ) + χn(σ) = 0, for all σ ∈ G. (∗∗)

Consider the group element ασ, then (∗∗) is true for it and we have

n−1∑
j=1

bjχj(α)χj(σ) + χn(α)χn(σ) = 0, for all σ ∈ G.

If we multiply by χn(α)−1, we get

n−1∑
j=1

(bjχn(α)−1χj(α))χj(σ) + χn(σ) = 0, for all σ ∈ G. (†)

If we subtract (†) from (∗∗), we get

n−1∑
j=1

bj(1− χn(α)−1χj(α))χj(σ) = 0, for all σ ∈ G.
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By the induction hypothesis, bj(1 − χn(α)−1χj(α)) = 0, for j = 1, . . . , n − 1. If we take j = 1 and we
remember that b1 = a1/an �= 0, we get

1− χn(α)−1χ1(α) = 0,

i.e., χn(α) = χ1(α), a contradiction.

Corollary 4.31 Say {χα}α is a family of mutually distinct isomorphisms of a field L with another, L̃.
Then, the χα are independent.

Proof . Take G = L∗ and K = L̃ in Dedekind’s theorem.

Definition 4.11 If {χα}α is a family of isomorphisms K −→ K̃, then set

Fix({χα}) = {ξ ∈ K | (∀α, β)(χα(ξ) = χβ(ξ))}.
Observe that Fix({χα}) is always a subfield of K, so we call it the fixed field of {χα}α.

Note that Fix({χα}) contains the prime field of K.

Theorem 4.32 (E. Artin, 1940) If {χα}α is a family of pairwise distinct isomorphisms K −→ K̃ and if
k = Fix({χα}), then

(1) [K : k] ≥ min(ℵ0,#({χα})).
(2) Say {χα} forms a group under composition (so, K = K̃ and all χα’s are automorphisms of K), then

if #({χα}) = n <∞, we have [K : k] = n and if n =∞ then [K : k] =∞.

Proof . (1) First, we consider the case where we have a finite set, {χ1, . . . , χn}, of isomorphisms K −→ K̃.
Let k = Fix({χj}nj=1) and assume that [K : k] < n. Then, there exists a basis, ω1, . . . , ωr, of K/k and r < n.
Consider the r equations in n unknowns (yj ’s)

n∑
j=1

yjχj(ωi) = 0, 1 ≤ i ≤ r.

As r < n, this system has a nontrivial solution, call it (α1, . . . , αn) (with αi ∈ K̃). So, we have

n∑
j=1

αjχj(ωi) = 0, 1 ≤ i ≤ r.

Pick any ξ ∈ K, as the ωi’s form a basis, we can write ξ =
∑r
i=1 aiωi, for some (unique) ai ∈ k. We have

n∑
j=1

αjχj(ξ) =
n∑
j=1

αjχj

( r∑
i=1

aiωi

)
=

n∑
j=1

r∑
i=1

αjχj(ai)χj(ωi).

But, χj(ai) = χl(ai), for all j, l, as ai ∈ k and k = Fix({χj}). Write bi = χj(ai) (independent of j). So, we
have

n∑
j=1

αjχj(ξ) =
r∑
i=1

bi

( n∑
j=1

αjχj(ωi)
)
.

But,
∑n
j=1 αjχj(ωi) = 0, by the choice of α1, . . . , αn, so

n∑
j=1

αjχj(ξ) = 0, for all ξ.
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This contradicts Dedekind’s theorem and thus, [K : k] ≥ n.

Now, consider the case where #({χα}) is infinite. If [K : k] were finite, then pick any n > [K : k] and
repeat the above argument with the subset {χ1, . . . , χn}. We deduce that [K : k] must be infinite.

(2) Now, suppose {χ1, . . . , χn} forms a group under composition (i.e., they are a group of automorphisms
of K). Then, one of the χj ’s is the identity, say χ1 = id. It follows that for every a ∈ k, we have
χj(a) = χ1(a) = a, so

k = Fix({χj}) = {a ∈ K | χj(a) = a, j = 1, . . . , n}.
By part (1), we know [K : k] ≥ n; so, assume [K : k] > n. In this case, there exist r > n elements,
ω1, . . . , ωr ∈ K, linearly independent over k. Consider the n equations in r unknowns (xi’s)

r∑
i=1

xiχj(ωi) = 0, j = 1, . . . , n.

Again, there is a nontrivial solution, say a1, . . . , ar, with aj ∈ K. So, we have

r∑
i=1

aiχj(ωi) = 0, j = 1, . . . , n. (†)

Note that for any nontrivial solution, the ai’s can’t all be in k. If they were, then (†) with j = 1 gives∑r
i=1 aiωi = 0, contradicting the linear independence of the ωi’s.

Pick a solution containing a minimal number of nonzero ai’s, say a1, . . . , as �= 0 and as+1 = · · · = ar = 0.
If we divide (†) by as, we get

s−1∑
i=1

biχj(ωi) + χj(ωs) = 0, j = 1, . . . , n. (††)

By the remark above, there is some i, with 1 ≤ i ≤ s − 1, so that bi /∈ k. By relabelling, we may assume
that b1 /∈ k. As b1 /∈ k, there is some ρ (1 ≤ ρ ≤ n) with χρ(b1) �= b1. Apply χρ to (††); we get

s−1∑
i=1

χρ(bi)(χρ ◦ χj)(ωi) + (χρ ◦ χj)(ωs) = 0, j = 1, . . . , n.

As χj ranges over {χ1, . . . , χn}, so does χρ ◦ χj ; consequently, we have

s−1∑
i=1

χρ(bi)χξ(ωi) + χξ(ωs) = 0, ξ = 1, . . . , n. (∗)

If we subtract (∗) from (††), we obtain

s−1∑
i=1

(bi − χρ(bi))χξ(ωi) = 0, ξ = 1, . . . , n.

But, we know that b1 �= χρ(b1). For this ρ, not all the coefficients are zero, so we get a solution with strictly
fewer nonzero components, a contradiction to the minimality of (a1, . . . , as).

Definition 4.12 If Ω is a finite, normal extension of k, the Galois group of Ω/k, denoted G(Ω/k), is the
group of all k-automorphisms of Ω (i.e., the automorphisms, σ, of Ω so that σ � k = id). Say f ∈ k[X] and
let Ω be a splitting field for f(X) over k. The Galois group of the polynomial, f(X), over k, denoted Gk(f),
is just G(Ω/k).
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Lemma 4.33 Suppose Ω is finite, normal over k and G = G(Ω/k) is its Galois group. Then, a n.a.s.c. that
ξ ∈ Ω lie in Fix(G) is that ξ be purely inseparable over k.

Proof . If ξ is purely inseparable over k, then there is some s ≥ 0 so that ξp
s ∈ k. Then, for every σ ∈ G,

we have σ
(
ξp

s)
= ξp

s

. But, σ
(
ξp

s)
= (σ(ξ))p

s

, so (σ(ξ))p
s

= ξp
s

; since char(k) = p, it follows that
(σ(ξ) − ξ)ps

= 0. Therefore, σ(ξ) − ξ = 0, i.e., ξ is fixed by σ and ξ ∈ Fix(G). Conversely, assume that
ξ ∈ Fix(G). First, pick an element α ∈ Ω, with α separable over k and α /∈ k, if such an element exists.
Then, α is a simple root of some irreducible k-polynomial g. But, Ω is normal, so all the roots of g lie in
Ω and as α /∈ k, we have deg(g) > 1. Consequently, there is another root, β ∈ Ω, of g with β �= α and by
SMA, I, there exists σ ∈ G so that σ(α) = β. Now, consider our ξ ∈ Fix(G). As ξ ∈ Ω, there is some power,
ξp

r

, of ξ that is separable over k. Since ξ is fixed by all σ ∈ G, so is ξp
r

. If ξp
r

were not in k, then ξp
r

could
play the role of α above, so it could be moved to some β �= α, a contradiction. This implies that ξp

r ∈ k,
i.e., ξ is purely inseparable over k.

Nomenclature & Notation.

Say Ω/k is a normal (not necessarily finite) extension. Pick an extension, K, in the layer Ω/k, i.e,
k ⊆ K ⊆ Ω. Define

K(∗) =
{
ξ ∈ Ω | ξpr ∈ K, for some r ≥ 0

}
.

(Obviously, p = char(k).) Note that K(∗) = Ω ∩Kp−∞
in some algebraic closure (where Kp−∞

is defined as
{ξ ∈ K | (∃r ≥ 0)(ξp

r ∈ K)}). Also define

K(∗) = {ξ ∈ K | ξ is separable over k}.

Note: K(∗) and K(∗) are subfields of Ω/k and we have K(∗) ⊆ K ⊆ K(∗) ⊆ Ω.

We say that K is Galois equivalent to K ′ (where k ⊆ K ⊆ Ω and k ⊆ K ′ ⊆ Ω) iff K(∗) = K
′(∗); write

K gal K ′. This equivalence relation fibers the subextensions of Ω/k into Galois equivalence classes.

Corollary 4.34 If Ω/k is finite, normal, then Fix(G(Ω/k)) = k(∗). In particular, if k ⊆ L ⊆ Ω, then
Fix(G(Ω/L)) = L(∗).

Corollary 4.35 If Ω/k is finite, normal, then #(G(Ω/k)) divides [Ω: k]; in particular,
#(G(Ω/k)) ≤ [Ω: k] <∞.

Proof . By Artin’s theorem (Theorem 4.32) #(G(Ω/k)) = [Ω: Fix(G(Ω/k))]. By Lemma 4.33, we have
Fix(G(Ω/k)) = k(∗). Therefore, #(G(Ω/k)) = [Ω: k(∗)] which divides [Ω: k].

Corollary 4.36 If Ω/k is finite, normal and k is perfect, e.g. char(k) = 0, then #(G(Ω/k)) = [Ω: k].

Corollary 4.37 Say f is a separable, irreducible k-polynomial with degree deg(f) = n. Then, there is an
injection Gk(f) ↪→ Sn (where Sn denotes the symmetric group on n elements) and this injection is unique
up to inner automorphisms in Sn. In particular, #(Gk(f)) | n!.

Proof . Write α1, . . . , αn for all the roots of f (they are all distinct) in some order. Given σ ∈ Gk(f), the
element σ(αi) is some other root of f , call it αpσ(i). Then, pσ is a permutation of the n roots, i.e., pσ ∈ Sn.
Clearly, the map σ �→ pσ is a homomorphism Gk(f) −→ Sn. If pσ = id, then σ(αi) = αi for all i, so
σ � Ω = id, as Ω, the splitting field of f , is generated over k by the αi’s. So, σ = id in Gk(f) = G(Ω/k), and
the our map Gk(f) −→ Sn is an injection. We can reorder (relabel) the α1, . . . , αn; to do so introduces an
inner automorphism of Sn.
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Remarks: (On Galois equivalence)

(1) If K ⊆ K ′, then K(∗) ⊆ K ′(∗). Indeed, if ξ ∈ K(∗), then ξp
r ∈ K ⊆ K ′ (for some r ≥ 0), so ξ ∈ K ′(∗).

(2) For all K in the layer Ω/k (of course, Ω/k is a finite normal extension), we have K gal K(∗). Hence,
the Galois equivalence class of any field possesses a unique least upper bound, namely K(∗) for any K
in the class. For, K ⊆ K(∗), so K(∗) ⊆ (K(∗))(∗). Also, if ξ ∈ (K(∗))(∗), then ξp

r ∈ K(∗), for some
r; but then, (ξp

r

)p
s ∈ K, for some s, i.e., ξp

r+s ∈ K, which means that ξ ∈ K(∗). Consequently,
(K(∗))(∗) ⊆ K(∗) and so (K(∗))(∗) = K(∗), i.e. K gal K(∗). If K gal L then K(∗) = L(∗); K ⊆ K(∗) and
L ⊆ L(∗), so K(∗) = L(∗) is indeed the least upper bound of the equivalence class of K and L.

(3) If K belongs to the layer Ω/k (where Ω/k is normal), then K(∗) gal K and K(∗) is the unique greatest
lower bound for the Galois equivalence class of K.

Proof . If we prove that (K(∗))(∗) = K(∗) and (K(∗))(∗) = K(∗), we are done. The first equation will
prove that K(∗) gal K. As K(∗) ⊆ K, we get (K(∗))(∗) ⊆ K(∗). Pick ξ ∈ K(∗), then ξp

r ∈ K, for
some r and (ξp

r

)p
s

= ξp
r+s ∈ K(∗), for some s, so ξ ∈ (K(∗))(∗); hence, (K(∗))(∗) = K(∗). Now, pick

ξ ∈ K(∗), then ξ ∈ K(∗) (as K(∗) ⊆ K ⊆ K(∗)) and since ξ is separable over k, we have ξ ∈ (K(∗))(∗).
Conversely, if ξ ∈ (K(∗))(∗), then ξ ∈ K(∗), which means that ξ is inpurely separable over K. Yet, ξ is
separable over k, so ξ is separable over K. As ξ is purely inseparable over K and separable over K,
we get ξ ∈ K; moreover, as ξ is separable over k, we get ξ ∈ K(∗).

(4) We have K gal L iff K(∗) = L(∗), hence in each Galois equivalence class, there is a unique greatest
lower bound, it is the common K(∗). If K gal L, then K(∗) = L(∗), so

K(∗) = (K(∗))(∗) = (L(∗))(∗) = L(∗),

by (3). Conversely, if K(∗) = L(∗), then

K(∗) = (K(∗))(∗) = (L(∗))(∗) = L(∗),

again, by (3), i.e., K gal L.

(5) Suppose K gal L and K,L ⊆ Ω/k, Then, G(Ω/K) = G(Ω/L), hence the maps

G(Ω/L(∗)) ↪→ G(Ω/L) ↪→ G(Ω/L(∗))

are equalities. All we need show is G(Ω/L) = G(Ω/L(∗)). We already know G(Ω/L(∗)) ⊆ G(Ω/L), as
L ⊆ L(∗). Say σ ∈ G(Ω/L) and pick any ξ ∈ L(∗). Then, ξp

r ∈ L, for some r ≥ 0. Consequently,
σ
(
ξp

r)
= ξp

r

, as σ � L = id. As σ is an automorphism, we get (σ(ξ))p
r

= ξp
r

, i.e., (σ(ξ) − ξ)pr

= 0,
and so, σ(ξ) = ξ. As ξ is arbitrary in L(∗), we have σ � L(∗) = id; since σ is arbitrary, the proof is
complete.

Theorem 4.38 (Fundamental Theorem of Galois Theory) Suppose Ω/k is a finite, normal extension. Write
G for G(Ω/k) and write [K] for the Galois class of K ⊆ Ω/k. Then, the maps

H �→ [Fix(H)] and [L] �→ G(Ω/L)

establish a one-to-one order-reversing correspondence between all subgroups of G and all the Galois classes of
subextensions L/k ⊆ Ω/k. Here, [K] ⊆ [L] means K(∗) ⊆ L(∗) as fields. In this correspondence, G(Ω/L)�G
iff L(∗) is a normal extension of k iff L(∗) is a normal extension of k. When the latter is the case, then there
is a canonical exact sequence

0 −→ G(Ω/L) −→ G(Ω/k) −→ G(L(∗)/k) −→ 0.
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Claim 1. If L = Fix(H), then L = L(∗).

Pick ξ ∈ L(∗), so ξp
r ∈ L, for some r ≥ 0. Then, for all σ ∈ H, we have σ

(
ξp

r)
= ξp

r

, and by a standard
argument, ξ ∈ Fix(H) = L. Consequently, L(∗) ⊆ L, yet L ⊆ L(∗), so L = L(∗).

Proof of Theorem 4.38. Now say H ⊆ H̃ and look at Fix(H̃). If ξ ∈ Fix(H̃), then for every τ ∈ H̃, we have
τ(ξ) = ξ and so, for every σ ∈ H, we have σ(ξ) = ξ, i.e., ξ ∈ Fix(H). Consequently, Fix(H̃) ⊆ Fix(H) and so,
[Fix(H̃)] ⊆ [Fix(H)], by Claim (1). Now, if [L] ⊆ [L̃], then L(∗) ⊆ L̃(∗). If σ ∈ G(Ω/L̃), then σ ∈ G(Ω/L̃(∗))
(by Remark (5), above); so, σ ∈ G(Ω/L(∗)) = G(Ω/L) (again, by Remark (5)). Thus, G(Ω/L̃) ⊆ G(Ω/L).

Given H ⊆ H̃, say we know Fix(H) = Fix(H̃). By Artin’s theorem, we have

#(H) = [Ω: Fix(H)] = [Ω: Fix(H̃)] = #(H̃).

As H ⊆ H̃ and #(H) = #(H̃), we get H = H̃.

Choose a subgroup, H, of G and let L = Fix(H); write H̃ for G(Ω/L) = G(Ω/Fix(H)). If σ ∈ H,
then σ fixes L, so σ ∈ H̃ and H ⊆ H̃. But, Fix(H̃) = Fix(G(Ω/L)) = L(∗), by Corollary 4.34. Thus,
Fix(H̃) = (Fix(H))(∗). Claim 1 implies that (Fix(H))(∗) = Fix(H), so Fix(H̃) = Fix(H) and, by the above,
we get H = H̃. Therefore, H = G(Ω/Fix(H)).

Consider L, make G(Ω/L) and form Fix(G(Ω/L)). By Corollary 4.34, we have Fix(G(Ω/L)) = L(∗) and
L gal L(∗), so [L] = [Fix(G(Ω/L))].

Having proved all the statements about the order inverting correspondence, we see that only normality
statements remain.

Claim 2. If L ⊆ Ω/k, then L is normal over k iff for every σ ∈ G(Ω/k), we have σ(L) = L.

(⇒). For every σ ∈ G(Ω/k), the field σ(L) is k-conjugate to L. As L is normal over k, we find σ(L) = L.

(⇐). Assume σ(L) = L, for every σ ∈ G(Ω/k). Let g be any irreducible k-polynomial and assume that
α ∈ L is a root of g. But, α ∈ Ω and Ω is normal; consequently, all the roots of g lie in Ω. Say β ∈ Ω is any
other root of g. By SMA, I, there is some σ ∈ G so that σ(α) = β. So, β ∈ σ(L), and as σ(L) = L, we get
β ∈ L. Thus, L contains all the roots of g which means that L is normal over k.

Assume G(Ω/L)� G. Look at L(∗) and choose any σ ∈ G and any η ∈ σ(L(∗)). Then, σ−1(η) ∈ L(∗) and
for all τ ∈ G(Ω/L) = G(Ω/L(∗)), we have

(στσ−1)(η) = σ(τ(σ−1(η))) = (σσ−1)(η) = η,

because σ−1(η) ∈ L(∗). Thus, (σG(Ω/L)σ−1)(η) = η, and as G(Ω/L) � G, we get G(Ω/L)(η) = η, so
η ∈ Fix(G(Ω/L)) = L(∗), as we know. In summary, if η ∈ σ(L(∗)), then η ∈ L(∗), i.e., σ(L(∗)) ⊆ L(∗). If we
apply this to σ−1, we get σ−1(L(∗)) ⊆ L(∗), i.e. L(∗) ⊆ σ(L(∗)). Therefore, L(∗) = σ(L(∗)) and by Claim 2,
the extension L(∗)/k is normal.

Now, say L(∗) is normal over k. Then, we know σ(L(∗)) = L(∗), for all σ ∈ G(Ω/k). For any ξ ∈ L(∗) and
any τ ∈ G(Ω/L), we have

(στσ−1)(ξ) = σ(τ(σ−1(ξ))) = (σσ−1)(ξ) = ξ,

because σ−1(ξ) ∈ σ−1(L(∗)) = L(∗), by hypothesis. So, στσ−1 ∈ G(Ω/L(∗)) = G(Ω/L) and thus, G(Ω/L)�G.
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Suppose L(∗) is normal. We have a map G(Ω/k) −→ G(L(∗)/k) via σ �→ σ � L(∗) (σ � L(∗) ∈ G(L(∗)/k),
by normality). This map is onto because, given any σ ∈ G(L(∗)/k), we have the diagram

Ω
eσ �� Ω

L(∗)

��

σ �� L(∗)

��

k

��

k,

��

and by SMA, II, the automorphism σ lifts to an automorphism, σ̃, of Ω. The kernel of our map is clearly
G(Ω/L).

Lastly, we need to show that L(∗) is normal iff L(∗) is normal. Say L(∗) is normal and σ ∈ G. If ξ ∈ L(∗),
then ξ ∈ L(∗) and σ(ξ) ∈ L(∗) (as L(∗) is normal). But, σ(ξ) is separable over k as ξ is. It follows that
σ(ξ) ∈ (L(∗))(∗) = L(∗) and so, σ(L(∗)) ⊆ L(∗). By the usual argument, σ(L(∗)) = L(∗) and L(∗) is normal.
If L(∗) is normal and ξ ∈ L(∗), then ξp

r ∈ L(∗), for some r ≥ 0. It follows that σ
(
ξp

r) ∈ σ(L(∗)) = L(∗), so
(σ(ξ))p

r ∈ L(∗), i.e., σ(ξ) ∈ (L(∗))(∗) = L(∗); thus, σ(L(∗)) ⊆ L(∗) and, by the usual argument, we conclude
that L(∗) is normal.

Proposition 4.39 Suppose Ω is normal over k and L/k ⊆ Ω/k. Then L = L(∗) iff Ω is separable over L.

Proof . (⇒). Say Ω is separable over L, then as L(∗) ⊆ Ω, we find L(∗) is separable over L. Yet, L(∗) is
purely inseparable over L. It follows that L = L(∗).

(⇐). We must prove that Ω is separable over L(∗). Pick α ∈ Ω and consider G(Ω/L(∗)). Choose
σ1, . . . , σn ∈ G(Ω/L(∗)) so that

(1) σ1 = id and α = σ1(α), σ2(α), . . . , σn(α) are mutually distinct,

(2) n is maximal, i.e., no further σ ∈ G(Ω/L(∗)) can be added while preserving (1).

Consider g(X) =
∏n
i=1(X − σj(α)). If σ ∈ G(Ω/L(∗)), the elements σσ1(α), . . . , σσn(α) are a per-

mutation of α, σ2(α), . . . , σn(α), so σg(X) = g(X). This implies that the coefficients of g(X) belong to
Fix(G(Ω/L(∗))) = L(∗). Thus, g(X) ∈ L(∗)[X], but the roots of g(X) are distinct and α is among them.
Therefore, α is separable over L(∗).

Corollary 4.40 Assume Ω/k is a finite normal extension. Then, the following are equivalent:

(1) Ω is separable over k.

(2) k(∗) = k.

(3) For all subextensions, L, of Ω/k, we have L(∗) = L(∗).

(3a) For all subextensions, L, of Ω/k, the equivalence class [L] has but one element.

(4) Same as (3) but for some extension L/k ⊆ Ω/k.

(4a) Same as (3a) but for some extension L/k ⊆ Ω/k.

(5) Ω = Ω(∗).
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Proof . First, observe that the equivalences (3)⇐⇒ (3a) and (4)⇐⇒ (4a) are obvious.

(1)⇒ (2). This is Proposition 4.39 when L = k.

(2) ⇒ (3). Given L ⊆ Ω/k, then L(∗) ⊆ Ω. By Proposition 4.39, Ω is separable over k. Thus, L(∗) is
separable over k and so L(∗) is separable over L(∗); yet, L(∗) is purely inseparable over L(∗), so L(∗) = L(∗).

(3)⇒ (4) is a tautology.

(4)⇒ (5). We have L(∗) = L(∗), for some L ⊆ Ω/k. Proposition 4.39 implies that Ω is separable over L(∗).
But, L(∗) is always separable over k and separability is transitive, so Ω is separable over k, i.e., Ω = Ω(∗).

(5)⇒ (1). By definition, Ω(∗) is separable over k and Ω = Ω(∗), so Ω is separable over k.

Proposition 4.41 Say Ω/k is a finite normal extension. Then, Ω = Ω(∗)k(∗) (= the smallest field containing
Ω(∗) and k(∗)). The natural map

Ω(∗) ⊗k k(∗) −→ Ω

is an isomorphism. Indeed, for all L/k ⊆ Ω/k, we have

(1) L(∗) = Lk(∗) = L(∗)k(∗).

(2) L(∗) = L ∩ Ω(∗).

(3) The natural map
L(∗) ⊗k k(∗) −→ L(∗)

is an isomorphism.

Proof . We just have to prove (1)–(3) for L/k ⊆ Ω/k and then set L = Ω to get the rest.

(1) Since L(∗) ⊇ k(∗) and L(∗) ⊇ L ⊇ L(∗), we deduce that L(∗) ⊇ L(∗)k(∗) and L(∗) ⊇ Lk(∗). If ξ ∈ L(∗),
then ξ is purely inseparable over L(∗), so ξ is purely inseparable over L(∗)k(∗). If ξ ∈ L(∗), then ξ is separable
over k(∗) (by Proposition 4.39), so ξ is separable over L(∗)k(∗). Thus, L(∗) is both separable and purely
inseparable over L(∗)k(∗), which means that L(∗) = L(∗)k(∗)

(2) This is the definition of L(∗), as L ⊆ Ω.

(3) The (illegal definition of the) map is α⊗β �→ αβ. The image is L(∗)k(∗) = L(∗). So, we need to prove
our map is injective. Now, k(∗) ⊆ kp

−∞
(where kp

−∞
= {ξ ∈ k | ξpr ∈ k, for some r ≥ 0}). By Mac Lane I

and right limits, we get
L(∗) ⊗k kp

−∞ −→ L(∗)kp
−∞

is injective (because L(∗) is separable over k). But, 0 −→ k(∗) −→ kp
−∞

is exact and vector spaces over a
field are flat, so

0 −→ L(∗) ⊗k k(∗) −→ L(∗) ⊗k kp
−∞

is still exact. Then, the diagram

0 �� L(∗) ⊗k k(∗) ��

��

L(∗) ⊗k kp−∞

��
L(∗)k(∗) � � �� L(∗)kp

−∞

commutes, and this shows that L(∗) ⊗k k(∗) −→ L(∗)k(∗) = L(∗) is injective.
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Proposition 4.42 Suppose Ω/k is a finite normal extension and G = G(Ω/k). Let L/k ⊆ Ω/k and H =
G(Ω/L). Then,

(1) [Ω: L(∗)] = #(H).

(2) [L(∗) : k] = (G : H).

Moreover, we have [Ω: Ω(∗)] = [L(∗) : L(∗)] = [k(∗) : k] = a p-power (the degree of inseparability of Ω/k).

Proof . We know Fix(H) = L(∗). So, (1) is just Artin’s theorem (Theorem 4.32).

Claim: The map σ �→ σ � Ω(∗) is an isomorphism G −̃→ G(Ω(∗)/k).

We know Ω(∗) is normal over k, so σ � Ω(∗) takes Ω(∗) to itself. Therefore, the map G −→ G(Ω(∗)/k)
given by σ �→ σ � Ω(∗) is well defined. If σ �→ id ∈ G(Ω(∗)/k), then σ � Ω(∗) leaves Ω(∗) element-wise fixed.
If ξ ∈ Ω, then ξp

r ∈ Ω(∗), for some r. Therefore, σ
(
ξp

r)
= ξp

r

. By the usual argument, we conclude that
σ(ξ) = ξ. Therefore, σ = id on Ω and our map is injective. Pick σ̃ ∈ G(Ω(∗)/k). We have the diagram

Ω
σ �� Ω

Ω(∗)

��

eσ �� Ω(∗)

��

k

��

k.

��

By SMA, II, our automorphism σ̃ comes from a σ : Ω→ Ω; so, our map is onto.

We have Fix(G(Ω(∗)/k)) = k (as k(∗) = k in Ω(∗)). By Artin’s theorem, [Ω(∗) : k] = #(G). Now,

[Ω: L(∗)] = [Ω: L(∗)][L(∗) : L(∗)] = [Ω: Ω(∗)][Ω(∗) : L(∗)],

and

H = G(Ω/L) = G(Ω/L(∗)) = G(Ω/L(∗)) = G(Ω(∗)/L(∗)),

by what’s just been proved. By Artin’s theorem, [Ω: L(∗)] = #(H), so

[Ω: L(∗)] = #(H)[L(∗) : L(∗)] = [Ω: Ω(∗)]#(H);

it follows that [L(∗) : L(∗)] = [Ω: Ω(∗)], for all L. As remarked above,

#(G) = [Ω(∗) : k] = [Ω(∗) : L(∗)][L(∗) : k] = #(H)[L(∗) : k].

Consequently, [L(∗) : k] = (G : H).

A picture of the situation is shown in Figure 4.1.



4.5. THE THEOREMS OF DEDEKIND AND ARTIN; GALOIS GROUPS 213

k

L(∗)

Ω(∗)

k(∗)

L(∗)

Ω

(G : H)

#(H)

(G : H)

#(H)

[k]

[L]

[Ω]

Figure 4.1: Structure of Normal Extensions
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4.6 Primitive Elements, Natural Irrationalities, Normal Bases

Proposition 4.43 If G is a finite subgroup of K∗ = Gm(K), where K is a field, then G is cyclic.

Proof . An abelian finite group is cyclic iff its p-Sylow subgroups are cyclic (DX). So, we may assume that
#(G) = pr, for some r > 0 and some prime p. Let x ∈ G be an element of maximal order, q = pt, with
t ≤ r. Pick any y ∈ G; the order of y is equal to ps for some s. But order(y) ≤ order(x), so s ≤ t. As
order(y) | order(x), we must have yq = 1. So, for every y ∈ G, the element y is a root of T q − 1. As K is
a field, this polynomial has at most q roots. But, there exist q roots in G: 1, x, . . . , xq−1. Therefore, G is
generated by x.

Corollary 4.44 In any field, the n-th roots of unity in the field form a cyclic group. It is a finite subgroup
of Gm(K).

Corollary 4.45 The multiplicative group of a finite field is always cyclic. Every nonzero element of a finite
field is a root of unity.

Theorem 4.46 (Artin’s Theorem of the Primitive Element) Suppose K/k is a finite extension of fields, then
there is some α ∈ K so that K = k(α) iff there are only finitely many fields, L, with k ⊆ L ⊆ K. (Such an
α is called a primitive element).

Proof . (⇒). Assume K = k(α). Let L be any subfield of K, write f(X) for the minimal k-polynomial of α.
We know that f(X) is irreducible in k[X]. Let g(X) be the minimum L-polynomial for α. As k(α) = L(α),
we have [k(α) : L] = [L(α) : L] = deg(g). Take L′ to be the field obtained by adjoining the coefficients of g to
k; we have L′ ⊆ L. Thus, g(X) ∈ L′[X] and g(X) is irreducible over L′. Consequently, [L′(α) : L′] = deg(g).
But, L′(α) = k(α), so

deg(g) = [k(α) : L′] = [k(α) : L][L : L′] = deg(g)[L : L′],

and we deduce that L = L′. This means that L is uniquely determined by g. However, every g(X) is a
factor of f(X) ∈ K[X] and since there are only finitely many factors of f(X), there are only finitely many
subfields L.

(⇐). Say K/k possesses just finitely many subfields.

Claim: Given α, β ∈ K, there is some γ ∈ K with k(α, β) ⊆ k(γ).
If the claim holds, we can finish the proof by induction on the number of generators, n, for K/k. The cases

n = 1, 2, are clear. Assume that the induction hypothesis holds for n− 1 ≥ 1, and let K = k(α1, . . . , αn) =
k(α1, . . . , αn−2)(αn−1, αn). The claim implies that K = k(α1, . . . , αn−2)(γ), and the induction hypothesis
finishes the proof. So, we just have to prove the claim.

If k is finite, so is K. Consequently, K∗ = Gm(K) is cyclic, which means that K∗ = Gp{α} and
K = k(α). Thus, we may assume k is infinite. Make a map from k to the subfields of k(α, β) via

λ �→ k(α+ λβ) (⊆ k(α, β)).

Since k is infinite and since there are only finitely many subfields, there is a pair (λ, λ̃), with λ �= λ̃, and

k(α+ λβ) = k(α+ λ̃β) = L.

Thus, both α+ λβ, α+ λ̃β ∈ L, so (λ− λ̃)β ∈ L. But λ− λ̃ �= 0, so β ∈ L, and then, α ∈ L. It follows that
k(α, β) ⊆ L = k(α+ λβ), and γ = α+ λβ does the job.

Corollary 4.47 (Kronecker’s Theorem of the Primitive Element) Suppose K/k is a finite separable field
extension, then there is some α ∈ K so that K = k(α).
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Proof . If Ω is the normal closure of K, then it is normal and separable over k. By the main theorem of
Galois theory, there is a one-to-one correspondence between subfields of Ω/k and subgroups of G(Ω/k). As
G(Ω/k) is finite, there are only finitely many subfields of Ω/k. But, any subfield of K/k is a subfield of Ω/k,
which means that there are only finitely many subfields of K/k. Then, Theorem 4.46 (Artin) implies that α
exists.

Corollary 4.48 Say K/k is a finite degree field extension and Ω is some field with k ⊆ Ω. Then, the
number of k-monomorphisms K −→ Ω is at most [K : k]s. If K̃ is a field k-isomorphic to K and K̃ r̃el Ω,
then the number of k-monomorphisms K −→ Ω is equal to [K : k]s iff Ω contains the normal closure of K̃.
In particular, if K ⊆ Ω, then the number of k-monomorphisms K −→ Ω is equal to [K : k]s iff Ω contains
the normal closure of K.

Proof . Look at K(∗), then we know that [K(∗) : k] = [K : k]s. By Kronecker’s theorem of the primitive
element, there is some α ∈ K(∗) so that K(∗) = k(α). To give a k-monomorphism K −→ Ω implies that
we have a k-monomorphism K(∗) −→ Ω and the latter is determined by its value on α. Furthermore, two
k-monomorphisms of K to Ω which agree on K(∗) necessarily agree on K. Hence, the choice of an image of α
in Ω determines a k-monomorphism of K −→ Ω. The image of α, say β, satisfies the minimal k-polynomial,
g(X), for α. Consequently, the number of k-monomorphisms K −→ Ω is at most equal to the number of
roots of g(X) in Ω, which is at most deg(g) = [K : k]s.

Take K̃ with K̃ r̃el Ω and say K̃ is k-isomorphic to K. Since K̃ ∼= K, we are reduced to the case K = K̃,
i.e., Ω r̃el K. We obtain the maximum number of k-monomorphisms iff Ω contains all the roots of any
irreducible k-polynomial one root of which lies in k. For then all the conjugates of α are there and their prth
roots for suitable r.

Theorem 4.49 (Natural Irrationalities) Say Ω/k is finite normal and k̃ ⊇ k is some field with k̃ r̃el Ω.
Write Ω̃ for the compositum of k̃ and Ω, denoted Ωk̃ (the smallest field containing Ω and k̃). Then,

(1) Ω̃/k̃ is a normal extension (finite degree).

(2) The map σ �→ σ � Ω gives a canonical injection G(Ω̃/k̃) ↪→ G(Ω/k). The image of this injection is
G(Ω/D), where D = Ω ∩ k̃.

Proof . (1) We know Ω = k(α1, . . . , αt), where α1, . . . , αt are all the roots of a k-polynomial, f . Now,
Ω̃ = k̃(α1, . . . , αt) = a splitting field of the same f , but now viewed as a k̃-polynomial. So (1) holds.

(2) Given σ ∈ G(G̃/k̃), look at σ � Ω. We know σ(Ω) is a k-conjugate to Ω (inside Ω̃). As Ω is normal,
σ(Ω) = Ω, and so, σ � Ω is an automomorphism of Ω. As σ fixes k̃, it fixes k ⊆ k̃. Thus, σ � Ω ∈ G(Ω/k).
If σ � Ω were the identity, we would have σ(αj) = αj , for all j. Also, σ � k̃ = id and thus, σ fixes all of
k̃(α1, . . . , αt) = Ω̃. Therefore, σ = id in G(G̃/k̃), i.e., our map is injective.

Let D = Ω∩ k̃ and let H be the image of G(Ω̃/k̃) in G(Ω/k). We have H ∼= G(Ω̃/k̃). As D ⊆ k̃, we see that
H fixes D, so H ⊆ G(Ω/D). Let L = Fix(H). We know that L = L(∗). As D is fixed, D ⊆ L = L(∗) ⊆ Ω.
Now, all elements of H come from G(Ω̃/k̃), which implies that Fix(H) ⊆ Fix(G(Ω̃/k̃)) = k̃(∗), by Corollary
4.34. So, D ⊆ L = L(∗) ⊆ k̃(∗) and D ⊆ L = L(∗) ⊆ Ω. Pick ξ ∈ L. Then, ξ ∈ k̃(∗), so ξp

r ∈ k̃, for some r.
But, ξ ∈ L ⊆ Ω, so ξp

r ∈ Ω, and thus, ξp
r ∈ k̃ ∩ Ω = D. It follows that L ⊆ D(∗). As L = L(∗), we have

L(∗) ⊆ D(∗). Yet, D ⊆ L, so D(∗) ⊆ L(∗) and therefore L(∗) = D(∗). It follows that

G(Ω/D) = G(Ω/L) = G(Ω/Fix(H)) = H,

by the fundamental theorem of Galois theory.
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Corollary 4.50 (Original Form of Natural Irrationalities) Say f is a k-polynomial and k ⊆ k̃. Then, Gek(f)
is a subgroup of Gk(f) in a natural way and in fact, Gek(f) = GD(f), where D = Ω ∩ k̃ and Ω r̃el k̃ is a
splitting field of f .

Explanation: Let Ω be a given splitting field of f . The elements of Ω were termed the natural irrationalities
of f . The reduction in Gk(f) effected by considering f over k̃ is the same as that achieved by considering f
over the field of those natural irrationalities of f contained in k̃.

Theorem 4.51 (Normal Basis Theorem) Suppose K/k is a finite normal and separable extension and let
G(K/k) be its Galois group. Then, there is some θ ∈ K so that {σθ | σ ∈ G(K/k)} is a k-basis for K. (This
is called a normal basis for K/k).

Proof . By Kronecker’s theorem, K = k(α), for some α ∈ K; let f(X) be the minimum k-polynomial for α.
We know K = k[X]/(f(X)). Examine two rings: K[X] and A = K[X]/(f(X)). Note,

K ⊗k K = K ⊗k (k[X]/(f(X))) ∼= K[X]/(f(X)) = A.

For σ ∈ G = G(K/k), write ασ for σ(α). Consider the K-polynomials

gσ(X) =
f(X)

f ′(ασ)(X − ασ) .

Note that g1(X) = f(X)/(f ′(α)(X − α)), so σg1(X) = gσ(X). The gσ’s satisfy the following properties:

(1) Each gσ(X) has degree deg(f)− 1.

(2) If σ �= τ , then gσ(ατ ) = 0.
Also, by Taylor’s theorem,

f(X) = f(ασ + (X − ασ)) = f(ασ) + f ′(ασ)(X − ασ) +O((X − ασ)2),
so, gσ(X) = 1 +O(X − ασ) and therefore,

(3) gσ(ασ) = 1.

Consider the polynomial
∑
σ∈G gσ(X)−1 (∈ K[X]). By (2) and (3), we see that this polynomial vanishes on

the n elements α, ασ2 , . . . , ασn
, where G = {1, σ2, . . . , σn}. By (1), this polynomial has degree n− 1. Hence,

the polynomial is identically zero and we have∑
σ∈G

gσ(X) = 1. (partition of unity) (∗)

In A, we get ∑
σ∈G

gσ(X) = 1. (∗)

Pick σ, τ , with σ �= τ , and look at gσ(X)gτ (X). For all ρ ∈ G, we have gσ(αρ)gτ (αρ) = 0. But,
f(X) =

∏
ρ∈G(X − αρ), so f(X) | gσ(X)gτ (X) if σ �= τ . If we read this in A, we get

gσ(X) gτ (X) = 0 in A, if σ �= τ . (orthogonality) (∗∗)
If we multiply (∗) by gτ (X), we get ∑

σ∈G
gτ (X)gσ(X) = gτ (X),
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and if we read this in A and use (∗∗), we get

(gσ(X))2 = gσ(X) in A. (idempotence) (∗∗∗)
Write eσ = gσ(X), so eσ ∈ A = K ⊗k K. Then, (∗), (∗∗) and (∗∗∗) say:∑

σ∈G
eσ = 1; eσeτ = δστeσ.

Therefore, the eσ’s are an orthogonal decomposition of 1 by idempotents, and so,

K ⊗k K ∼=
∏
σ∈G

Keσ ∼=
∏
σ∈G

K.3

Order the elements of G in some fashion as we did above: 1, σ2, . . . , σn, and consider the matrix

(gστ (X)) ∈ Mn(K[X]).

Let D(X) = det(gστ (X)). In order to compute D(X) in A, consider D(X)2. Since
det(gστ (X)) = det(gστ (X))�, we can compute D(X)2 by multiplying columns by columns and summing.
We get ∑

σ∈G
gστ (X)gσρ(X) =

∑
σ∈G

σ(gτ (X))σ(gρ(X)) =
∑
σ∈G

σ(gτ (X)gρ(X)).

If we read this in A, we get∑
σ∈G

gστ (X) gσρ(X) =
∑
σ∈G

σ(gτ (X) gρ(X)) = 0, if τ �= ρ; and

=
∑
σ∈G

σ(gρ(X)), if τ = ρ

=
∑
σ∈G

gσρ(X)

=
∑
τ∈G

gτ (X) = 1, if τ = ρ.

Therefore, we find that in A, the matrix (gστ (X))(gστ (X))� is the identity matrix and so, D(X)2 = 1.
Consequently, D(X)2 ≡ 1 (mod f(X)), which shows that D(X) �= 0.

If k is infinite, then there is some ξ ∈ k with D(ξ) �= 0. Let θ = g1(ξ). Then, στθ = στg1(ξ) = gστ (ξ).
Consequently, det(στ(θ)) = det(gστ (ξ)) = D(ξ) �= 0. If {σθ}σ∈G were linearly dependent, we would have∑

τ∈G
aττθ = 0,

for some aτ ∈ k, not all zero. If we apply σ, we get∑
τ∈G

aτστθ = 0.

So, (aτ ) would be a nontrivial simultaneous solution to the linear system of equations∑
τ∈G

Xτστθ = 0, for σ ∈ G,

a contradiction to the fact that det(στ(θ)) �= 0. Therefore, {σθ}σ∈G is linearly independent and the case
where k is infinite is proved.

If k is finite, we don’t need the gσ(X) and D(X). We do need the following facts to be proved below:
3At this stage, we are essentially done. However, we’ve not kept track of the G action; so, a little more argument is needed.
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(1) The Galois group G(K/k) is cyclic.

(2) The Galois group G(K/k) has a canonical generator, F, where F(ξ) = ξ#(k), for all ξ ∈ K.

Recall that for a linear transformation, T , on a finite dimensional vector space, V , if m(X) is the minimal
polynomial for T then there exists a vector, v ∈ V , so that m(T )v = 0 but no polynomial of smaller degree
than m(X) kills v. Now, our K plays the role of V and the automorphism F plays the role of T . If we can
show that the minimum polynomial of F is exactly Xn − 1, where n = [K : k], then we take a Θ in K so
that no polynomial of smaller degree than Fn − 1 kills Θ. This means that

Θ,F(Θ), · · · ,Fn−1(Θ)

are linearly independent; so by (1) and (2) we have our normal basis.

Of course, by (1) and (2), Fn−1 − 1 ≡ 0 on K; therefore, whatever is the minimal polynomial for F, it
divides Xn−1 and its degree is at most n. Were m(X) = a0X

d+a1X
d−1 + · · ·+ad the minimal polynomial

for F and d < n, then
0 = a0Fd(ξ) + a1Fd−1(ξ) + · · ·+ ad−1F(ξ) + a0F0(ξ) (†)

for all ξ ∈ K. But this is a contradiction of Dedekind’s Theorem as (†) is a linear dependence among I,
F, · · · ,Fd, and we are done.

Remark: The argumeent actually proves (independently of previous arguments) that every cyclic extension
possesses a normal basis.

The facts concerning finite fields were proved by E.H. Moore. Here is his theorem:

Theorem 4.52 (E.H. Moore, 1892) If k is a finite field then char(k) = p > 0 and #(k) = pl, for some
prime p and some l ≥ 1. If Fp is the prime field of characteristic p, then for each integer l ≥ 1, there
exists one and only one finite field of cardinality pl, up to Fp-isomorphism. If K/k is a finite extension of
degree n and k is a finite field, then K/k is always normal and separable; the Galois group G(K/k) is cyclic
of order n and has a canonical generator, F. This F is the Frobenius automorphism, and it is given by
ξ �→ F(ξ) = ξ#(k), for all ξ ∈ K. Each finite field has exactly one extension of degree n for each n ≥ 1.

Proof . The statement in the first sentence is well-known. Pick l ≥ 1 and look at the splitting field of the
polynomial Xpl − X ∈ Fp[X]. Note, if ξ and η are roots of this polynomial, then ξ ± η, ξη, ξ/η are also
roots of the polynomial. Thus, the set of roots is a field and it contains Fp, because for all ξ ∈ Fp, we have
ξp = ξ. It follows that the splitting field is exactly the entire set of roots and as the derivative of Xpl −X is
−1, the roots are distinct. Therefore, we get a field with pl elements. Conversely, any field with pl elements
has multiplicative group of order pl−1. So, this group has a generator of order pl−1 and for this generator,
θ, we get θp

l

= θ. Consequently, any power of θ satisfies Xpl −X = 0 and so, our field is a splitting field of
Xpl −X; such fields are unique up to Fp-isomorphism.

Suppose K/k has degree n, then K is a splitting field, so K/k is normal. Moreover, finite fields are
perfect, so K/k is separable.

Consider Fk ∈ G(K/k) where F = Fk is defined by F(ξ) = ξ#(k). Look at 1 = F0,F1,F2, . . . ,Fn−1.
These are distinct, as Fr(θ) = Fs(θ) implies Fr−s(θ) = θ; that is, θq

r−s−1 = 1. Yet, qr−s < #(K), a
contradiction. Now, Fn(ξ) = ξq

n

. It follows from linear algebra that qn = #(K) and by the above, ξq
n

= ξ
implies Fn = 1. Observe, F(ξ) = ξ when ξ ∈ k, which implies that F is a k-automorphism and F has the
proper order.

Interpretations of the Normal Basis Theorem

(1) Algebraic Interpretation
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Assume K/k is normal and separable, let G = G(K/k) with #(G) = n. We claim that there is a natural
ring homomorphism

K ⊗k K −→
∏
σ∈G

K.

(Here
∏
σ∈G K consists of n factors of K under coordinatewise multiplication.) Take α, β ∈ K, and send

(α, β) to the n-tuple
〈αβ, ασ2β, . . . , ασnβ〉,

where G = {σ1 = 1, σ2, . . . , σn}. This is a bilinear map, so we get a map

K ⊗k K −→
∏
σ∈G

K.

On the left hand side, we have a K-vector space via α ∈ K acts as α⊗ 1. The righthand side is a K-vector
space via the action of K on each factor; thus, the above map is K-linear. We also have

(α⊗ β)(γ ⊗ δ) = (αγ ⊗ βδ)
(ασβ)σ(γσδ)σ = (αγσ(βδ))σ.

The normal basis theorem says that this ring map is an isomorphism. Say θ is our normal basis element,
then

1⊗ θ, 1⊗ σ2θ, . . . , 1⊗ σnθ
is a basis for K ⊗k K over K. Now, as

1⊗ τθ �→ 〈στθ〉σ∈G ,

a basis on the left hand side goes to a basis on the right hand side; so, the map is an isomorphism. Check
the converse.

(2) Geometric Interpretation

Say X is a space; G is a group, and suppose G acts on X: There is a map G × X −→ X denoted
(σ, x) �→ σx.

Definition 4.13 A space X is a principal homogeneous space for G (PHS for G) if

(1) X is a homogeneous space, i.e., for all x, y ∈ G, there is some σ ∈ G with σx = y (G acts transitively),
i.e., X is equal to an orbit of G under the action.

(2) The group element σ ∈ G in (1) is uniquely determined by x and y.

Proposition 4.53 The following statements are equivalent:

(A) X is a PHS for G.

(B) The map G
∏
X −→ X

∏
X via (σ, x) �→ (σx, x) is an isomorphism.

Proof . (A) ⇒ (B). Given (ξ, η) ∈ X∏X, there is a σ ∈ G with σξ = η. Thus, (σ, ξ) �→ (η, ξ) under our
map, which shows its surjectivity. The map is injective by property (2) of the definition.

(B)⇒ (A). This is a tautology.

Let G be a group and let k be a field. Write A(G) for the k-algebra of all functions f : G → k under
pointwise operations (e.g., (fg)(σ) = f(σ)g(σ), etc.). The k-algebra A(G) has a basis,
{eσ}, where eσ(τ) = δστ .
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Suppose now G is a finite group, then there is a k-algebra map ∆: A(G) → A(G) ⊗k A(G) given by
(convolution)

∆(eτ ) =
∑
σ∈G

eσ ⊗ eσ−1τ .

I claim: For all k-algebras, R,
A(G)(R) = Homk(A(G), R)

is a group. Given ϕ,ψ ∈ A(G)(R), we define ϕψ as the composition

A(G) ∆−→ A(G)⊗k A(G)
ϕ⊗ψ−→ R⊗k R mult−→ R.

Let us see what (ϕψ)(eρ) is. We have

∆(eρ) =
∑
σ∈G

eσ ⊗ eσ−1ρ and (ϕ⊗ ψ)(∆(eρ)) =
∑
σ∈G

ϕ(eσ)⊗ ψ(eσ−1ρ),

so
(ϕψ)(eρ) =

∑
σ∈G

ϕ(eσ)ψ(eσ−1ρ).

(Note: We can form k[G] = the group algebra and the reader should check that:

(1) As linear spaces, A(G) and k[G] are naturally dual.

(2) Multiplication in A(G) goes over to ∆ for k[G] and ∆ for A(G) goes over to ordinary multiplication in
k[G].)

The space SpecA(G) = G is a geometric object (at least it’s a topological space). Indeed, it is described
by the equations XσXτ = δστXσ and

∑
σ∈GXσ = 1 (the eσ have been replaced by the Xσ for convenience

of more usual notation). To find solutions in a ring R is to give a homomorphism A(G) −→ R, as above. If
SpecR is connected (i.e., e2 = e implies e = 0 or e = 1) then solutions correspond just to the set G and we
recover the multiplication in G from our funny multiplication using ∆.

We know that
Spec(B ⊗A C) = SpecB

∏
SpecA

SpecC.

The meaning of this is exactly that

HomA-alg(B ⊗A C,R) = HomA-alg(B,R)
∏

HomA-alg(C,R),

where on the right we have the ordinary cartesian product of sets.

Look at A(G)⊗kK, where G = G(K/k). Remember, A(G) has the eσ’s and K⊗kK has the gσ(X) = eσ’s,
too. So, there is an isomorphism of rings

A(G)⊗k K ∼= K ⊗k K.

Upon taking Spec’s we see that
G
∏

SpecK ∼= SpecK
∏

SpecK.

Therefore, the fact SpecK is a PHS for G is exactly the normal basis theorem.
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4.7 Galois Cohomology, Norms and Traces

Recall that in Chapter 1, Section 1.4, we introduced the notion of cohomology of a group, G, with coefficients
in a G-module, M . I urge you to review the appropriate parts of Section 1.4 now.

If 0 −→M ′ −→M −→M ′′ −→ 0 is an exact sequence of G-modules, then, for each r ≥ 0, the sequence

0 −→ Cr(G,M ′) −→ Cr(G,M) −→ Cr(G,M ′′) −→ 0

is again exact and a commutative diagram of G-modules

0 �� M ′ ��

��

M ��

��

M ′′ ��

��

0

0 �� N ′ �� N �� N ′′ �� 0

yields a similar commmutative diagram

0 �� Cr(G,M ′) ��

��

Cr(G,M) ��

��

Cr(G,M ′′) ��

��

0

0 �� Cr(G,N) �� Cr(G,N) �� Cr(G,N ′′) �� 0

for all r ≥ 0. We’ll see in the next chapter (Chapter 5, Lemma 5.7 and Corollary 5.8) that these statements
imply the following facts:

Fact I. If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence of G-modules, then we have the long
exact sequence of cohomology

0 �� H0(G,M ′) �� H0(G,M) ���� H0(G,M ′′) ����
��

δ(0)

��
�� H1(G,M ′) �� H1(G,M) �� H1(G,M ′′) ����

��
δ(1)

��
�� H2(G,M ′) �� · · · · · · ����

��
δ(r−1)

��
�� Hr(G,M ′) �� Hr(G,M) �� Hr(G,M ′′) ����

��
δ(r)

��
�� Hr+1(G,M ′) �� · · ·

(The maps δ(r) are the connecting homomorphisms of the long exact sequence.)

Fact II. A small commutative diagram of G-modules

0 �� M ′ ��

��

M ��

��

M ′′ ��

��

0

0 �� N ′ �� N �� N ′′ �� 0
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yields a large (long) commutative diagram of cohomology:

0 �� H0(G,M ′) ��

��

· · · �� Hr(G,M) ��

��

Hr(G,M ′′) ��

��

Hr+1(G,M ′) ��

��

· · ·

0 �� H0(G,N ′) �� · · · �� Hr(G,N) �� Hr(G,N ′′) �� Hr+1(G,N ′) �� · · ·

The proofs of these facts do not use any of the material below, so we will assume them now without
circularity in our reasoning.

Suppose B is an abelian group. We can make, from B, a G-module, Map(G,B), as follows:

Map(G,B) = {f | f : G→ B, i.e., f is a function from G to B}.

The module structure is
(σf)(τ) = f(τσ)

and one checks that if B is actually a G-module, there is a G-module injection

εB : B → Map(G,B)

given by
εB(b)(σ) = σb. (DX)

The module Map(G,B) is special in that it is “cohomologically trivial.” This is

Proposition 4.54 For every abelian group, B and every n > 0, we have

Hn(G,Map(G,B)) = (0).

Proof . Choose f ∈ Zn(G,Map(G,B)) and assume n > 0. Then f is a function of n variables chosen from
G and has values in Map(G,B). We define a function, g, of n − 1 variables chosen from G with values in
Map(G,B) as follows:

g(σ1, . . . , σn−1)(τ) = f(τ, σ1, . . . , σn−1)(1).

Let us prove that δg = f , which will finish the argument.

(δg)(σ1, . . . , σn) = σ1g(σ2, . . . , σn) +
n−1∑
r=1

(−1)rg(σ1, . . . , σrσr+1, . . . , σn) + (−1)ng(σ1, . . . , σn−1).

So, upon evaluating δg on an arbitrary element, τ , we get

(δg)(σ1, . . . , σn)(τ) = g(σ2, . . . , σn)(τσ1) +
n−1∑
r=1

(−1)rg(σ1, . . . , σrσr+1, . . . , σn)(τ) + (−1)ng(σ1, . . . , σn−1)(τ)

= f(τσ1, σ2, . . . , σn)(1) +
n−1∑
r=1

(−1)rf(τ, σ1, . . . , σrσr+1, . . . , σn)(1) + (−1)nf(τ, σ1, . . . , σn−1)(1).

Now, f(σ1, . . . , σn)(τ) = (τf)(σ1, . . . , σn)(1), and

0 = δf(τ, σ1, . . . , σn) = (τf)(σ1, . . . , σn)− f(τσ1, σ2, . . . , σn) +
n∑
s=2

(−1)sf(τ, σ1, . . . , σs−1σs, . . . , σn)

+(−1)n+1f(τ, σ1, . . . , σn−1).
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Therefore,

(τf)(σ1, . . . , σn) = f(τσ1, σ2, . . . , σn) +
n∑
s=2

(−1)s−1f(τ, σ1, . . . , σs−1σs, . . . , σn) + (−1)nf(τ, σ1, . . . , σn−1).

Let n = s− 1 in the sum above and evaluate both sides at 1. We get immediately

f(σ1, . . . , σn)(τ) = δg(σ1, . . . , σn)(τ).

Proposition 4.54 is extremely useful and very powerful. Rather than explain this in abstract terms, let’s
begin to use Proposition 4.54 and, in so doing, show how to use it and why it is powerful. One of the facts
left unproved in Chapter 1 was the fact that Hr(G,M) is #(G)-torsion if r > 0 (any module, M). Based
on Proposition 4.54, we can now prove this and, while our proof is not the most elegant known, it certainly
requires the least machinery:

Proposition 4.55 If G is a finite group and M is any G-module, then Hr(G,M) is #(G)-torsion if r > 0.

Proof . Take the case r = 1, first. If f ∈ Z1(G,M), we know

f(σρ) = σf(ρ) + f(σ).

Write α for the element −∑ρ∈G f(ρ) of M . We compute σα:

σα = −
∑
ρ∈G

σf(ρ) = −
∑
ρ∈G

(f(σρ)− f(σ))

= −
∑
ρ∈G

f(σρ) + #(G)f(σ)

= α+ #(G)f(σ).

Therefore, (#(G)f)(σ) = (δα)(σ), and the case r = 1 is done.

Now, use induction on r—here is where Proposition 4.54 enters. Assume as induction hypothesis that
given r (r ≥ 1), for all modules, N , we have Hr(G,N) is #(G)-torsion. The step from r to r + 1 goes like
this:

Choose M , embed M in Map(G,M), to get

0 −→M
εM−→ Map(G,M) −→ coker −→ 0.

Apply cohomology (i.e., use the long exact sequence of Fact I), we get

. . . −→ Hr(G,Map(G,M)) −→ Hr(G, coker) −→ Hr+1(G,M) −→ Hr+1(G,Map(G,M)) −→ . . . (∗)
The ends of (∗) vanish by Proposition 4.54 and we obtain the isomorphism

Hr(G, coker) −̃→ Hr+1(G,M), for all r ≥ 1. (∗∗)
But, the left side of (∗∗) is #(G)-torsion by our induction hypothesis, therefore Hr+1(G,M) is also #(G)-
torsion.

The special case when G is cyclic is both instructive and important for some material to follow. For
arbitrary (finite) G, and any G-module, M , we define the norm map, NG, taking M to itself by

NG(m) =
∑
σ∈G

σm.
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Note that the image of NG lies in MG. Further, NG is actually a G-module map, for

NG(τm) =
∑
σ∈G

στm = NG(m) = τNG(m).

(In cases of interest below, the map NG is usually called trace and when M is written multiplicatively then
NG is called the norm.) Now, the equation NG(τm) = τNG(m) shows that the elements τm −m all lie in
KerNG. The submodule generated by all τm − m, as τ runs over G and m over M , is denoted IM ; so,
IM ⊆ KerNG(M).

Proposition 4.56 If G is a (finite) cyclic group and σ is one of its generators, then for any module, M :

(a) The map f �→ f(σ) ∈M is a G-isomorphism of Z1(G,M) with KerNG(M),

(b) The submodule IM is generated by σm−m for this fixed σ and m varying over M ,

(c) There is an isomorphism H1(G,M) −̃→ KerNG/IM .

Proof . The elements of G are 1, σ, . . . , σn−1. Let f ∈ Z1(G,M), so f(ρτ) = ρf(τ) + f(ρ) for all ρ and τ of
G. Apply this successively to the powers of σ:

f(σ2) = f(σσ) = σf(σ) + f(σ); f(σ3) = f(σσ2) = σf(σ2) + f(σ) = σ2f(σ) + σf(σ) + f(σ), etc. (∗)
We find that

f(1) = f(σn) = σn−1f(σ) + σn−2f(σ) + · · ·+ f(σ) = NG(f(σ)).

But, f(1) = f(1 · 1) = f(1) + f(1); so, f(1) = 0. Thus, when f ∈ Z1(G,M), we get f(σ) ∈ KerNG(M).

From (∗) above, we see that f(σ) determines f when f is a cocycle, conversely an easy argument using
the inductive definition of f(σi) given by (∗) (namely, σf(σi−1) + f(σ)) shows that if f(σ) ∈ KerNG our
definition makes f a 1-cocycle (DX). This gives an abelian group isomorphism Z1(G,M) −̃→ KerNG. Since
Z1(G,M) is a G-module via M , the map is a G-module isomorphism, and (a) is proved.

To prove (b), all we need to show is that τm−m is in the submodule generated by σm̃− m̃ as m̃ ranges
over M , where τ is a fixed arbitrary element of G. But, τ = σi; so,

τm−m = σim−m = σim− σi−1m+ σi−1m−m = σi−1(σm−m) + σi−1m−m.
A clear induction finishes the argument.

(c) The group B1(G,M) consists exactly of those f for which f(τ) = τm−m for some m ∈M . Hence,
f(σ) = σm−m ∈ IM and part (a) now shows that in the isomorphism Z1(G,M) −̃→ KerNG the subgroup
B1(G,M) corresponds to IM ; (c) is thereby proved.

Given a finite normal (field) extension K/k, we can consider the cohomology groups of the Galois group
G = G(K/k). These cohomology groups give a sequence of very interesting invariants of the layer K/k. As
nomenclature, the groups Hr(G(K/k),M) are called the Galois cohomology groups of K/k with values in
M , and as notation we write Hr(K/k,M) for Hr(G(K/k),M). Probably, the most useful facts about Galois
cohomology are the two forming the statement of the next proposition.

Proposition 4.57 (Hilbert Theorem 904.) If K/k is a finite normal extension, then

(1) Hr(K/k,K+) = (0), all r > 0 and

(2) H1(K/k,K∗) = (0).
4When K/k is a cyclic extension, statement (2) is the essential content of Theorem 90 (§54) of Hilbert’s magnificient paper

[23]. The general case of a normal extension is due to E. Noether.
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Proof . For (1), we examine the layer K/k(∗) and apply the normal basis theorem to it. I claim that, as
G = G(K/k)-modules, Map(G, k(∗)) and K are isomorphic. If we show this, then Proposition 4.54 and our
isomorphism establish (1).

If f ∈ Map(G, k(∗)), we send f to
∑
σ∈G f(σ)σ−1θ, where θ is a normal basis element for K/k(∗). The

linear independence of the elements {σθ}σ∈G shows our map is injective; that it is surjective is obvious. As
for the G-action, call our map Θ then,

Θ(τf) =
∑
σ∈G

(τf)(σ)σ−1θ =
∑
σ∈G

f(στ)σ−1θ

=
∑
ρ∈G

f(ρ)τρ−1θ

= τ ·
∑
ρ∈G

f(ρ)ρ−1θ

= τΘ(f),

as contended.

The proof of (2) has a similar flavor but depends on Dedekind’s theorem (our Theorem 4.30). We take
as family of characters of K∗ the elements of G = G(K/k). By Dedekind’s theorem, they are independent;
that is, any relation (with xσ ∈ K∗) ∑

σ∈G
xσσ(λ) = 0, all λ ∈ K∗

necessarily implies that all the xσ = 0. Given f ∈ Z1(K/k,K∗), take as the xσ the elements f(σ) ∈ K∗.
None of the xσ are zero, so there must be a λ ∈ K∗ with

β =
∑
σ∈G

f(σ)σ(λ) �= 0.

Now, τβ =
∑
σ∈G τf(σ)τσ(λ), and as f is a 1-cocycle, we have τf(σ) · f(τ) = f(τσ). Thus,

β =
∑
σ∈G

f(τσ)(τσ)(λ) =
∑
σ∈G

(τf(σ) · f(τ))(τσ)(λ)

= f(τ)
∑
σ∈G

τf(σ)(τσ)(λ)

= f(τ) · (τβ).

Let α = 1/β, then (τα)/α = f(τ), as required.

Remark: Proposition 4.57 gives yet another interpretation of the normal basis theorem. It shows that for
K normal over k, the G(K/k)-module K is of the form Map(G,−); namely, it is Map(G, k(∗)).

Norms and Traces.

If K/k is a field extension and α ∈ K, then the k-vector space map

Tα : K → K via Tα(λ) = αλ

has a trace and a determinant.

Definition 4.14 The trace, trK/k(α), of α from K to k is the trace of Tα; the norm, NK/k(α), of α from
K to k is detTα.
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The following three facts are extremely simple to prove and are left as (DX):

Fact I. TrK/k(α) is additive; NK/k(α) is multiplicative.

Fact II. If α ∈ k, then

TrK/k(α) = [K : k]α and NK/k(α) = α[K : k].

Fact III. If L ⊇ K ⊇ k, then

TrL/k(α) = TrK/k(TrL/K(α)) and NL/k(α) = NK/k(NL/K(α)).

Of course, from Facts II and III , we find

TrK/k(α) = [K : k(α)]Trk(α)/k(α) and NK/k(α) = (Nk(α)/k(α))[K : k(α)].

When K/k is normal, more can be said. First, assume K/k is both normal and separable, then

TrK/k(α) =
∑

α∈G(K/k)

(σα) and NK/k(α) =
∏

α∈G(K/k)

(σα).

Both of these statements are very easy corresponding to the fact that the roots of the characteristic polyno-
mial of Tα are exactly the various σα as σ ranges over G(K/k).

Now allow inseparability. We have

NK/k(α) = NK(∗)/k(NK/K(∗)
(α)) = Nk(∗)/k(NK/k(∗)(α)).

Hence, we must first investigate NK/k(α) when K/k is purely inseparable. I claim the value of this norm is
α[K : k]. To see this, observe that

NK/k(α) = Nk(α)/k(NK/k(α)(α)) = Nk(α)/k(α)[K : k(α)]. (†)

Now, the minimal and characteristic polynomials for Tα on the vector space k(α) are Xq − c, where
q = [k(α) : k] = pr, and c = αq. Here, p = char(k). Therefore, the norm of α is det(Tα) = c if p is odd and
−c = c if p is 2. Hence, Nk(α)/k(α) = αq = α[k(α) : k]. Put this together with (†) above and obtain our claim.
The general case now is

NK/k(α) = NK(∗)/k(α
[K : k]i) = (NK/k(∗)(α))[K : k]i .

Proposition 4.58 (Original Form of Hilbert Theorem 905.) Suppose that K/k is normal and that K(∗)/k
is a cyclic extension. Then, a necessary and sufficient condition that NK/k(α) = 1 is that there exists a
β ∈ K(∗) so that

α[K(∗)(α) : K(∗)] =
σβ

β
.

Here, σ is an a priori chosen generator of G(K(∗)/k).

Proof . This is merely the confluence of Propositions 4.56 and 4.57. If α ∈ K(∗), statements (b) and (c)
of Proposition 4.56 and (2) of Proposition 4.57 give the statement that NK(∗)/k(α) = 1 iff α = σβ/β for
some β ∈ K(∗). But, NK/k(α) = (NK(∗)/k(α))[K : K(∗)] in this case, and [K : K(∗)] is a p-power. Therefore,
NK/k(α) = 1 iff NK(∗)/k(α) = 1.

5Of course, Hilbert dealt only with the separable case.
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Suppose now that α ∈ K yet α /∈ K(∗). Then, α[K(∗)(α) : K(∗)] is in K(∗). But,

NK/k(α) = NK(∗)/k(NK(∗)(α)/K(∗)
(α))[K : K(∗)].

As [K : K(∗)] is a p-power, the left hand side is 1 iff NK(∗)/k(NK(∗)(α)/K(∗)
(α)) is 1. By our remarks above,

this last quantity is exactly NK(∗)/k(α
[K(∗)(α) : K(∗)]); so, we can apply the first part of the proof to the

element α[K(∗)(α) : K(∗)], and we are done.

� It is not clear that β in Proposition 4.58 is of the form γq (where q = [K(∗)(α) : K(∗)]), because in the
proof of Proposition 4.57 part (2), the element λ may not be a qth power. If it proves to be so, then α

would be σγ/γ.
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4.8 Krull’s Galois Theory

In our treatment of Galois theory, the extensions were assumed finite. W. Krull discovered a natural way to
treat (possibly) infinite algebraic extensions, His method leads to a non-trivial topology on the Galois group.
We begin with the generalization of the extension lemma.

Theorem 4.59 (General Extension Lemma) Suppose K/k is an algebraic extension and k̃ is another field
isomorphic to k via θ : k → k̃. Let Γ be a field related to k̃, but otherwise arbitrary. Then, there exists an
algebraic extension, K̃/k̃, with K̃ r̃el Γ and an extension of θ to an isomorphism θ̃ : K → K̃.

K
eθ �� K̃ r̃el Γ

k

alg

��

θ
�� k̃ r̃el Γ

alg

��

Proof . This is a standard use of Zorn’s lemma. We let

S = {(L,ϕ, L̃) | L/k is algebraic, ϕ extends θ and is an isomorphism L −→ L̃ and L̃ r̃el Γ}.

Notice that the L̃ in S are automatically algebraic over k̃. We partially order S via the usual:

(L,ϕ, L̃) ≤ (M,ψ, M̃) iff L ⊆M ; L̃ ⊆ M̃ ; ψ � L = ϕ.

Of course, S is inductive; so, let (L0, ϕ0, L̃0) be a maximal element of S. Were L0 �= K, there would be some
α ∈ K with α /∈ L0. Then, the extension lemma for the finite extension L0(α)/L0 would yield (L0(α), ϕ̃0, L̃0)
an element in S bigger that our maximal element—a contradiction. Therefore, L0 = K.

The material on splitting fields, etc. of Section 4.4 carries over provided no statement involving finiteness
is used (e.g., statement (3) of Proposition 4.25 would be omitted in the general case that M/k was algebraic,
not necessarily finite). The corollaries SMA, I and SMA II (Corollary 4.27 and Corollary 4.28 ) go over as
does the existence of a normal closure.

Proposition 4.60 Suppose K/k is an algebraic extension and write {Kα/k | α ∈ Λ} for the family of
sub-extensions of K/k of finite degree. Then, our family is a right mapping family in a natural way and we
have

K = lim−→
α

Kα.

If K/k is normal, we may restrict the Kα/k to the finite normal extensions. Conversely, if K = lim−→
α

Kα

and each Kα is normal over k, then so is K.

Proof . Of course, we define α ≤ β (in Λ) when and only when Kα ⊆ Kβ (everything takes place inside
K). The map Kα −→ Kβ is the inclusion. Since we have the inclusions Kα ↪→ K, consistent with the
Kα −→ Kβ , we get the canonical homomorphism

lim−→
α

Kα −→ K.

Choose ξ ∈ K. Then k(ξ) is some Kα, and it is clear that ξ �→ canα(ξ) ∈ lim−→
α

Kα is well-defined and provides

an inverse map to that above.

Of course, the family of finite normal extensions Mα/k is final in the family of all finite extensions
provided K/k is itself normal. So, all we need prove is the last statement. We have K = lim−→

α

Kα and each
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Kα is normal over k. If ξ ∈ K, there is an α so that ξ ∈ Kα. Then all the k-conjugates of ξ lie in Kα; hence,
they are in K.

If Ω is an algebraic normal extension of K, then we consider the group Autk(Ω). We topologize Autk(Ω)
by taking as a fundamental set of neighborhoods about 1 the subgroups of finite index in Autk(Ω). Of course,
it is the same to take the normal subgroups of finite index as our basic neighborhoods of {1} in Autk(Ω).
(Remember: To get the neighborhoods about σ ∈ Autk(Ω), we take the cosets σH, where the H are our
neighborhoods about 1.) This renders Autk(Ω) a Hausdorff topological group (use ordinary Galois Theory
to see this) and it is this group together with its topology that we call the Galois group of Ω over k and
denote by G(Ω/k). The topology itself is the Krull topology .

Theorem 4.61 The group G = G(Ω/k) is compact and totally disconnected in its Krull topology. In fact,
we have G(Ω/k) = lim←−

H

G/H, where the left limit is taken over all open subgroups, H, of G. Thus, G(Ω/k) is

a profinite group. Moreover, if we write Ω = lim−→
α

Ωα, where each Ωα is a finite normal extension of k, then

G(Ω/k) = lim←−
α

G(Ωα/k).

Proof . If σ ∈ G(Ω/k) and Ωα is one of the finite normal subextensions of Ω/k, then σ � Ωα is in G(Ωα/k).
The maps πα : G(Ω/k)→ G(Ωα/k) are consistent and hence we obtain the commutative diagram

G(Ω/k) ϕ ��

πα

�������������
lim←−
β

G(Ωβ/k)

canα������������

G(Ωα/k)
If ξ ∈ lim←−

β

G(Ωβ/k), then ξ consists in a collection (ξβ) where ξβ ∈ G(Ωβ/k) and when k ⊆ Ωβ ⊆ Ωγ , we

have ξγ � Ωβ = ξβ . Since each x ∈ Ω lies in some finite normal extension of k, we have x ∈ Ωβ for various
β. Then ξβ(x) is well-defined and our collection (ξβ) = ξ gives rise to an element of G(Ω/k). Therefore we
have a map

lim←−
β

G(Ωβ/k) ψ−→ G(Ω/k)

plainly inverse to ϕ. Now, a neighborhood of 1 in lim←−
β

G(Ωβ/k) consists of those tuples (ξβ) for which finitely

many β are the identity and otherwise arbitrary (though consistent). Such tuples when restricted to the
compositum of the Ωβ for which ξβ = 1, are the identity on the compositum which is a field of finite degree
over k, call it L. I claim G(Ω/L) has finite index in G(Ω/k). For L is normal and the usual argument shows
G(Ω/L)� G(Ω/k). Moreover, SMA II (in its extended form) implies that G(Ω/k) −→ G(Ω/L) is surjective.
Hence, the exact sequence

0 −→ G(Ω/L) −→ G(Ω/k) −→ G(L/k) −→ 0

gives the finite index assertion immediately. But then, we see that open neighborhoods of 1 in the Krull
topology on G(Ω/k) correspond to open neighnorhoods of 1 in the natural (product) topology on lim←−

β

G(Ωβ/k).

Consequently, our maps ϕ and ψ are homeomorphisms.

Since G(Ωβ/k) is compact, so is G(Ω/k) in the Krull topology, and of course G(Ω/k) is a profinite group.
Every profinite group is totally disconnected (DX); so, G(Ω/k) is totally disconnected.

That G is lim←−
H

G/H as H ranges over all open normal subgroups of G is the same kind of argument

(remember that H will be closed and of finite index). Or, it follows immediately from the next lemma whose
proof is easy.
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Proposition 4.62 Suppose G is a compact (Hausdorff) group and Gα,Hα are two families of closed subgroups
with Hα � Gα for every α. Assume that the indices α, β, . . . form a directed set and that for every β ≥ α we
have Gβ ⊆ Gα and Hβ ⊆ Hα. Then, the groups Gα/Hα form an inverse mapping family in a natural way and

lim←−
α

Gα/Hα =
⋂
α

Gα
/⋂

α

Hα.

Using the same notations as in our treatment of standard Galois Theory, we can now extend the fun-
damental theorem to the general case. First of all, Lemma 4.33 and the material on Galois equivalence
(between Lemma 4.33 and Theorem 4.38) go over word for word (together with no change in their proofs).
So, here is the theorem.

Theorem 4.63 (Fundamental Theorem of Galois Theory, General Case) If Ω/k is a normal (not necessarily
finite) algebraic extension, then the mappings

[L] �→ G(Ω/L)
H �→ [Fix(H)]

establish a one-to-one order-inverting correspondence between Galois classes of extension fields of k and
closed subgroups of G(Ω/k). In this correspondence:

(a) L(∗) is normal over k iff L(∗) is normal over k iff G(Ω/L) is a normal subgroup of G(Ω/k).
(b) Under the conditions of (a), we have a natural exact sequence

0 −→ G(Ω/L) −→ G(Ω/k) −→ G(L(∗)/k) −→ 0

of compact topological groups.

(c) A necessary and sufficient condition that L(∗) be a finite extension of k is that G(Ω/L) be an open
subgroup of G(Ω/k). In this case,

(G(Ω/k) : G(Ω/L)) = [L(∗) : k].

Proof . If α ∈ Ω, I claim {σ | σ(α) = α} is an open (hence closed) subgroup of G(Ω/k). Notice that if this
claim is proved, then

G(Ω/L) = {σ | (∀α ∈ L)(σ(α) = α)} =
⋂
α∈L
{σ | σ(α) = α}

is a closed subgroup. Now, k(α) has finite degree over k, so its normal closure, L, also has finite degree. In
the proof of Theorem 4.61, we showed G(Ω/L) has finite index in G(Ω/k). But,

G(Ω/L) ⊆ G(Ω/k(α)) ⊆ G(Ω/k)
and therefore (G(Ω/k) : G(Ω/k(α))) < ∞. By definition of the Krull topology, the subgroup G(Ω/k(α)) is
open, as contended.

Next, just as in the usual (finite) case we see that G(Ω/L(∗)) = G(Ω/L) and if L = Fix(G), then L = L(∗).
So, if we start with [L], then we get G(Ω/L) which is G(Ω/L(∗)). However, as mentioned, Fix(G(Ω/L(∗))) is
(L(∗))(∗) = L(∗) and so the correspondence inverts if we start from the field side.

Now take a closed subgroup H and form [Fix(H)]. If L = Fix(H), consider G(Ω/L). Now L = L(∗), so in
what follows we consider only those subfields, M , of Ω/k with M = M (∗). The Galois group don’t change
and all fields are now separable over the base field, k(∗). For notation, drop all mention of “upper stars.”’
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We must show H = G(Ω/L). We know H ⊆ G(Ω/L) by definition of L. Observe that Ω = lim−→
α

Kα for

fields, Kα, finite and normal over k. We find as well that L = lim−→
α

Kα ∩ L. The Galois group G(Ω/Kα)

is then an open, normal subgroup of G(Ω/k) by definition of the Krull topology. Consider the subgroups
HG(Ω/Kα), which contains H. I claim: Fix(HG(Ω/Kα)) is just LKα. For, the elements of HG(Ω/Kα) are
products στ , where σ ∈ H and τ ∈ G(Ω/Kα). A ξ in Fix(HG(Ω/Kα)) satisfies στ(ξ) = ξ, for all such σ and
τ . In particular, when σ = 1, we find ξ ∈ Fix(G(Ω/Kα) = Kα (remember: Kα = K

(∗)
α ), and when τ = 1,

we find ξ ∈ Fix(H) = L; hence, ξ ∈ Kα ∩ L. Conversely, if ξ ∈ Kα ∩ L it is fixed by both H and G(Ω/Kα);
therefore, our cliam is proved. Then, we have the commutative diagram

0 �� G(Ω/Kα) �� G(Ω/k) �� G(Kα/k) �� 0

0 �� G(Ω/Kα) �� G(Ω/Kα ∩ L) ��

��

G(Kα/Kα ∩ L) ��

��

0,

and from it we see that HG(Ω/Kα) corresponds to a subgroup of G(Kα/k), via
HG(Ω/Kα) �→ HG(Ω/Kα)/G(Ω/Kα). But then, the lower line of our diagram and the finite case of ordinary
Galois theory show that

HG(Ω/Kα)/G(Ω/Kα) ∼= G(Kα/Kα ∩ L).

We pass these isomorphisms to the projective limit over α; on the left hand side, Lemma 4.62 implies that
we get ⋂

α

HG(Ω/Kα)/
⋂
α

G(Ω/Kα) =
⋂
α

HG(Ω/Kα)

while on the right hand side we get G(Ω/L). But,
⋂
α HG(Ω/Kα) is the closure of H and H is already closed.

Therefore, H = G(Ω/L).

The proofs of assertions (a) and (b) are now just as they were in the finite case. As for (c), we know that
G(Ω/L(∗)) = G(Ω/L) and that this subgroup is of finite index in G(Ω(∗)/k). We take, as in the proof above,
a family of fields, Kα, of finite degree and normal over k so that lim−→

α

Kα = Ω. Then

(G(Kα/k) : G(Kα/Kα ∩ L(∗))) = [Kα ∩ L(∗) : k]

by usual Galois theory. Pass to the limit over α, observe that the left side tends to (G(Ω/k) : G(Ω/L)) and
in fact is constant as soon as Kα ⊇ L(∗), and we get (c).

We can now extend the notions and results of the previous section on Galois cohomology to the general
(not necessarily finite) case. All that is necessary is to sprinkle the word “continuous” in the appropriate
places and use some case. The group G will be a profinite group, for example G = G(Ω/k). All modules
will be given the discrete topology unless otherwise noted and our action G ×M −→ M will be assumed
continuous. This means that for m ∈M , there is an open subgroup, U , of G so that Um = m. We define

Cn(G,M) = {f : Gr →M | f is continuous},
and use the usual formula for δ, thus δ is a continuous function (Cr(G,M) inherits the discrete topology from
M as G is compact). The continuity of the cochains shows up as follows: If N �G (N is, of course, closed),
then MN is a G/N -module. If Ñ ⊆ N and Ñ �N , then there are maps G/Ñ −→ G/N and MN −→ N

eN .
The latter two combine to give a map

Cr(G/N,MN ) −→ Cr(G/Ñ,M eN )

called inflation from G/N to G/Ñ ; it is injective. We have
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Proposition 4.64 For a continuous G-module, M , for the profinite group, G, the modules Cr(G/U,MU )
form a right mapping system as U runs over the open normal subgroups of G—the map being inflation. We
have

Cr(G,M) = lim−→
U

Cr(G/U,MU ),

and passing to cohomology, we also have

Hr(G,M) = lim−→
U

Hr(G/U,MU ).

The proof of this is now routine and may be safely left to the reader (DX). The cohomological triviality
of Map(G,B) (continuous functions, of course) expressed by Proposition 4.54 carries over and so does
Proposition 4.57 (Hilbert Theorem 90).
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4.9 Kummer Theory

In this section we consider base fields containing prescribed roots of unity. At first, we assume our base field
contains a primitive mth root of unity. Notice that something mildly subtle is happening. We are not merely
assuming all mth roots of 1 lie in k, for that would be true is m = char(k) > 0, yet there is no primitive mth
root of unity in this case because 1 is the only mth root of unity when m = char(k) > 0. When a primitive
mth root of 1 lies in k, then necessarily (char(k),m) = 1. (Else, p = char(k) | m and Xm − 1 = (Xq − 1)p,
when m = pq. So each mth root of 1 is already a qth root of 1 with q < m, contradicting primitivity.)

Proposition 4.65 Suppose the field k contains a primitive mth root of 1. A necessary and sufficient con-
dition that K/k be a normal, separable extension whose Galois group is cyclic of order m is that K = k(β)
where the minimal k-polynomial for β is Xm − b.
Proof . (⇐). We assume K = k(β) and β is a root of the irreducible k-polynomial Xm − b. Write µ for a
primitive mth root of 1 in k, then 1, µ, . . . , µm−1 are all the mth roots of 1, they are all distinct and lie in
k. Of course, (m, char(k)) = 1 shows K/k is separable and [K : k] = m. Now, the elements

β, µβ, µ2β, . . . , µm−1β

are all distinct and all are roots of Xm − b, therefore K is a splitting field of Xm − b; so, K/k is indeed
normal. If we consider the k-isomorphism k(β) −→ k(µβ), we see (even without SMA, I) that it gives an
element, σ, of G(K/k). The powers of σ operate on β via

σr(β) = µrβ

and so 1, σ, . . . , σm−1 are m distinct elements of G(K/k). They thereby exhaust G(K/k) and (⇐) is proved.

(⇒). We suppose here that K/k is normal, separable and G(K/k) is cyclic of order m = [K : k]. Now
we know NK/k(µ) = µm = 1, so we can apply the original form of Hilbert Theorem 90. We find there exists
a β ∈ K so that σβ = µβ, where σ is a generator of G(K/k). Then, of course, σrβ = µrβ, and so β is left
fixed only by the trivial subgroup of G(K/k). By the fundamental theorem of Galois Theory, k(β) = K.
The minimal k-polynomial of β is then

m−1∏
r=0

(X − σrβ) =
m−1∏
r=0

(X − µrβ).

On the other hand, if b = βm, then each σr fixes b and each µrβ is a root of Xm−b. The minimal polynomial
for β and Xm − b both have degree m; so it is clear the latter polynomial is the minimal polynomial for β.

Corollary 4.66 Suppose the field k contains a primitive mth root of 1. If n is any divisor of m, then

(1) A n.a.s.c. that an extension K/k of degree n be normal with cyclic Galois group is that K = k(α)
where the minimal polynomial of α is Xn − a.

(2) The k-polynomial Xm − a is irreducible in k[X] if and only if for all divisors, d, of m with d > 1, we
have a /∈ k∗d.

Proof . First, as n | m, we can write m = nd. Then for our primitive mth root of 1 in k, µ, the element µd

is a primitive nth root of 1 in k and (1) is simply a restatement of Proposition 4.65 with n replacing m.

For statement (2), first consider Xm − a and let α be a root in an overfield, Ω, of k. Write d for the
smallest power of α lying in k. Then, the usual division algorithm argument shows that if αq ∈ k, we have
d | q; in particular, d | m. I claim the polynomial Xd−b is the minimal k-polynomial for α (here, b = αd ∈ k),
in particular it is irreducible. To see this, let f(X) be the minimal k-polynomial for α and have degree t.
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Thus, f(X) | (Xd − b) and t ≤ d. Yet, the roots of Xd − b are α, ζα, . . . , ζd−1α, where ζ = µn is a primitive
dth root of 1. Thus,

f(X) = (X − ζi1α) · · · (X − ζitα)

and its constant term is therefore ±
(∏t

l=1 η
il
)
αt. But then, αt ∈ k; so, d | t and t ≤ d. We find t = d and

f(X) = Xd − b.
Now if a /∈ k∗q for any q | m with q > 1, then the smallest power of α to lies in k is the mth. Else,

αd ∈ k implies dq = m (as above) and a = αm = (αd)q ∈ k∗q and q > 1 if d < m. By our claim, Xm − a is
irreducible in k[X].

Finally, assume Xm − a is irreducible. Were a ∈ k∗d where d | m and d > 1, then as αm = a, we have
(αq)d = βd for some β ∈ k∗. Therefore, αq = zβ for some z a dth root of 1 (hence, in k). It follows that the
smallest power of α in k is, say, δ where δ ≤ q < m. Just as before, δ | m and Xδ − b is k-irreducible, where
b = αδ. Write δr = m and look at α, µα, . . . , µr−1α (as usual µ is our primitive mth root of 1). Each of
these elements has δth power in k and δ is minimal. Set ζ = µδ, then Xδ − ζib is the minimal k-polynomial
for µiα by our claim above. But,

Xm − a = (Xδ − b)(Xδ − ζb) · · · (Xδ − ζr−1b),

contradicting the irreducibility of Xm − a.
An important part of the proof above should be isolated and recorded:

Corollary 4.67 If k contains a primitive mth root of 1 and K is an overfield of k, then given α ∈ K with
αm ∈ k∗, the minimal k-polynomial for α is Xd−αd, where d is the smallest positive integer so that αd ∈ k.
In fact, d | m.

Now, we can make an obvious attempt to “classify” the cyclic overfields of degree n (n | m) of k when k
possesses a primitive mth root of 1. Namely, such a K is k(α) and we could send α to αn where αn is the
image of αn in k∗/k∗n. But, α is not unique and its choice depends on µ and σ (a generator of G(K/k)).
There is a better way:

Theorem 4.68 (Kummer) Suppose k is a field possessing a primitive mth root of 1. Write Ω for the
maximal, abelian, m-torsion extension of k and denote by G its (Krull topologized) Galois group. Then there
is a natural continuous pairing

G
∏

k∗/k∗m −→ µm (= mth root of 1),

and it makes G the Pontrjagin dual of k∗/k∗m.

Proof . Choose σ ∈ G and a ∈ k∗/k∗m. Lift a to some a ∈ k∗ and take an mth root of a in an overfield, call
it α. We know that K = k(α) is cyclic of degree d and d | m by our above propositions. So, K ⊆ Ω (we fix
an algebraic closure of k and work inside it) and σα makes sense. We set

(σ, a) =
σα

α
.

Note that (σα
α

)m
=
σ(αm)
αm

=
αm

αm
= 1,

therefore (σ, a) ∈ µm. Let’s check that (σ, a) is well-defined. First, if we change the mth root of a we get ζα
where ζ is some mth root of 1 (hence, ζ ∈ k∗). Then

σ(ζα)
ζα

=
σα

α
,



4.9. KUMMER THEORY 235

so there is no problem with the choice of α. If we lift a to some b ∈ k∗, then b = λma for some λ ∈ k∗. Thus,
β, an mth root of b is ζλα for some ζ as above. Once again,

σβ

β
=
σ(ζλα)
ζλα

=
σα

α
,

and so (σ, a) is a well -defined mth root of 1.

It is easy to see that (σ, a) is bi-multiplicative (DX), so assume (σ, a) = 1 for all σ ∈ G. If a lifts a and
a /∈ k∗m (i.e., a �= 1) then K = k(α) is a non-trivial cyclic degree d extension of k and d | m. But then, a
generator, τ , of G(K/k) comes from some σ ∈ G and σα = τα = ζα (some dth root of 1, say ζ �= 1). Hence,
(σ, a) = ζ �= 1, a contradiction. Therefore, (σ, a) is non-degenerate on the right.

If (σ, a) = 1 for all a ∈ k∗/k∗m, then I claim σ must be 1. For, notice that when K/k is finite normal
(K ⊆ Ω), then G(K/k) is an abelian m-torsion group. Hence, G(K/k) is a product of various Z/dZ, where
each d | m. This means that K is generated as a field by elements, α, for which k(α) is a cyclic extension
of k. As K is arbitrary, it follows immediately that Ω is a field generated by such elements α. However,
Proposition 4.65 and our assumption (σ, a) = 1 (all a), now yield σα = α for all the α’s generating Ω. Thus,
σ = 1, as claimed.

Lastly continuity of 〈σ, a〉 �→ (σ, a) follows because on the entire open subgroup G(Ω/k(α)) the pairing
〈−, a〉 �→ (−, a) is identically 1. Here, α is, of course, an mth root of a. The product G(Ω/k(σ))

∏ {a} is an
open neighborhood of 1 in G(Ω/k)∏ k∗/k∗m.

Corollary 4.69 Under the assumptions and notations of Theorem 4.68, there is a one-to-one correspondence
between subgroups, S, of k∗/k∗m and sub-extensions K/k of Ω/k. It is given by

S ←→ K = k(S1/m).

In all the foregoing, m was relatively prime to char(k) = p > 0. What happens if p | m? Of course, we
can factor m as prm̃ with (m̃, p) = 1. It’s not hard to see that the case for this breaks up into the pr case
and the previous case. So, we’ll assume m = pr. Here, we will use the additive part of Hilbert 90 and the
isomorphism (Ker TrK/k)/IK/kK+ ∼= H1(K/k,K+) in case G(K/k) is cyclic.

So, assume K/k is a cyclic extension of degree pr; choose a generator, σ, of G(K/k). For the element
1 ∈ k+, we have TrK/k(1) = [K : k] · 1 = 0, so there exists θ ∈ K+ with

σ(θ)− θ = 1, i.e., σ(θ) = θ + 1.

The action of the Galois group on θ is given by

σi(θ) = θ + 1 0 ≤ i ≤ pr − 1.

Observe that only θ, θ + 1, . . . , θ + (p − 1) are distinct, after that we repeat these in order. Thus, the
polynomial

g(X) = (X − θ)(X − (θ + 1)) · · · (X − (θ + (p− 1)))

is the minimal k-polynomial for θ and L = k(θ) is a cyclic p-extension. The only case whenK = L is when r =
1; so, from now on we’ll assume K/k is cyclic of degree p. Hence, K = k(θ) and σ(θ) = θ+1. We can compute
the minimal polynomial g(X) as follows: Write Y = X − θ, then g(X) = Y (Y − 1)(Y − 2) · · · (Y − (p− 1)).
But, the elements 1, 2, . . . , p− 1 are the (p− 1)st roots of unity (and lie in Fp, the prime field), therefore

g(X) = Y (Y p−1 − 1) = Y p − Y = Xp −X − (θp − θ).

If we write ℘(θ) = θp − θ, then we’ve proved the first part of
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Theorem 4.70 (E. Artin & O. Schreier, 1929) If k is a field of characteristic p > 0, then every cyclic
p-extension, K/k, has the form K = k(θ) where ℘(θ) = θp − θ lies in k and the Galois group, G, acts by a
(prechosen) generator, σ, taking θ to θ+ 1. The minimal k-polynomial for θ is Xp −X − ℘(θ). Conversely,
the polynomial Xp − X − a is k-irreducible when and only when a /∈ ℘(k+). If it is irreducible and θ is a
root, then k(θ) is a normal, separable, cyclic p-extension of k.

Proof . If a ∈ ℘(k) so that a = bp − b for some b ∈ k, then

(X − b)(X − (b+ 1)) · · · (X − (b+ (p− 1))

is exactly Xp −X − ℘(b) = Xp −X − a; so, our polynomial splits in k[X].

If a /∈ ℘(k+), the polynomial Xp − X − a has no root in k. Adjoin a root to k, we get an extension
K = k(θ). Now, θp − θ = a, so (θ + i)p − (θ + i) = a, too, where 0 ≤ i ≤ p − 1. Therefore, all the roots of
Xp −X − a lie in K and K is a normal extension. But the roots of Xp −X − a are all distinct, therefore
Xp −X − a is separable and we find that K/k is a normal, separable extension.

If d is the degree of θ over k, then θ, θ + i2, . . . , θ + id are the roots of its minimal k-polynomial. Were
d �= p, there would be an integer, j, so that θ + j is not a root of the minimal k-polynomial for θ. Yet,
k(θ + j) = k(θ), so θ + j also has degree d over k and θ + j, θ + j2, . . . , θ + jd are all the conjugates of θ + j
and all distinct from each θ + il. Continue in this way, we find the p roots θ, θ + 1, . . . , θ + (p− 1) partition
themselves into t blocks of d elements each. But then, dt = p and p is prime. As θ /∈ k, we have d > 1
therefore d = p and so Xp −X − a is indeed irreducible.

The analog of Kummer’s theorem is

Theorem 4.71 (E. Artin & O. Schreier) Suppose k is a field of characteristic p > 0 and write Ω for the
maximal, abelian, p-torsion extension of k. If G = G(Ω/k) is the Galois group of Ω/k (with Krull topology),
then there is a natural continuous pairing

G
∏

k+/℘(k+) −→ Z/pZ (⊆ R/Z)

and it makes G the Pontrjagin dual of k+/℘(k+).

Proof . Pick σ ∈ G and a ∈ k+/℘(k+). Lift a to some a ∈ k+ and let θ ∈ k be a root of Xp −X − a. Define

(σ, a) = σθ − θ.
Note that unless a = 0, the field k(θ) has degree p over k and is normal, separable cyclic. If a = 0, then
θ ∈ k. Therfore, k(θ) is contained in Ω and σθ makes sense. Now σθ is a root of Xp−X−a and so σθ = θ+j
for some j ∈ Z/pZ; therefore, (σ, a) is indeed in Z/pZ.

As in the proof of Kummer’s theorem, 〈σ, a〉 �→ (σ, a) is a pairing of the groups G(Ω/k) and k+/℘(k+).
Just as in the proof of that theorem, the field Ω is generated by the various θ’s as above; so, if (σ, a) = 0
for all a, we find σ fixes all the θ’s and thereby σ = 1. If (σ, a) = 0 for all σ ∈ G(Ω/k), then a must be 0
else the polynomial Xp −X − a would be irreducible (Theorem 4.70) and k(θ), where θ is one of its roots,
would be a cyclic p-extension. Then, σθ = θ + 1 for some σ ∈ G(k(θ)/k) and upon lifting σ to G(Ω/k) we’d
get (σ, a) �= 0, a contradiction.

Continuity is proved exactly as in Kummer’s theorem, the open neighborhood on which (σ, a) vanishes
being G(Ω/k(θ))∏{a}.
Corollary 4.72 If char(k) = p > 0 there is a one-to-one correspondence between subgroups, T , of k+/℘(k+)
and p-torsion, abelian overfields of k. It is given by

T ←→ K = k(℘−1(T )).
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What happens for pr, r > 1? Here, the situation is sufficiently complicated that the solution had to wait
until 1937. Then E. Witt introduced a ring, W (k), called the ring of Witt vectors over k and he proved
that even if char(k) = p > 0, the ring W (k) is an integral domain of characteristic 0. Now, it turns out that

W (k) = lim←−
n

Wn(k),

where the Wn(k) are “truncated” Witt vector rings. There is a map F : Wn
n (k)→Wn(k) playing the role of

ξ �→ ξp and one gets ℘ = F − id. When n = 1, the ring W1(k) is just k, and the exact sequence

0 −→ Z/pZ −→ k+ ℘−→ ℘(k+) −→ 0

becomes an exact sequence

0 −→ Z/prZ −→Wr(k)+
℘−→ ℘(Wr(k)+) −→ 0,

in the general case. It then turns out that if Ω is the maximal, abelian pr-torsion extension of k, the Galois
group, G(Ω/k), is naturally Pontrjagin dual to Wn(k)/℘(Wn(k)) by a pairing similar to the Artin-Schreier
pairing. See Witt [49] for the details.
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4.10 An Amazing Theorem of Galois Theory

Question: If k is a field with k �= k, when is [k : k] finite?

An example: k = R; K = C = R(i).

The answer of our question depends on an irreducibility criterion:

Theorem 4.73 (Artin’s Irreducibility Criterion) Given a field, k, consider the polynomial Xn − a, where
a ∈ k. If p is prime and p divides n, assume a ∈ (k∗)p. If 4 | n, then assume as well that a /∈ (−4(k∗)4).
Under these conditions, Xn − a is irreducible in k[X].

We will assume this theorem for the moment, and based on it we can prove

Theorem 4.74 (Artin) Say k is a field, k is an algebraic closure of k and 1 < [k : k] <∞. Then we have:

(1) k = k(i) (i2 = −1).

(2) char(k) = 0.

Proof . We claim that k/k is separable.

If not, let k(∗) = L, then L/L is purely inseparable and k �= L. So, L �= Lp implies that there is a /∈ Lp
(where p = char(k)). We know Xpn − a is irreducible in L[X] implies that L has extensions of degree pn,
for all n; yet, all these extensions are contained in k, a contradiction.

Look at k(i) ⊆ k; as k/k is separable, k/k(i) is normal, separable. Let G = G(k/k(i)). We need to show
that #(G) = 1.

Pick a prime, p, with p | #(G); let H be the subgroup of G of order p and write L = Fix(H).

Step 1. p �= char(k).

If p = char(k), then, by separability, there is some β ∈ k so that trk/L(β) = 1. We know that M/L is
separable iff the bilinear form

(u, v) �→ trM/L(uv)

is non-degenerate on the vector space M over the field L. Now, there is β̃ so that trk/L(1 · β̃) �= 0. Let

λ = tr(β̃) ∈ L and form β = (1/λ)β̃. Then, we have

trk/L(β) = (1/λ)trk/L(β̃) = λ/λ = 1.

As the trace is a sum and
tr(βp) = tr(β)p (p = char(k)),

we get trk/L(βp − β) = 0. Our extension k/L is cyclic of degree p, say σ is a generator of H. Note that for
every ξ ∈ k, we have

trk/L(ξ) = trk/L(σξ),

so trk/L(σξ − ξ) = 0. By “Additive Hilbert 90”, every element of zero trace in k has the form (σγ − γ),
for some γ ∈ k. As trk/L(σξ − ξ) = 0, there is some γ ∈ k so that βp − β = σγ − γ. Now, the polynomial
Xp −X − γ ∈ k[X] has a root in k, as k is algebraically closed. Say α ∈ k is such a root, then γ = αp − α.
We have

βp − β = σ(αp − α)− (αp − α) = σ(α)p − αp − (σ(α)− α),

and so
σ(α)− αβ = σ(α)p − αp − βp = (σ(α)− α− β)p.
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Consequently, σ(α)−α− β ∈ Fp, call it ν. It follows that σ(α)−α = β + ν. Taking trk/L on both sides, we
get

0 = trk/L(β) + trk/L(ν) = 1 + trk/L(ν).

As ν ∈ Fp ⊆ L, we have
trk/L(ν) = [k : L]ν = pν = 0,

which implies that 0 = 1 + 0 = 1, a contradiction. Therefore, char(k) �= p, as claimed.

Step 2. L does not exist, i.e., as no p divides #(G), we have #(G) = 1; thus, k = k(i).

Adjoin to L a p-th root of unity, say ζ is such a primitive root. Then, [k : L(ζ)] | p; so, [L(ζ) : L] also
divides p. But, L(ζ)/L has degree at most p− 1. Indeed,

Xp − 1 = (X − 1)(Xp−1 +Xp−2 + · · ·+X + 1),

so L(ζ) = L already, i.e., ζ ∈ L. So, [k : L] = p. As L has the p-th roots of unity, by Kummer’s theorem
(Theorem 4.65), we know k = l(α), where α is a root of Xp − a, with a /∈ (L∗)p. But, if p is odd, the Artin
irreducibility criterion implies that Xp − a is also irreducible, so [k : L] ≥ pl, for all l ≥ 0, a contradiction.
Therefore, we must have p = 2. Now, our situation is

(a) k = L(α), where α is a root of X2 − a, with a /∈ (L∗)2.

(b) i ∈ k ⊆ L.

Since X2r − a cannot be irreducible for all r ≥ 0, since otherwise we would have [k : K] ≥ 2r for all r ≥ 0,
it must be that a ∈ (−4(L∗)4) (by Artin’s irreducibility). Thus, a = −4b4, for some b ∈ L∗; it follows that
α =
√
a = ±2ib2. As 2, i, b ∈ L, we deduce that α ∈ L, a contradiction. Therefore, #(G) = 1.

Step 3. char(k) = 0.

If not, then say q = char(k) and write Fq for the prime field of k. Pick r >> 0, adjoin to Fq a primitive
2r-th root of unity, call it ζ. Apply natural irrationalities to the picture show in Figure 4.2:

Fq

Fq(ζ)

D = k ∩ Fq(ζ)

k

k = k(i) = k(ζ)

deg 2

Figure 4.2: The Extension k/Fq

If σ is the generator of G(k/k) = Z/2Z, then σ � Fq(ζ) yields an automorphism and we know

G(k/k) ∼= G(Fq(ζ)/D) ↪→ G(Fq(ζ)/Fq).

The extension Fq(ζ)/Fq is cyclic of degree 2s. As a cyclic group has a unique subgroup of every possible
order, there is a unique subfield of degree 2 in the extension Fq(ζ)/Fq. If Fq < D, then D contains this
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unique extension. But, Fq(i) has degree 1 or 2 over Fq, so Fq(i) ⊆ D, which yields i ∈ D, and finally, i ∈ k
(D = k ∩ Fq(ζ)). Thus, k = k, a contradiction. (Note: i is a fourth root of unity; so, as k �= k, we have
char(k) = q �= 2). Therefore, D = Fq.

Now,
Z/2Z = G(k/k) = G(Fq(ζ)/Fq),

a group of order 2s. If we let r tend to ∞, then s tends to ∞, a contradiction. Therefore, char(k) = 0.

Finally, here the proof of Theorem 4.73:

Proof of Artin’s Irreducibility Criterion. Assume at first that we know the result for n a prime power–here
is how to prove the general case: Use induction on the number of primes dividing n. If n = prm with
(p,m) = 1, we may assume p is odd. Now, Xm−a is irreducible by our induction hypothesis; let α1, . . . , αm
be its roots. Then,

Xm − a =
m∏
j=1

(X − αj)

and

Xn − a = (Xpr

)m − a =
m∏
j=1

(Xpr − αj).

Suppose for some j that αj is a pth power in k(αj). Now Xm − a is irreducible so its Galois group acts
transitively on its roots. Therefore, each αi is σ(αj) for some σ and so each of the αi is a pth power in k(αi).
There exist βi ∈ k(αi) with βpi = αi for i = 1, . . . ,m. We find that

Nk(αi)/k(αi) = Nk(αi)/k(βi)
p.

But,
m∏
j=1

αj = (−1)m+1a = Nk(αi)/k(αi) = Nk(αi)/k(βi)
p.

If m is odd, this gives a ∈ k∗p, contrary our assumptions. If m is even, then a = −(Nk(αi)/k(βi)
p). But, p

is odd so
a = (−Nk(αi)/k(βi))

p,

again contrary to hypothesis. We conclude that none of the αi are pth powers in the field k(αi). By the one
prime case, the polynomials Xpr − αi are irreducible for i = 1, . . . ,m and all r.

Let ξ be a root of Xn − a. Then, ξ satisfies Xpr − αj = 0 for at least one j. According to the
irreducibility of Xpr −αj , we find that [k(ξ) : k(αj)] = pr (of course k(αj) ⊆ k(ξ)). However, [k(αj) : k] = m
by the induction hypothesis and so [k(ξ) : k] = n. But this means the minimal polynomial for ξ has degree
n and ξ is a root of Xn − a; so, Xn − a is irreducible.

We’ve achieved a reduction to the heart of the matter, the one prime case. Here, n = pr and when
p = char(k) we already know the result. Therefore, we may and do assume p �= char(k). Now use induction
on r. Say r = 1, adjoin the pth roots of 1 to k—call ζ a primitive pth root of 1:

k(α, ζ)
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��
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��
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��
��
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k(α)

��
��

��
��
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k
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Here, α is a root of Xp−a. Were [k(α) : k] �= p, i.e., were Xp−a reducible, we would have [k(α, ζ) : k(ζ)] < p.
Now over k(ζ), the Galois group of Xp − a is cyclic of order p or trivial according as a /∈ k(ζ)p or a ∈ k(ζ)p.
We then would have a ∈ k(ζ)p; hence α ∈ k(ζ). We know that [k(ζ) : k] = r ≤ p−1 and so, (r, p) = 1. Write
1 = sr + tp, for some s, t. Now,

ar = Nk(ζ)/k(a) = Nk(ζ)/k(α)p.

But,
a = asr+tq = Nk(ζ)/k(α)psapt = (Nk(ζ)/k(α)p · at)p ∈ k∗p,

a contradiction. We conclude Xp − a is irreducible.

Induction Step. Consider Xpr − a and assume p is odd . Write α for a root of Xp − a, and further write∏p
j=1(X − αj) = Xp − a, with α = α1. Now α is not a pth power in k(α). For, if it were βp, then

a = (−1)p+1a = Nk(ζ)/k(α) = Nk(ζ)/k(β)p (p is odd)

contrary to the hypothesis that a is not a pth power. Again by transitivity of the Galois group on the αj ,
no αj is a pth power in k(αj), and therefore, by induction all the polynomials

Xpr−1 − αj , j = 1, 2, . . . , p

are irreducible (over k(αj)). If ξ is a root of Xpr −a, then ξ is a root of Xpr−1 −αj for some j, and as before

[k(ξ) : k(αj)] = pr−1 and [k(αj) : k] = p;

so, [k(ξ) : k] = pr. We conclude Xpr − a is indeed irreducible.

Finally, we have the case p = 2. We know X2 − a is irreducible, we must prove X2r − a is irreducible.
As usual and with familiar notation, we have

X2r − a =
2∏
j=1

(X2r−1 − αj); α = α1; α2 = a.

So, if X2r−1 −αj is irreducible for j = 1, 2, the usual degree argument will show X2r − a is irreducible. The
only way X2r−1 − αj will be reducible, by the induction hypothesis, is if αj ∈ k(αj)∗2 or αj ∈ −4k(αj)∗

4.
We will show each of these is untenable.

(1) Say α ∈ k(α)∗2; so, the same is true of α2. Now,

−a = Nk(α)/k(α) = Nk(α)/k(β)2 = b2

yet a /∈ k∗2, so (−1) /∈ k∗2. Hence, i /∈ k and we factor X2r − a over k(i):

X2r − a = X2r

+ b2 = (X2r−1
+ ib)(X2r−1 − ib).

If, on the right hand side, one of the factors is reducible, the induction hypothesis shows ib (or −ib) ∈ k(i)∗2

or ib (or −ib) ∈ −4k(i)∗4. Since −4 is square in k(i), the cases ib ∈ −4k(i)∗4 or −ib ∈ −4k(i)∗4 reduce
respectively to ib ∈ k(i)∗2 or -ib ∈ k(i)∗2. But −1 is also a square, so these two cases are just the one case:
ib ∈ k(i)∗2.

Write ib = (γ + iδ)2, with γ, δ ∈ k. Then γ2 = δ2 and b = 2γδ. However, γδ = ±γ2, and so b2 = 4γ4.
But then, a = −b2 ∈ −4k∗4, a contradiction. We are left with

(2) α ∈ −4k(α)∗4. Again,

−a = Nk(α)/k(α) = Nk(α)/k(−4)Nk(α)/k(β)4.

Since Nk(α)/k(−4) = (−4)2 = 16, we deduce −a is a square and we’ve assumed a is not a square. As above,
i /∈ k and we now repeat the argument of (1) to finish the proof.
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4.11 Algebraic Closures; Steinitz’s Theory of Fields

In the twentieth century, E. Steinitz examined the theory of fields, especially transcendental extensions. He
had at his disposal the then new technique of transfinite induction which he used in the form of Zermelo’s
well-ordering principle. Of course, the latter is equivalent to Zorn’s Lemma or the Axiom of Choice. Here,
we’ll examine Steinitz’s results both in the purely algebraic case (existence of an algebraic closure) and in
the general case (transcendence bases).

Recall that in Remark (4) at the close of Section 4.2 we made the following definition (but informally):

Definition 4.15 A field, K, is algebraically closed (AC ) iff for every f ∈ K[X], there exists a θ ∈ K, so
that f(θ) = 0.

We also defined an algebraic closure of the field k as a field, K, which was itself AC and moreover was
algebraic over k. Here, we’ll prove the existence of an algebraic closure for each field, k, and its (essential)
uniqueness. First, for technical agility we’ll need equivalent forms of the condition (AC):

Proposition 4.75 For a field, K, the following conditions are equivalent:

(1) K has AC

(2) For every f ∈ K[X], all the roots of f (in any extension of K) are already in K

(3) Every polynomial f ∈ K[X] factors into linear factors in K[X]

(4) The only irreducible K-polynomials are the linear ones

(5) If L/K is algebraic, then L = K (so, K is algebraically closed in any of its overfields)

(6) If k is a subfield of K for which K/k is algebraic, then for any algebraic extension, L, of k, there exists
a k-monomorphism L −→ K.

(7) If k is a subfield of K for which K/k is algebraic and if k̃ is a field isomorphic to k, via an isomorphism,
ϕ, then for any algebraic extension, L̃ or k̃, there exists a monomorphism Φ: L̃→ K extending ϕ.

The proofs of the equivalences (1)–(7) are trivial (DX); in (6) and (7) one makes use of the extension
lemma.

Remark: An algebraicaly closed field is always infinite. For, were it finite and θ1, . . . , θn a listing of its
elements, then f(T ) = 1 +

∏n
j=1(T − θj) would be a polynomial with no root in our field.

Now for the proof of the existence of algebraic closures, we need a very basic existence theorem.

Theorem 4.76 (Basic Existence Theorem) Suppose k is a field and Kλ (λ ∈ Λ) is a family of overfields of
k. Then, there exists a field extension K/k so that for every λ ∈ Λ we have a k-monomorphism ϕλ : Kλ → K.
That is, K contains a k-isomorphic copy of each field Kλ. Moreover, we may even choose K so that it is
generated by all the subfields ϕλ(Kλ).

Proof . The proof is very simple using our techniques. We form the commutative ring A =
⊗

λ∈ΛKλ. Of
course,

A = lim−→
S∈L(Λ)

(⊗
λ∈Λ

Kλ

)
,

where L(Λ) is the family of finite subsets of Λ. The ring A is a k-algebra (the tensor products are taken over
k) and we embed k in A as usual via α �→ α · (1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ · · · ). Choose any maximal ideal, M, of A
and write K = A/M. Of course, K is a field extension of k and as each Kλ has a k-algebra homomorphism
to K (Kα −→

⊗
µKµ = A −→ A/M = K) taking 1 to 1, we see that each Kλ is embedded in K via this

homomorphism. Now the images in A of the Kλ generate A; so, their images in K generate K.
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Theorem 4.77 (Steinitz) If k is a field, then k possesses an algebraic closure, Ω. If Ω and Ω̃ are two
algebraic closures of k, then there exists a (non-canonical) k-isomorphism Ω −̃→ Ω̃. The set Isomk(Ω, Ω̃) is
in one-to-one correspondence with G(Ω/k).

Proof . We wish to use the Basic Existence Theorem, so the only problem is to find a good way of parametriz-
ing all finite extensions of k. Here, a better idea is to parametrize all the finitely generated extensions of
k. Take A = k[Xj ]∞j=0, the polynomial algebra on ℵ0 independent transcendentals over k. View, for each
n ≥ 0, the finitely generated polynomial rings k[X0, . . . , Xn] as a subring of A. In each ring k[X0, . . . , Xn]
we have the family of its maximal ideals, M. Write K(n,M) for the field k[X0, . . . , Xn]/M and consider
the collection of all these K(n,M).6 By the Basic Existence Theorem, there is field, L, over k containing
a k-isomorphic copy of each K(n,M). But each finite degree extension, M , of k is k-isomorphic to at least
one K(n,M); and so, each finite degree extension is “contained” in L. Write

Ω = Lalg = {ξ ∈ L | ξ is algebraic over k}
= algebraic closure of k in L.

By construction, Ω is algebraic over k; by choice of L, each finite degree extension, M , of k is k-isomorphic to
a K(n,M) so the latter is algebraic over k; hence, in Ω. And now, (the obvious modification of) Proposition
4.75 #(6) shows Ω is algebraically closed.

Having proved existence, we now investigate uniqueness. Say Ω̃ is another algebraic closure of k. Now
for Ω and Ω̃ we have

Ω = lim−→
K/k finite,K⊆Ω

K (†)

Ω̃ = lim−→
eK/k finite, eK⊆eΩ

K̃. (††)

Since Ω is algebraically closed, for each such K̃/k we get a k-injection K̃ −→ Ω. We may assume each such
K̃ is normal over k and choose a maximal chain of such K̃. Then, twisting if necessary by the G(K̃/k), we
obtain a consistent family of k-injections of these K̃ into Ω. By (††), there results the k-injection Ω̃ −→ Ω.
But the image of Ω̃ is algebraically closed and Ω is algebraic over it. We deduce from Proposition 4.75 (5)
that Ω = image of Ω̃.

Lastly, if ϕ and ψ are two k-isomorphisms from Ω to Ω̃, the map ψ−1 ◦ ϕ is in G(Ω/k). Hence, the
k-isomorphisms ϕ ◦ σ run over all k-isomorphisms Ω −→ Ω̃ whenever ϕ is one such and σ runs over G(Ω/k).

There remains the general case of a field extension k/k. The important concept here is the notion of
transcendence basis.

Definition 4.16 A subset, S, of a field extension, K/k, is a transcendence basis for K/k iff

(1) S is algebraically independent over k and

(2) K is algebraic over k(S).

We need some technique in handling algebraically independent elements. The most useful technical
observation is the following:

6For readers with a foundational mind, note: In the first place, the pairs (n, M) are elements of the set N
QP(A), where

P(A) is the power set of A; so, our indexing is done by a set. Next, each field, K(n, M), is itself in P(A); so, the whole collection
is perfectly valid from the point of view of set theory.
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Proposition 4.78 Suppose that K/k is a field extension and A and B are subsets of K. Then the three
conditions below are mutually equivalent:

(1) A ∩B = ∅ and A ∪B is algebraically independent over k

(2) A is algebraically independent over k and B is algebraically independent over k(A)

(3) Same statement as (2) with A and B interchanged.

Proof . By symmetry, (2)⇐⇒ (3); all that remains is to prove (1)⇐⇒ (2).

(1) =⇒ (2). As A ⊆ A ∪ B and the latter is algebraically independent over k, we find that A is
algebraically independent over k. If B is algebraically dependent over k(A), there are elements b1, . . . , bt
and a nonzero polynomial f(T1, . . . , Tt) ∈ k(A)[T1, . . . , Tt] with f(b1, . . . , bt) = 0. But, the coefficients may
be chosen from k[A] and involve only finitely many elements a1, . . . , as from A. Then, f(T1, . . . , Tt) is
actually a nonzero polynomial of the form f̃(a1, . . . , as, T1, . . . , Tt), and f̃ is a polynomial over k in variables
U1, . . . , Us, T1, . . . , Tt. It is satisfied by {a1, . . . , as, b1, . . . , bt} ⊆ A ∪B contradicting (1).

(2) =⇒ (1). No element, ξ, can be in A ∩ B, else the polynomial T − ξ ∈ k(A)[T ] is satisfied by ξ ∈ B
contradicting (2). We need only show each finite subset of A∪B is algebraically independent and, of course,
this is immediate if that finite subset is in A or B. So, we may assume that our subset is a1, . . . , as, b1, . . . , bt.
Any polynomial f(U1, . . . , Us, T1, . . . , Tt) ∈ k[U1, . . . , Us, T1, . . . , Tt] which vanishes on a1, . . . , as, b1, . . . , bt
gives a polynomial

f(a1, . . . , as, T1, . . . , Tt) ∈ k(A)[T1, . . . , Tt]

which vanishes on b1, . . . , bt. By (2), all the coefficients of f(a1, . . . , as, T1, . . . , Tt) have to vanish. By (2),
again, these coefficients which are just different polynomials gj(U1, . . . , Us) (coeffs in k) must be zero as
polynomials. Therefore, our original polynomial f(U1, . . . , Us, T1, . . . , Tt) is identically zero. This proves (1).

We derive many corollaries from Proposition 4.78.

Corollary 4.79 Let K/k be a field extension and A be a subset of K. Then, A is algebraically independent
over k iff for all ξ ∈ A, the element ξ is transcendental over k(A− {ξ}).
Proof . By taking A − {ξ} and {ξ} as the two subsets of Proposition 4.78, we see that (=⇒) is proved.
To prove (⇐=), take a finite subset of A, say a1, . . . , at, and suppose it is algebraically dependent over
k. We may assume no smaller subset of a1, . . . , at is dependent by passing to that smaller subset. Apply
Proposition 4.78 to the sets {a1} and {a2, . . . , at}. Since a1, . . . , at is not independent, it follows that a1

is not independent over k(a2, . . . , at). Hence, a1 is not independent over the bigger field k(A− {a1}). This
contradicts our hypothesis when ξ = a1.

Corollary 4.80 If K/k be a field extension and A is an algebraically independent subset (over k) of K, and
if ξ ∈ K has the property that ξ is transcendental over k(A), then A∪ {ξ} is again algebraically independent
over k.

Proof . This is immediate either from Proposition 4.78 or Corollary 4.79.

Corollary 4.81 Suppose K/k is a field extension and A is an algebraically independent subset of K. A
necessary and sufficient condition that A be a transcendence basis for K/k is that A be a maximal element
(under partial ordering by set inclusion) among the algebraically independent subsets of K.

Proof . If A is a transcendence basis for L/k yet is not maximal, there is an independent set, B, of K and
B > A. In Proposition 4.78, let B−a and A be the two sets, the K ⊆ k(A)(B−A) and K/K(A) is algebraic.
So, B −A is not algebraically independent over k(A) contradicting Proposition 4.78.

Conversely, if A is maximal among algebraically independent sets and ξ ∈ K but not in K(A), then ξ
cannot be transcendental over k(A) by Proposition 4.78 (set B = {ξ}, A = A). So, ξ is algebraic over K(A);
that is, K/k(A) is algebraic.
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Theorem 4.82 (Steinitz) If K/k is a field extension and if S ⊆ T are two subsets of K so that

(a) K is algebraic over k(S) and

(b) T is algebraically independent over k, then there exists a transcendence basis, B, for K/k with T ⊆
B ⊆ S. In particular, every field extension possesses a transcendence basis.

Proof . We let S denote the collection of subsets of S which both contain T and are algebraically independent
over k. Of course, as T ∈ S, we have S �= ∅. Partially order S by set-theoretic inclusion and note that S is
inductive. Let B be a maximal element of S, it exists by Zorn’s Lemma. Consider the extension k(S)/k(B).
We know if each element of S is algebraic over k(S), then k(S) will be algebraic over k(B). But by the
maximality of B and Proposition 4.78 (or Corollary 4.80), we see that every element of S is indeed algebraic
over k(B). Thus, from the facts that K is algebraic over k(S) and k(S) is algebraic over k(B), we find K is
algebraic over k(B).

Upon taking S = K and T = ∅, we deduce each field extension has a transcendence basis.

Doubtless you will have noticed an analogy between the familiar theory of linear dependence and inde-
pendence for vector spaces and our theory of algebraic independence and indepnedence for field extensions.
For example, Proposition 4.78 can be translated into the linear case. Steinitz noticed this explicitly and
transformed the analogy into an axiomatic treatment of both cases simulataneously. In the linear case, the
notion of Span is a crucial ingredient and Steinitz generalized this by setting

Σ(A) = {ξ ∈ K | ξ is algebraic over k(A) (∗)
for A a subset of K and K/k a field extension. Of course we can then write: A is a transcendence basis
for K/k iff A is algebraically independent over k and K = Σ(A). The axioms for the Σ operation are the
dictated by the linear case:

(1) A ⊆ Σ(A),

(2) If A ⊆ B, then Σ(A) ⊆ Σ(B).

(3) Σ(Σ(A)) = Σ(A).

(4) If ξ ∈ Σ(A), then there is a finite subset, Ã, of A so that ξ ∈ Σ(Ã).

(5) If η ∈ Σ(A ∪ {ξ}) but η /∈ Σ(A), then ξ ∈ Σ(A ∪ {η}).
Conditions (1)–(3) are obvious both in the linear case (when Σ(A) = Span(A)) and in the algebraic case

(when Σ(A) is as above). However, (4) and (5) deserve some comment. Property (4) makes the formation
of Σ(A) a property “of finite character”, and allows the application of Zorn’s Lemma in proofs of statements
about Σ(A) or independence. Property (5) is called the Steinitz Exchange Lemma—it is well-known in the
linear case. Here it is in the algebraic case:

Proposition 4.83 (Steinitz Exchange Lemma) For a field extension, K/k, a subset A ⊆ K and element
ξ, η of K we have

If η ∈ Σ(A ∪ {ξ}) but η /∈ Σ(A), then ξ ∈ Σ(A ∪ {η}).
Here, Σ(A) is as above in (∗).
Proof . In k(A) we can choose a transcendence basis (over k) contained in A by Theorem 4.83. As k(A) is
algebraic over k(B), it is algebraic over k(B ∪ {ξ}). Now, ξ is algebraic over k(B ∪ {ξ}); so, k(A ∪ {ξ})
is algebraic over k(B ∪ {ξ}) and therefore η ∈ k(B ∪ {ξ}). If the exchange lemma were valid when A was
independent, we would deduce ξ ∈ Σ(B ∪ {η}) ⊆ Σ(A ∪ {η}).

This achieves a reduction to the case where A is algbraically independent. The silly case ξ = η is a
tautology and so we have ξ �= η and A∪{ξ, η} is algebraically dependent. But then, Proposition 4.78 applied
to the sets A ∪ {η}, {ξ}| shows that ξ ∈ Σ(A ∪ {η}), as desired.
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� Clearly, the Exchange Lemma is susceptible of generalizations. But one must be careful. “Obvious”
generalizations may be false. For example, the statement: If A,B,C are subsets of K (an extension of

k) and if C ⊆ Σ(A ∪ B) but C �⊆ Σ(A), then B ⊆ Σ(A ∪ C) is false. Indeed, even the weaker statememnt
(because the hypotheses are stronger): If C ⊆ Σ(A∪B) but no element of C is in Σ(A), then B ⊆ Σ(A∪C) is
false. To see why the latter is false, just take A = ∅ and K = k(X,Y,

√
X), where X and Y are algebraically

independent over k. Set B = {X,Y } and C = {√X}.

Proposition 4.84 (General Steinitz Exchange Lemma) Suppose K/k is a field extension and A,B,C ⊆ K.
Assume that C ⊆ Σ(A ∪B) but C �⊆ Σ(A). Then, there exists a subset, B′, of B with properties

(1) B ⊆ Σ(A ∪ C ∪B′).

(2) B �= B′.

(3) B′ ∩ C = ∅.

Before proving this form of the exchange lemma, we should remark that:

(a) The hypotheses are those of the previous strong (but false) statement—the conclusion is weaker: we
need B′. In the example where A = ∅, C = {√X}, B = {X,Y }, it is clear that B′ = {Y }.

(b) The name come from the fact that B′′ (= B −B′) and C have been exchanged. That is, we conclude
B′′ ⊆ Σ(A ∪B′ ∪ C) from the hypotheses C ⊆ Σ(A ∪B′ ∪B′′) and C �⊆ Σ(A).

Proof . Here, the notation Σ refers to algebraic dependence over k. Let Ã be a maximal algebraically
independent subset of A, so that Σ(Ã) = Σ(A). Write C̃ for a subset of C maximal with respect to algebraic
independence over k(Ã). Because C �⊆ Σ(Ã), we see that C̃ �= ∅ and that Ã∪ C̃ is algebraically independent
over k by Proposition 4.78. Now C ⊆ Σ(Ã ∪ C̃) and A ⊆ Σ(Ã) ⊆ Σ(Ã ∪ C̃). We find that

Σ(A ∪B) = Σ(Ã ∪ C̃).

Write T = Ã∪ C̃ ∪B. Now, Σ(A∪B) = Σ(Ã∪B) and by hypothesis we find that C ⊆ Σ(Ã∪B). Therefore,
Σ(T ) = Σ(A ∪ B); call this field K̃. In it, we have T ⊇ Ã ∪ C̃, the former set generates and the latter is
algebraically independent. By the existence of transcendence bases (Theorem 4.83), there is a transcendence
basis for K̃/k, call it S, so that

T ⊇ S ⊇ Ã ∪ C̃.
We set B′ = S − (Ã ∪ C̃) ⊆ B. Of course, B′ ∩ C̃ = ∅. We know

Σ(T ) = Σ(S) = Σ(Ã ∪ C̃ ∪B′)

and B ⊆ Σ(T ); so, conclusion (1) is proved. Were B′ = B, we’d have S = Ã ∪ C̃ ∪ B. Now C̃ ⊆ C and
by hypothesis C ⊆ Σ(A ∪ B) = Σ(Ã ∪ B). As S is algebraically independent, we have a contradiction of
Proposition 4.78; this proves (2). Finally, if ξ ∈ B′ ∩ C, then ξ ∈ C ⊆ Σ(Ã ∪ C̃) implies that the subset of
B′ ∪ Ã ∪ C̃ = S consisting of {ξ} ∪ Ã ∪ C̃ is dependent; contradiction on how we chose S.

The main use of the standard exchange lemma is to prove that transcendence bases have the same
cardinality. Here’s how the finite case goes.

Theorem 4.85 Suppose K/k is a field and S is a finite subset of K while T is any subset of K. Assume
that #(T ) > #(S) and T ⊆ Σ(S). Then T is algebraically dependent. In particular, if K/k has a finite
transcendence basis, then all transcendence bases of K/k are finite with the same cardinality.
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Proof . First, replace K by Σ(S), second replace S by a transcendence basis (for K = Σ(S)) which is a subset
of S. Therefore, we may assume S is a transcendence basis for K/k. If #(T ) =∞, then then replace T by
any finite subset with #(T ) > #(S); so we may assume T is finite, too. Now suppose the result is false and
choose a counter-example pair S, T so that #(S)+#(T ) is minimal. Of course, in this case #(T ) = #(T )+1,
else we could reduce the sum by choosing a subset of T with #(T ) = #(S) + 1.

Our situation is now that

(a) S and T are finite algebraically independent sets

(b) T ⊆ Σ(S)

(c) #(S) = n, #(T ) = n+ 1

(d) n is minimal among integers having (a), (b), (c).

Label the elements of S as s1, . . . , sn but refrain from labelling T as yet. Consider S −{s1}. There must
be some t ∈ T so that t /∈ Σ(S−{s1}), else T ⊆ Σ(S−{s1}) and (d) would show T dependent contradicting
(a). Call this element t1. Note that {s2, . . . , sn, t1} is an independent set at t1 /∈ Σ(s2, . . . , sn). Since
t1 ∈ Σ((S−{s1})∪{s1}), the standard exchange lemma (Proposition 4.83) shows that s1 ∈ Σ(s2, . . . , sn, t1).
All the other elements of S lie in Σ(s2, . . . , sn, t1) so T − {t1} is certainly in Σ(s2, . . . , sn, t1). However,
T − {t1} cannot be contained in Σ(s3, . . . , sn, t1). For if it were, the sets {s3, . . . , sn, t1}, T − {t1} would
satisfy (a) and (b), their cardinalities would be n− 1 and n respectively and (d) would be contradicted.

Since T − {t1} �⊆ Σ(s3, . . . , sn, t1), there is an element t2 ∈ T − {t1} with t2 /∈ Σ(s3, . . . , sn, t1). This
means {s3, s4, . . . , sn, t1, t2} is an independent set and allows the exchange lemma to be applied once more
to η = t2, ξ = s2, and {s3, . . . , sn, t1}. We conclude that s2 ∈ Σ(s3, . . . , sn, t1, t2) and so all of T (thus
also T − {t1, t2}) is in Σ(s3, . . . , sn, t1, t2). It is clear how to continue the process and equally clear what
is happening: We are systematically replacing the elements s1, s2, . . . of S by elements t1, t2, . . . from T .
In the end, we find T − {t1, . . . , tn} ⊆ Σ(t1, . . . , tn); but, #(T ) = n + 1, so tn+1 ∈ Σ(t1, . . . , tn)–our final
contradiction (on (a)). As (a)–(d) are untenable, no counter-example exists.

To prove if K/k has finite transcendence basis, all transcendence bases have the same cardinality, we
choose a transcendence basis, S, of minimal (so, finite) cardinality and any other transcendence basis, T .
Of course, #(T ) ≥ #(S). If #(T ) > #(S), then T ⊆ Σ(S) immediately implies from the above that T is
dependent, which is not true. Thus, #(T ) ≤ #(S), and we are done.

If the reader will go through the argument, he will see we have used only Steinitz’s rules (1)—(5) on Σ.
Thus, the argument works in the linear case—though a direct argument is simpler. In carrying this out, one
sees that Corollary 4.79 gives a way of defining algebraic independence solely in terms of the Σ operation.
Namely, A is algebraically independent iff for every ξ ∈ A, the element ξ is not in Σ(A− {ξ}).

We can now handle the infinite case.

Theorem 4.86 For every field extension K/k, any two transcendence bases have the same cardinality.

Proof . Is S and T are given transcendence bases for K/k, then, by Theorem 4.85, the sets S and T are
simultaneously finite or infinite. Of course, the only case of concern is when S and T are infinite.

I claim two statements, which taken together will quickly finish the proof.

(I) For each ξ ∈ K, there exists a unique finite subset of S, call it S(ξ), characterized by

(a) ξ ∈ Σ(S(ξ)) and

(b) If S̃ ⊆ S and ξ ∈ Σ(S̃), then S(ξ) ⊆ S̃.

(II) For ξ and η in T , if ξ �= η, then S(ξ) �= S(η).
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Suppose we assume (I) and (II) and write FP(S) for the collection of all finite subsets of S. Then the
map ξ �→ S(ξ) is, by (I) and (II), a well defined injection of T to FP(S). We find that #(T ) ≤ #(FP(S))
and we know #(S) = #(FP(S)) because #(S) is infinite. Thus, #(T ) ≤ #(S); by symmetry, #(S) ≤ #(T ).
Then, the Cantor-Schröder-Bernstein Theorem yields #(S) = #(T ).

Both (I) and (II) are consequences of the exchange lemma. For (I), choose ξ ∈ K. If ξ is algebraic over
k, the set S(ξ) = ∅ satisfies (a) and (b); we may assume ξ is transcendental over k. There is a finite subset,
{s1, . . . , sn}, of S so that ξ ∈ Σ(s1, . . . , sn). We may assume no smaller subset of {s1, . . . , sn} has ξ in the
Σ formed from it. Suppose {σ1, . . . , σq} is another subset of S and ξ ∈ Σ(σ1, . . . , σq). Choose any sj , apply
the exchange lemma to ξ, sj and S−{sj}. We find that sj ∈ Σ(s1, . . . ŝj , . . . , sn, ξ). Now, ξ ∈ Σ(σ1, . . . , σq),
therefore

sj ∈ Σ(s1, . . . ŝj , . . . , sn, σ1, . . . , σq).

The elements sj and σl are in the independent set S therefore sj must be one of the σ1, . . . , σq. Since sj is
arbitrary in {s1, . . . , sn} we get {s1, . . . , sn} ⊆ {σ1, . . . , σq} and so S(ξ) = {s1, . . . , sn} has (a) and (b).

To prove (II), first note that if ξ ∈ S, then S = {ξ}. Pick ξ, η ∈ T and assume S(ξ) = S(η). Write
{s1, . . . , sn} for the listing of the elements of S(ξ). A standard application of the exchange lemma shows
s1 ∈ Σ(s2, . . . , sn, ξ). Therefore, S(ξ) ⊆ Σ(s2, . . . , sn, ξ). It follows, as S(ξ) = S(η), that η ∈ Σ(s2, . . . , sn, ξ).
By Claim (I) property (b), we find

{s1, . . . , sn} = S(η) ⊆ {s2, . . . , sn, ξ}.
Hence, ξ = s1. By symmetry, η = s1, too; and so, ξ = η (or ξ ∈ S and hence so is η; therefore {ξ} = S(ξ) =
S(η) = {η}). We are done.

Definition 4.17 The common cardinal number of all the transcendence bases for K/k is the transcendence
degree of K/k. It is denoted tr.d.k(K). The field K is purely transcendental over k iff K = k(S) where S is
a transcendence base for K/k.

To finish up this section, we have only to discuss the notion of separability for general field extensions
(i.e., not necessarily algebraic). For this, we essentially make Mac Lane I into a definition:

Definition 4.18 A field extension, K/k, is separable iff either char(k) = 0 or when char(k) = p > 0, then
the natural map

k1/p ⊗k K −→ K1/p

is injective.

There is a related (but stronger) concept, namely the notion of separable generation:

Definition 4.19 A field extension, K/k, is separably generated iff there exists a transcendence base, B,
for K/k so that K is separable (algebraic) over k(B). Such a transcendence bases is called a separating
transcendence base for K/k.

Separable non-algebraic field extensions exist:

Proposition 4.87 If K = k(B) and B is an algebraically independent set, then K/k is a separable extension.

Proof . By the argument of Section 4.3, the definition of separability is that when u1, u2, . . . are element of
K linearly independent over k, then up1, . . . , u

p
n, . . . are again linearly independent over k. If we apply this

to all the monomials formed from the elements of B, we see that we must prove: The elements up, where u
ranges over B, are algebraically independent over k. But, any non-trivial polynomial relation

f(upi1 , . . . , u
p
it

) = 0
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is, a fortiori , a polynomial relation for ui1 , . . . , uit ; hence, cannot be non-trivial.

We can make two remarks that will be helpful for what follows:

Remarks:

(I) Separability is transitive. To see this, say L is separable over K and K is separable over k. Then, the
two maps

k1/p ⊗k K −→ K1/p; K1/p ⊗K L −→ L1/p (∗)
are injective. But then, we get the injection

(k1/p ⊗k K)⊗K L −→ K1/p ⊗K L (∗∗)
(as L is flat over K). The left hand side of (∗∗) is k1/p ⊗k L and the right hand side injects into L1/p

by (∗); so, we are done.

(II) Any field extension of a perfect field is separable. For, if k is perfect, then k = kp; that is, k1/p = k.
But then, k1/p ⊗k K ∼= K and K ⊆ K1/p, as required.

(III) If K ⊇ L ⊇ k and K/k is separable, then L/k is separable. For consider the map

k1/p ⊗k L −→ L1/p.

Let its kernel be A. By the flatness of K over L, we see that

0 −→ A⊗L K −→ (k1/p ⊗k L)⊗L K = k1/p ⊗k K −→ L1/p ⊗L K
is exact. Now, the composed map k1/p ⊗k K −→ L1/p ⊗L K −→ K1/p is injective by hypothesis; so,
A⊗L K = (0). But, K is faithfully flat over L, therefore A = (0).

Corollary 4.88 If K/k is separably generated, then K/k is separable.

Proof . Write B for a separating transcendence base for K/k. Then, K is separable over k(B) and the latter
is separable over k by Proposition 4.87. Now Remark (I) applies.

� Separable generation is, in general, a strictly stronger concept than separability . Here is a standard
example: Let k be a perfect field (i.e., k = Fp) and write k = k(T, T 1/p, T 1/p2 , . . .). Thus, K = lim−→

n

Kn,

where Kn = k(T 1/pn

) and each Kn, being pure transcendental over k, is separable over k. Of course,
K1/p = K and k1/p = k by choice of k; so K/k is separable. We will now see it is not separably generated.
Let’s write STB for the phrase separating transcendence basis. We know tr.dkK = 1 as each Kn is algebraic
over K1. Were an element z ∈ K an STB, we’d have z ∈ Kn for some n. Now, we may ignore K1, . . . ,Kn−1

and still have K = lim−→
m

Km (m ≥ n), so we may assume z ∈ K1. i.e., z ∈ k(T ). but then, the diagram of

algebraic extensions
K

k(T ) = K1

k(Z)

and the fact that K is separable over k(Z) would show that K/K1 is a separable algebraic extension and
this is nonsense.
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� Remark . In the general case when K/k is separable and L is a subextension of the layer K/k it does
not follow that K/L is separable. For example, L = K1 in the above example shows that K/K1 is not

separable even though K/k is separable.

This remark indicates that separability is not a good notion in the general case; separable generation is a
much better notion. We are going to show now that the two concepts coalesce when the big field is a finitely
generated extension; so, the cause of most difficulties is infinite generation in the general case (as should be
clear from the counter-example above). Still, even in the finitely generated case, there are problems: K2/k is
separably generated yet it is not separably generated over K1 (or separable–notations as above). The moral
is: be careful with separability (or separable generation) in the non-algebraic case, especially with infinitely
generated extensions.

Theorem 4.89 If K/k is a finitely generated field extension, then K/k is separable if and only if it is
separably generated.

Proof . One direction is Corollary 4.88; so, assume K/k is separable and finitely generated, say K =
k(T1, . . . , Tn). We let r = tr.dkK and use induction on n − r. If the latter is zero, T1, . . . , Tr are already
an STB; so, assume n = r + 1 (this turns out to be the essential case). Now T1, . . . , Tr+1 are algebraically
dependent and, by rearranging their order, we may assume T1, . . . , Tr are a transcendence base. Then there is
a polynomial of smallest degree in Xn+1 coefficients in k[X1, . . . , Xr] having content 1, say f(X1, . . . , Xr+1),
so that f(T1, . . . , Tr, Tr+1) = 0. The degree of this polynomial in Xr+1 must be positive and if its lead-
ing coefficient is a0(X1, . . . , Xr), we can localize k[X1, . . . , Xr] with respect to a0 and make f monic in
k[X1, . . . , Xr]a0 [Xr+1]. The division algorithm for monic polynomials shows then that if g ∈ k[X1, . . . , Xr+1]
vanishes on T1, . . . , Tr+1, we have

as0g = f · g in k[X1, . . . , Xr+1]

for some s ≥ 0. by unique factorization in k[X1, . . . , Xr+1] it shows further that f is irreducible.

Suppose we could show that f(X1, . . . , Xr+1) /∈ k[Xp
1 , . . . , X

p
r+1]. If so, at least one variable occurs in f

with exponent indivisible by p, call this variable Xi. Then Ti is dependent on T1, . . . , Ti−1, Ti+1, . . . , Tr+1

and the latter must be algebraically independent by Theorem 4.82. Moreover, as the exponent of Ti is not
divisible by p, the element Ti is separable over k(T1, . . . , Ti−1, Ti+1, . . . , Tr+1) and so, T1, . . . , Ti−1, Ti+1, . . .,
Tr+1 form a separating transcendence basis, as required.

We use the separability of K/k to prove that f(X1, . . . , Xr+1) /∈ k[Xp
1 , . . . , X

p
r+1]. Were the contrary

true, there would be a polynomial

f(X1, . . . , Xr+1) = g(Xp
1 , . . . , X

p
r+1).

The monomials m1, . . . ,mt comprising g all have degree less than of f , so the elements m1(T1, . . . , Tr+1), . . .,
mt(T1, . . . , Tr+1) are linearly independent over k. By separability, the elements

m1(T1, . . . , Tr+1)p = m1(T
p
1 , . . . , T

p
r+1), . . . ,mt(T1, . . . , Tr+1)p = mt(T

p
1 , . . . , T

p
r+1)

are still linearly independent over k. Yet the relation

g(T p1 , . . . , T
p
r+1) = f(T1, . . . , Tr+1) = 0

is a non-trivial linear relation among mp
1, . . . ,m

p
t , a contradiction.

For use below, we record what we have just proved:

If K/k is separable, of transcendence degree r, then any set of r+1 elements of K, say T1, . . . , Tr+1, which
contains a transcendence basis for K/k, already contains a separating transcendence basis for k(T1, . . . , Tr+1)
over k. (All wee need note is that, by Remark III above, the field k(T1, . . . , Tr+1) is separable over k.)
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Now, let’s continue with our induction and finish the proof. We have n− r > 1 and we assume separable
generation for all separable field extensions, K/k, generated by less than n − r elements (tr.dkK = r).
By Remark III, k(T1, . . . , Tn−1) is separably generated; so we can take an STB U1, . . . , Ut for it. There
are only two possibilities for t: either t = r − 1 or t = r. Since K is then separable (algebraic) over
k(U1, . . . , Ut, Tn), we need only show the latter field is separably generated over k. But, the transcen-
dence degree of k(U1, . . . , Ut, Tn) over k is r and t + 1 ≤ r + 1 by the above. Again, Remark III shows
k(U1, . . . , Ut, Tn) is separable over k, and so our argument above (summarized in italics above), implies the
required separable generation of k(U1, . . . , Ut, Tn) over k.

We can augment the reasoning in the proof of Theorem 4.89 to obtain a useful theorem of Mac Lane:

Theorem 4.90 (Mac Lane) Suppose K/k is a finitely generated, separable field extension. Then, any set
of generators for K/k already contains a separating transcendence basis for K/k.

Proof . Write r = tr.dK and say K = k(T1, . . . , Tn). We use, as usual, induction on n−r, the case n− r = 0
is trivial and the case n− r = 1 is covered by the italicized statement in the middle of the proof of Theorem
4.89. For the induction step, use the notation of the last part of Theorem 4.89 and note that, by the induction
hypothesis, STB U1, . . . , Ut may be chosen from among T1, . . . , Tn−1. Then the r + 1 = t + 1 generators
U1, . . . , Ut, Tn for k(U1, . . . , Ut, Tn) are among T1, . . . , Tn−1, Tn and so the case n − r = 1 now applies and
finishes the proof.

An important corollary of our theorems is this result:

Corollary 4.91 (F.K. Schmidt) If k is a perfect field, every finitely generated field extension of k is sepa-
rably generated over k.

Proof . We apply Remark II and Theorem 4.89 (or 4.90) to our finitely generated extension of k.
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4.12 Further Readings

Some basics of Galois theory is covered in most algebra texts (see Section 2.9). Emil Artin’s classic [1] is a
must. Other references include Kaplanski [31], Zariski and Samuel [50], Bourbaki (Algebra, Chapter IV) [6],
Lafon [33], Morandi [41], Escofier [14] and Van Der Waerden [47].


