
Problems

“... den Samen in den Wind streuend; fasse, wer es fassen kann”.
—Hermann Weyl

Problem 1

1. Suppose G is a finite group and that AutGr(G) = {1}. (Here, AutGr(G) is the group of all bijections,
G→ G, which are also group homomorphisms.) Find all such groups G.

2. Write Z/2Z for the cyclic group of order 2. If G = Z/2Z
∏

· · ·
∏

Z/2Z, t-times, compute
#
(
AutGr(G)

)
. When t = 2, determine the group AutGr(G). When t = 3, determine the struc-

ture of the odd prime Sylows. Can you decide whether AutGr(G) has any normal subgroups in the
case t = 3?

Problem 2

1. (Poincaré). In an infinite group, prove that the intersection of two subgroups of finite index has finite
index itself.

2. Show that if a group, G, has a subgroup of finite index, then it possesses a normal subgroup of finite
index. Hence, an infinite simple group has no subgroups of finite index.

3. Sharpen (2) by proving: if (G : H) = r, then G possesses a normal subgroup, N , with (G : N) ≤ r!.
Conclude immediately that a group of order 36 cannot be simple.

Problem 3 Let G = GL(n,C) and ∆n be the subgroup of matrices with entries only along the diagonal.
Describe precisely NG(∆n) in terms of what the matrices look like.

Problem 4 Say G is a group and #(G) = prg0, where p is a prime and (p, g0) = 1. Assume

r >

g0−1∑
j=1

∑
k>0

[j/pk]

(
[x] = largest integer ≤ x

)
. Prove that G is not simple. Show that this governs all groups of order < 60,

except for #(G) = 30, 40, 56. We know that #(G) = 30 =⇒ G not simple. Show by explicit argument that
groups of orders 40, 56 are not simple. (Here, of course, by simple we mean non-abelian and simple.)

Problem 5 In a p-group, G, we cannot have

(G : Z(G)) = p.

Show that for non-abelian groups of order p3, Z(G) ∼= Z/pZ and G/Z(G) ∼= Z/pZ
∏

Z/pZ.
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Problem 6 Let G be the group of automorphisms of a regular polyhedron with v vertices, e edges, and f
faces. Show that G has order g = fs = vr = 2e, where s is the number of sides to a face and r is the number
of edges emanating from a vertex. From topology, one knows Euler’s formula

v − e+ f = 2.

Find the only possible values for v, e, f, r, s, g. Make a table.

Problem 7 Let p be a prime number. Find all non-abelian groups of order p3. Get started with the
Burnside basis theorem, but be careful to check that the groups on your list are non-isomorphic. Also make
sure your list is exhaustive. Your list should be a description of the generators of your groups and the
relations they satisfy.

Problem 8 Let G be a finite group and write c(G) for the number of distinct conjugacy classes in G. This
number will increase (in general) as #(G) →∞; so, look at

c(G) =
c(G)
#(G)

.

The number c(G) measures the “average number of conjugacy classes per element of G” and is 1 if G is
abelian. Assume G is non-abelian from now on. Then 0 < c(G) < 1.

1. Prove that for all such G, we have c(G) ≤ 5/8.

2. Suppose p is the smallest prime with p |#(G). Prove that

c(G) ≤ 1
p

+
1
p2
− 1
p3
.

Is the bound of (1) sharp; that is, does there exist a G with c(G) = 5/8? How about the bound of (2)?

Problem 9 If G is a finite group and H a normal subgroup of G, write P for a p-Sylow subgroup of H.

1. Show that the natural injection
NG(P )/NH(P ) → G/H

(why does it exist, why injective?) is actually an isomorphism.

2. Prove that the Frattini subgroup, Φ(G), of ANY finite group, G, has property N (cf. Section 1.3,
Chapter 1).

Problem 10 We’ve remarked that Φ(G) is a kind of “radical” in the group-theoretic setting. In this problem
we study various types of radicals.
A normal subgroup, H, of G is called small iff for every X�G, the equality H ·X = G implies that X = G.
(Note: {1} is small, Φ(G) is small; so they exist.) Check that if H and L are small, so is HL, and if H is
small and K �G, then K ⊆ H =⇒ K is small.

1. The small radical of G, denoted J ∗∗(G), is

J ∗∗(G) =
{
x ∈ G

∣∣Gp{Cl(x)} is small
}
.

(Here, Cl(x) is the conjugacy class of x in G, and Gp{S} is the group generated by S.) Prove that
J ∗∗(G) is a subgroup of G.

2. The Jacobson radical of G, denoted J ∗(G), is the intersection of all maximal, normal subgroups of G;
while the Baer radical of G, denoted J (G), is the product (inside G) of all the small subgroups of G.
Prove

J ∗∗(G) ⊆ J (G) ⊆ J ∗(G).



PROBLEMS 345

3. Prove Baer’s Theorem: J ∗∗(G) = J (G) = J ∗(G). (Suggestion: if x �∈ J ∗∗(G), find N �G (�= G) so
that Gp{Cl(x)}N = G. Now construct an appropriate maximal normal subgroup not containing x.)

Problem 11 Recall that a characteristic subgroup is one taken into itself by all automorphisms of the
group.

1. Prove that a group possessing no proper characteristic subgroups is isomorphic to a product of iso-
morphic simple groups. (Hints: Choose G̃ of smallest possible order (> 1) normal in G. Consider all
subgroups, H, for which H ∼= G1

∏
· · ·

∏
Gt, where each Gj �G and each Gj

∼= G̃. Pick t so that
#(H) is maximal. Prove that H is characteristic. Show K �G1 (say) =⇒ K �G.)

2. Prove: In every finite group, G, a minimal normal subgroup, H, is either an elementary abelian p-group
or is isomorphic to a product of mutually isomorphic, non-abelian, simple groups.

3. Show that in a solvable group, G, only the first case in (2) occurs.

Problem 12 Let G be a finite p-group and suppose ϕ ∈ Aut(G) has order n (i.e., ϕ
(
ϕ(· · · (ϕ(x)) · · · )

)
= Id,

all x ∈ G: we do ϕ n-times in succession and n is minimal). Suppose (n, p) = 1. Now ϕ induces an
automorphism of G/Φ(G), call it ϕ, as Φ(G) is characteristic. Remember that G/Φ(G) is a vector space
over Fp; so, ϕ ∈ GL

(
G/Φ(G)

)
.

1. Prove ϕ = identity ⇐⇒ ϕ = identity.

2. Show that if d is the Burnside dimension of G, then

#
(
GL(G/Φ(G))

)
= p

d(d−1)
2

d∏
k=1

(pk − 1),

and that if P is a p-Sylow subgroup of GL
(
G/Φ(G)

)
, then P ⊆ SL

(
G/Φ(G)

)
; i.e., σ ∈ P =⇒

det(σ) = 1.

3. Let P = {ϕ ∈ Aut(G) | ϕ ∈ P, no restriction on the order of ϕ}. Show that P is a p-subgroup of
Aut(G).

4. Call an element σ ∈ GL
(
G/Φ(G)

)
liftable iff it is ϕ for some ϕ ∈ Aut(G). Examine all G of order

p, p2, p3 to help answer the following: Is every σ liftable? If not, how can you tell (given σ) if σ is
liftable?

Problem 13 Let p be a prime number and consider a set, S, of p objects: S = {α1, . . . , αp}. Assume G
is a transitive group of permutations of S (i.e., the elements of S form an orbit under G); further assume
(α1α2) ∈ G (here (α1α2) is the transposition). Prove: G = Sp. (Suggestion: let M = {αj |(α1αj) ∈ G},
show if σ ∈ Sp and σ = 1 outside M then σ ∈ G. Now prove #(M)| p.)

Problem 14 A Fermat prime, p, is a prime number of the form 2α + 1. E.g., 2, 3, 5, 17, 257, . . ..

1. Show if 2α + 1 is prime then α = 2β .

2. Say p is a Fermat prime (they are quite big) and g0 is an odd number with g0 < p. Prove that any
group of order g0p is isomorphic to a product G0

∏
(Z/pZ), where #(G0) = g0. Hence, for example,

the groups of orders 51(= 3 ·17), 85(= 5 ·17), 119(= 7 ·17), 153(= 9 ·17), 187(= 11 ·17), 221(= 13 ·17),
255(= 3 · 5 · 17) are all abelian. Most we knew already, but 153 = 32 · 17 and 255 = 3 · 5 · 17 are new.

3. Generalize to any prime, p, and g0 < p, with p �≡ 1 mod g0. For example, find all groups of order 130.

Problem 15 Recall that a group, G, is finitely generated (f.g.) iff (∃σ1, . . . , σn ∈ G)(G = Gp{σ1, . . . , σn}).
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1. If G is an abelian f.g. group, prove each of its subgroups is f.g.

2. In an arbitrary group, G, an element σ ∈ G is called n-torsion (n ∈ N) ⇐⇒ σn = 1; σ is torsion iff
it is n-torsion for some n ∈ N. The element σ ∈ G is torsion free ⇐⇒ it is not torsion. Show that in
an abelian group, the set

t(G) = {σ ∈ G | σ is torsion}

is a subgroup and that G/t(G) is torsion free (i.e., all its non-identity elements are torsion free).

3. In the solvable group 0 → Z → G→ Z/2Z → 0 (split extension, non-trivial action) find two elements
x, y satisfying: x2 = y2 = 1 and xy is torsion free. Can you construct a group, G̃, possessing elements
x, y of order 2, so that xy has order n, where n is predetermined in N? Can you construct G̃ solvable
with these properties?

4. Back to the abelian case. If G is abelian and finitely generated show that t(G) is a finite group.

5. Say G is abelian, f.g., and torsion-free. Write d for the minimal number of generators of G. Prove that
G is isomorphic to a product of d copies of Z.

6. If G is abelian and f.g., prove that
G ∼= t(G)

∏(
G/t(G)

)
.

Problem 16 Let (P) be a property of groups. We say a group, G, is locally (P) ⇐⇒ each f.g. subgroup
of G has (P). Usually, one says a locally cyclic group is a rank one group.

1. Prove that a rank one group is abelian.

2. Show that the additive group of rational numbers, Q+, is a rank one group.

3. Show that every torsion-free, rank one group is isomorphic to a subgroup of Q+.

Problem 17 Fix a group, G, and consider the set, Mn(G), of n × n matrices with entries from G or
so that αij = 0 (i.e., entries are 0 or from G). Assume for each row and each column there is one and
only one non-zero entry. These matrices form a group under ordinary “matrix multiplication” if we define
0 · group element = group element · 0 = 0. Establish an isomorphism of this group with the wreath product
Gn �Sn. As an application, for the subgroup of GL(n,C) consisting of diagonal matrices, call it ∆n, show
that

NG(∆n) ∼= Cn �Sn, here G = GL(n,C).

Problem 18

1. Say G is a simple group of order n and say p is a prime number dividing n. If σ1, . . . , σt is a listing of
the elements of G of exact order p, prove that G = Gp{σ1, . . . , σt}.

2. Suppose G is any finite group of order n and that d is a positive integer relatively prime to n. Show
that every element of G is a dth power.

Problem 19 We know that when G is a (finite) cyclic group, and A is any G-module, we have an isomor-
phism

AG/N (A) ∼−→ H2(G,A).

This problem is designed to lead to a proof. There are other proofs which you might dig out of books (after
some effort), but do this proof.
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1. Suppose G is any group and A, B, C are G-modules. Suppose further, we are given a G-pairing of
A
∏
B → C i.e., a map

θ : A
∏

B → C

which is bi-additive and “G-linear”:
σθ(a, b) = θ(σa, σb).

If f , g are r-, s-cochains of G with values in A, B (respectively), we can define an (r + s)-cochain of
G with values in C via the formula:

(f �θ g)(σ1, . . . , σr, σr+1, . . . , σr+s) = θ
(
f(σ1, . . . , σr), σ1 . . . σrg(σr+1, . . . , σr+s)

)
.

Prove that δ(f �θ g) = δf �θ g + (−1)rf �θ δg. Show how you conclude from this that we have a
pairing of abelian groups

�θ: Hr(G,A)
∏

Hs(G,B) → Hr+s(G,C).

(Notation and nomenclature: α �θ β, cup-product.)

2. Again G is any group, this time finite. Let Z and Q/Z be G-modules with trivial action. Consider
the abelian group Homgr(G,Q/Z) = G̃, where addition in G̃ is by pointwise operation on functions. If
χ ∈ G̃, then χ(σ) ∈ Q/Z, all σ ∈ G. Show that the function

fχ(σ, τ) = δχ(σ, τ) = σχ(τ)− χ(στ) + χ(σ)

has values in Z and actually is a 2-cocycle with values in Z. (This is an example of the principle: If it
looks like a coboundary, it is certainly a cocycle.) The map

χ ∈ G̃ → cohomology class of fχ(σ, τ) (†)

gives a homomorphism G̃→ H2(G,Z).
Now any 2-cocycle g(σ, τ) with values in Z can be regarded as a 2-cocycle with values in Q (corre-
sponding to the injection Z ↪→ Q). Show that as a 2-cocycle in Q it is a coboundary (of some h(σ),
values in Q). So, g(σ, τ) = δh(σ, τ), some h. Use this construction to prove:

For any finite group, G, the map (†) above gives an isomorphism of G̃ with H2(G,Z).

3. Now let G be finite, A be any G-module, and Z have the trivial G-action. We have an obvious G-pairing
Z
∏
A→ A, namely (n, a) → na, hence by (1) and (2) we obtain a pairing

G̃(= H2(G,Z))
∏

AG → H2(G,A).

Show that if ξ = Nα, for α ∈ A, then (χ, ξ) goes to 0 in H2(G,A); hence, we obtain a pairing:

G̃
∏

(AG/NA) → H2(G,A).

(Hint: If f(σ, τ) is a 2-cocycle of G in A, consider the 1-cochain uf (τ) =
∑

σ∈G f(σ, τ). Using the
cocycle condition and suitable choices of the variables, show the values of uf are in AG and that uf is
related to N f , i.e., N f(τ, ρ) =

∑
σ σf(τ, ρ) can be expressed by uf .)

4. Finally, when G is cyclic, we pick a generator σ0. There exists a distinguished element, χ0, of G̃
corresponding to σ0, namely χ0 is that homomorphism G→ Q/Z whose value at σ0 is 1

n mod Z, where
n = #(G). Show that the map

AG/NA→ H2(G,A)

via
α → (χ0, α) → δχ0 � α ∈ H2(G,A)

is the required isomorphism. For surjectivity, I suggest you consider the construction of uf in part (3)
above.
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Problem 20 Let G = SL(2,Z) be the group of all 2 × 2 integral matrices of determinant 1; pick a prime,
p, and write U for the set of 2× 2 integral matrices having determinant p. G acts on U via u(∈ U) → σu,
where σ ∈ G.

1. Show that the orbit space has p+ 1 elements: 0, 1, . . . , p− 1,∞, where j corresponds to the matrix

wj =
(

1 j
0 p

)

and ∞ corresponds to the matrix w∞ =
(
p 0
0 1

)
.

2. If τ ∈ G and r ∈ S = {0, 1, . . . , p − 1,∞} = G\U , show there exists a unique r′ ∈ S with wrτ
−1 in

the orbit of wr′ . Write τ · r = r′ and prove this gives an action of G on S. Hence, we have a group
homomorphism P : G→ Aut(S) = Sp+1.

3. If N = kerP , prove that G/N is isomorphic to the group PSL(2,Fp) consisting of all “fractional linear
transformations”

x → x′ =
ax+ b

cx+ d
, a, b, c, d ∈ Fp, ad− bc = 1.

Show further that

i. #
(
PSL(2,Fp)

)
=

{
p(p+ 1)(p− 1)

2
if p �= 2

6 if p = 2

and

ii. PSL(2,Fp) acts transitively on S under the action of (2).

4. Now prove: PSL(2,Fp) is simple if p ≥ 5. (Note: PSL(2,F3) is A4, PSL(2,F5) is A5, but PSL(2,Fp) is
not An if p ≥ 7. So, you now have a second infinite collection of simple finite groups—these are finite
group analogs of the Lie groups PSL(2,C)).

Problem 21 We write PSL(2,Z) for the group SL(2,Z)/(±I).

(1) Let ξ be a chosen generator for Z/3Z and η the generator of Z/2Z. Map Z/3Z and Z/2Z to PSL(2,Z)
via

ϕ(ξ) = x =
(

0 −1
1 1

)
(mod ± I)

and

ψ(η) = y =
(

0 −1
1 0

)
(mod ± I)

Then we obtain a map
ϕ� ψ : Z/3Z� Z/2Z −→ PSL(2,Z)

(here, the coproduct is in the category Grp). What is the image of ϕ� ψ? What is the kernel?

(2) If

a =
(

1 1
0 1

)
and b =

(
1 0
1 1

)
in PSL(2,Z)

express x and y above (in SL(2,Z)) in terms of a and b and show that SL(2,Z) = Grp{a, b}. Can you express
a and b in terms of x and y?
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(3) For any odd prime number, p, the element

σ(p) =
(

1 p−1
2

0 1

)
is equal to a(p−1)/2. For any σ ∈ SL(2,Z), we define the weight of σ with respect to a and b by

wt(σ) = inf(length of all words in a, b, a−1, b−1, which words equal σ)

By deep theorems of Selberg, Margulis and others (in geometry and analysis) one knows that

wt(σ(p)) = O(log p) as p→∞.

(Our expression for σ(p) as a power of a shows that we have a word of size O(p) for σ(p), yet no explicit word
of size O(log p) is known as of now (Fall, 2005) and the role of b in this is very mysterious.) Now the Cayley
graph of a group, G, generated by the elements g1, . . . , gt is that graph whose vertices are the elements of G
and whose edges emanating from a vertex τ ∈ G are the ones connecting τ and τg1, . . . , τgt. Show that the
diameter of the Cayley graph of the group SL(2,Z/pZ) with respect to the generators a and b is O(log p).

Problem 22 Let G be a finite group in this problem.

1. Classify all group extensions
0 → Q → G → G→ 0. (E)

Your answer should be in terms of the collection of all subgroups of G, say H, with (G : H) ≤ 2, plus,
perhaps, other data.

2. Same question as (1) for group extensions

0 → Z → G → G→ 0, (E)

same kind of answer.

3. Write V for the “four-group” Z/2Z
∏

Z/2Z. There are two actions of Z/2Z on V : Flip the factors,
take each element to its inverse. Are these the only actions? Find all group extensions

0→ V → G → Z/pZ → 0. (E)

The group G is a group of order 8; compare your results with what you know from Problems 1–6.

4. Say H is any other group, G need no longer be finite and A, B are abelian groups. Suppose ϕ : H → G
is a homomorphism and we are given a group extension

0 → A→ G → G→ 0. (E)

Show that, in a canonical way, we can make a group extension

0 → A→ G̃ → H → 0. (ϕ∗E)

(Note: your answer has to be in terms of G, H, G and any homomorphisms between them as these are
the only “variables” present. You’ll get the idea if you view an extension as a fibre space.)

Now say ψ : A→ B is a group homomorphism and we are given an extension

0 → A→ G → G→ 0. (E)

Construct, in a canonical way, an extension

0 → B → G̃ → G→ 0. (ψ∗E)
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5. Explain, carefully, the relevance of these two constructions to parts (1) and (2) of this problem.

Problem 23 Say A is any abelian group, and write G for the wreath product An �Sn. Show:

1. [G,G] �= G

2.
(
G : [G,G]

)
= ∞ ⇐⇒ A is infinite

3. If n ≥ 2, then [G,G] �= {1}.

4. Give a restriction on n which prevents G from being solvable.

Problem 24 If {Gα}α∈Λ is a family of abelian groups, write
∐
α

Gα for

∐
α

Gα =
{

(ξα) ∈
∏
α

Gα | for all but finitely many α, we have ξα = 0
}
.

Then
∐

αGα is the coproduct of the Gα in Ab. Write as well

(Q/Z)p = {ξ ∈ Q/Z | prξ = 0, some r > 0};

here, p is a prime. Further, call an abelian group, A, divisible iff

(∀n)(A n−→ A→ 0 is exact).

Prove: Theorem Every divisible (abelian) group is a coproduct of copies of Q and (Q/Z)p for various primes
p. The group is torsion iff no copies of Q appear, it is torsion-free iff no copies of (Q/Z)p appear (any p).
Every torsion-free, divisible, abelian group is naturally a vector space over Q.

Problem 25

1. If G is a group of order n, show that G �Aut(G) is isomorphic to a subgroup of Sn.

2. Consider the cycle (1, 2, . . . , n) ∈ Sn; let H be the subgroup (of Sn) generated by the cycle. Prove
that

NSn
(H) ∼= (Z/nZ) �Aut(Z/nZ).

Problem 26 Let TOP denote the category of topological spaces.

1. Show that TOP possesses finite fibred products and finite fibred coproducts.

2. Is (1) true without the word “finite”?

3. Write T2TOP for the full subcategory of TOP consisting of Hausdorff topological spaces. Are (1) and
(2) true in T2TOP? If you decide the answer is “no”, give reasonable conditions under which a positive
result holds. What relation is there between the product (coproduct) you constructed in (1) (or (2))
and the corresponding objects in this part of the problem?

Problem 27 Let R be a ring (not necessarily commutative) and write Mod(R) for the category of (left)
R-modules; i.e., the action of R on a module, M , is on the left. We know Mod(R) has finite products and
finite fibred products.

1. What is the situation for infinite products and infinite fibred products?

2. What is the situation for coproducts (finite or infinite) and for fibred coproducts (both finite and
infinite)?
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Problem 28 As usual, write Gr for the category of groups. Say G and G′ are groups and ϕ : G → G′ is
a homomorphism. Then (G,ϕ) ∈ GrG′ , the comma category of “groups over G′”. The group {1} possess a
canonical morphism to G′, namely the inclusion, i. Thus,

(
{1}, i

)
∈ GrG′ , as well. We form their product in

GrG′ , i.e., we form the fibred product G
∏
G′
{1}. Prove that there exists a canonical monomorphism

G
∏
G′
{1} → G.

Identify its image in G.
Now consider the “dual” situation: G′ maps to G, so G ∈ GrG′

(via ϕ) the “groups co-over G′”. We also have
the canonical map G′ → {1}, killing all the elements of G′; so, as above, we can form the fibred coproduct

of G and {1}: G
G′

� {1}. Prove that there exists a canonical epimorphism

G→ G
G′

� {1},

identify its kernel in G.

Problem 29 Write CR for the category of commutative rings with unity and RNG for the category of rings
with unity.

1. Consider the following two functors from CR to Sets:

(a) |Mpq| : A� underlying set of p× q matrices with entries from A

(b) |GLn| : A� underlying set of all invertible n× n matrices with entries from A.

Prove the these two functors are representable.

2. A slight modification of (b) above yields a functor from CR to Gr: namely,

GLn : A� group of all invertible n× n matrices with entries from A.

When n = 1, we can extend this to a functor from RNG to Gr. That is we get the functor

Gm : A� group of all invertible elements of A.

Prove that the functor Gm has a left adjoint, let’s temporarily call it (†); that is: There is a functor
(†) from Gr to RNG, so that

(∀G ∈ Gr)(∀R ∈ RNG)(HomRNG((†)(G), R) ∼= HomGr(G,Gm(R))),

via a functorial isomorphism.

3. Show that without knowing what ring (†)(G) is, namely that it exists and that (†) is left adjoint to Gm,
we can prove: the category of (†)(G)-modules, Mod

(
(†)(G)

)
, is equivalent—in fact isomorphic—to the

category of G-modules.

4. There is a functor from Gr to Ab, namely send G to Gab = G/[G,G]. Show this functor has a right
adjoint, call it I. Namely, there exists a functor I : Ab → Gr, so that

(∀G ∈ Gr)(∀H ∈ Ab)(HomGr(G, I(H)) ∼= HomAb(Gab,H)).

Does G� Gab have a left adjoint?
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Problem 30 (Kaplansky) If A and B are 2×2-matrices with entries in Z, we embed A and B into the 4×4
matrices as follows:

Aaug =
(

0 I
A 0

)
Baug =

(
0 I
B 0

)
.

Is it true that if Aaug and Baug are similar over Z, then A and B are similar over Z? Proof or counter-
example. What about the case where the entries lie in Q?

Problem 31 We fix a commutative ring with unity, A, and write M for Mpq(A), the p× q matrices with
entries in A. Choose a q × p matrix, Γ, and make M a ring via:

Addition: as usual among p× q matrices
Multiplication: if R,S ∈M, set R ∗ S = RΓS, where RΓS is the ordinary product of matrices.

Write M(Γ) for M with these operations, then M(Γ) is an A-algebra (a ring which is an A-module).

1. Suppose that A is a field. Prove that the isomorphism classes of M(Γ)’s are finite in number (here
p and q are fixed while Γ varies); in fact, are in natural one-to-one correspondence with the integers
0, 1, 2, . . . , B where B is to be determined by you.

2. Given two q × p matrices Γ and Γ̃ we call them equivalent iff Γ̃ = WΓZ, where W ∈ GL(q,A) and
Z ∈ GL(p,A). Prove: each Γ is equivalent to a matrix(

Ir 0
0 H

)
where Ir = r× r identity matrix and the entries of H are non-units of A. Is r uniquely determined by
Γ? How about the matrix H?

3. Call the commutative ring, A, a local ring provided it possesses exactly one maximal ideal, mA. For
example, any field is a local ring; the ring Z/pnZ is local if p is a prime; other examples of this large,
important class of rings will appear below. We have the descending chain of ideals

A ⊇ mA ⊇ m2
A ⊇ · · · .

For some local rings one knows that
⋂
t≥0

mt
A = (0); let’s call such local rings “good local rings” for

temporary nomenclature. If A is a good local ring, we can define a function on A to Z ∪ {∞}, call it
ord, as follows:

ord(ξ) = 0 if ξ �∈ mA

ord(ξ) = n if ξ ∈ mn
A but ξ �∈ mn+1

A

ord(0) =∞.

The following properties are simple to prove:

ord(ξ ± η) ≥ min{ord(ξ), ord(η)}
ord(ξη) ≥ ord(ξ) + ord(η).

Consider the q × p matrices under equivalence and look at the following three conditions:

(i) Γ is equivalent to
(
Ir 0
0 H

)
, with H = (0)
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(ii) Γ is equivalent to
(
Ir 0
0 H

)
with H having non-unit entries and r ≥ 1

(iii) (∃Q ∈M)(ΓQΓ = Γ).

Of course, i. =⇒ ii. if Γ �= (0), A any ring. Prove: if A is any (commutative) ring then i. =⇒ iii., and
if A is good local i. and iii. are equivalent. Show further that if A is good local then M(Γ) possesses
a non-trivial idempotent, P , (an element such that P ∗ P = P , P �= 0, �= 1) if and only if Γ has ii.

4. Write I = {U ∈M(Γ) | ΓUΓ = 0} and given P ∈M(Γ), set

B(P ) = {V ∈M(Γ) | (∃Z ∈M(Γ))(V = P ∗ Z ∗ P )}.

If iii. above holds, show there exists P ∈M(Γ) so that P ∗ P = P and ΓPΓ = Γ. For such a P , prove
that B(P ) is a subring of M(Γ), that M(Γ) ∼= B(P ) � I in the category of A-modules, and that I
is a two-sided ideal of M(Γ) (by exhibiting I as the kernel of a surjective ring homomorphism whose
image you should find). Further show if i. holds, then B(P ) is isomorphic to the ring of r× r matrices
with entries from A. When A is a field show I is a maximal 2-sided ideal of M(Γ), here Γ �= (0). Is I
the unique maximal (2-sided) ideal in this case?

5. Call an idempotent, P , of a ring maximal (also called principal) iff when L is another idempotent,
then PL = 0 =⇒ L = 0. Suppose Γ satisfies condition iii. above, prove that an idempotent, P , of
M(Γ) is maximal iff ΓPΓ = Γ.

Problem 32 Let A be the field of real numbers R and conserve the notations of Problem 31. Write X for
a p× q matrix of functions of one variable, t, and consider the Γ-Riccati Equation

dX

dt
= XΓX. ((∗)Γ)

1. If q = p and Γ is invertible, show that either the solution, X(t), blows up at some finite t, or else X(t)
is equivalent to a matrix

X̃(t) =


0 O(1) O(t) . . . O(tp−1)
0 0 O(1) . . . O(tp−2)

. . . . . . . . . . .
0 0 0 . . . 0

 ,

where O(ts) means a polynomial of degree ≤ s. Hence, in this case, X(t) must be nilpotent.

2. Suppose q �= p and Γ has rank r. Let P be an idempotent of M(Γ) with ΓPΓ = Γ. If Z ∈M(Γ), write
Z� for Z − P ∗ Z ∗ P ; so Z� ∈ I. Observe that I has dimension pq − r2 as an R-vector space. Now
assume that for a solution, X(t), of (∗)Γ, we have X(0) ∈ I. Prove that X(t) exists for all t. Can you
give necessary and sufficient conditions for X(t) to exist for all t?

3. Apply the methods of (2) to the case p = q but r = rank Γ < p. Give a similar discussion.

Problem 33 A module, M , over a ring, R, is called indecomposable iff we cannot find two submodules M1

and M2 of M so that M ∼−→M1 �M2 in the category of R-modules.

1. Every ring is a module over itself. Show that if R is a local ring, then R is indecomposable as an
R-module.

2. Every ring, R, with unity admits a homomorphism Z → R (i.e., Z is an initial object in the category
RNG). The kernel of Z → R is the principal ideal nZ for some n ≥ 0; this n is the characteristic of R.
Show that the characteristic of a local ring must be 0 or a prime power. Show by example that every
possibility occurs as a characteristic of some local ring.
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3. Pick a point in R or C; without loss of generality, we may assume this point is 0. If f is a function we
say f is locally defined at 0 iff f has a domain containing some (small) open set, U , about 0 (in either
R or C). Here, f is R- or C-valued, independent of where its domain is. When f and g are locally
defined at 0, say f makes sense on U and g on V , we’ll call f and g equivalent at 0 ⇐⇒ there exists
open W , 0 ∈W , W ⊆ U ∩ V and f �W = g �W . A germ of a function at 0 is an equivalence class of
a function. If we consider germs of functions that are at least continuous near 0, then when they form
a ring they form a local ring.
Consider the case C and complex valued germs of holomorphic functions at 0. This is a local ring.
Show it is a good local ring.
In the case R, consider the germs of real valued Ck functions at 0, for some k with 0 ≤ k ≤ ∞. Again,
this is a local ring; however, show it is NOT a good local ring.
Back to the case C and the good local ring of germs of complex valued holomorphic functions at 0.
Show that this local ring is also a principal ideal domain.

In the case of real valued C∞ germs at 0 ∈ R, exhibit an infinite set of germs, each in the maximal
ideal, no finite subset of which generates the maximal ideal (in the sense of ideals). These germs are
NOT to belong to m2.

Problem 34 Recall that for every integral domain, A, there is a field, Frac(A), containing A minimal among
all fields containing A. If B is an A-algebra, an element b ∈ B is integral over A ⇐⇒ there exists a monic
polynomial, f(X) ∈ A[X], so that f(b) = 0. The domain, A, is integrally closed in B iff every b ∈ B which
is integral over A actually comes from A (via the map A → B). The domain, A, is integrally closed (also
called normal) iff it is integrally closed in Frac(A). Prove:

1. A is integrally closed ⇐⇒ A[X]/
(
f(X)

)
is an integral domain for every MONIC irreducible polyno-

mial, f(X).

2. A is a UFD ⇐⇒ A possesses the ACC on principal ideals and A[X]/
(
f(X)

)
is an integral domain for

every irreducible polynomial f(X). (It follows that every UFD is a normal domain.)

3. If k is a field and the characteristic of k is not 2, show that A = k[X,Y,Z,W ]/(XY −ZW ) is a normal
domain. What happens if char(k) = 2?

Problem 35 Suppose that R is an integral domain and F is its fraction field, Frac(R). Prove that, as
R-module, the field F is “the” injective hull of R. A sufficient condition that F/R be injective is that R be
a PID. Is this condition necessary? Proof or counter-example.

Problem 36 If A is a ring, write End∗(A) for the collection of surjective ring endomorphisms of A. Suppose
A is commutative and noetherian, prove End∗(A) = Aut(A).

Problem 37 Write M(n,A) for the ring of all n × n matrices with entries from A (A is a ring). Suppose
K and k are fields and K ⊇ k.

1. Show that if M,N ∈ M(n, k) and if there is a P ∈ GL(n,K) so that PMP−1 = N , then there is a
Q ∈ GL(n, k) so that QMQ−1 = N .

2. Prove that (1) is false for rings B ⊇ A via the following counterexample:
A = R[X,Y ]/(X2 + Y 2 − 1), B = C[X,Y ]/(X2 + Y 2 − 1). Find two matrices similar in M(2, B) but
NOT similar in M(2, A).

3. Let Sn be the n-sphere and represent Sn ⊆ Rn+1 as {(z0, . . . , zn) ∈ Rn+1 |
∑n

j=0 z
2
j = 1}. Show

that there is a natural injection of R[X0, . . . , Xn]/(
∑n

j=0X
2
j − 1) into C(Sn), the ring of (real valued)

continuous functions on Sn. Prove further that the former ring is an integral domain but C(Sn) is not.
Find the group of units in the former ring.
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Problem 38 (Rudakov) Say A is a ring and M is a rank 3 free A-module. Write Q for the bilinear form
whose matrix (choose some basis for M) is 1 a b

0 1 c
0 0 1

 .

Thus, if v = (x, y, z) and w = (ξ, η, ζ), we have

Q(v, w) = (x, y, x)

1 a b
0 1 c
0 0 1

ξη
ζ

 .

Prove that Q(w, v) = Q(v,Bw) with B = I + nilpotent ⇐⇒ a2 + b2 + c2 = abc.

Problem 39 Let M be a Λ-module (Λ is not necessarily commutative) and say N and N ′ are submodules
of M .

1. Suppose N +N ′ and N ∩N ′ are f.g. Λ-modules. Prove that both N and N ′ are then f.g. Λ-modules.

2. Give a generalization to finitely many submodules, N1, . . . , Nt of M .

3. Can you push part (2) to an infinite number of Nj?

4. If M is noetherian as a Λ-module, is Λ necessarily noetherian as a ring (left noetherian as M is a left
module)? What about Λ = Λ/Ann(M)?

Problem 40 Suppose that V is a not necessarily finite dimensional vector space over a field, k. We assume
given a map from subsets, S, of V to subspaces, [S], of V which map satisfies:

(a) For every S, we have S ⊆ [S]

(b) [ ] is monotone; that is, S ⊆ T implies [S] ⊆ [T ].

(c) For every S, we have [S] = [[S]]

(d) If W is a subspace of V and W �= V , then [W ] �= V .

(1) Under conditions (a)—(d), prove that [S] = SpanS.

(2) Give counter-examples to show that the result is false if we remove either (a) or (d). What about (b)
or (c)?

(3) What happens if we replace k by a ring R, consider subsets and submodules and replace SpanS by
the R-module generated by S?

Problem 41 (Continuation of Problem 34)

1. Consider the ring A(n) = C[X1, . . . , Xn]/(X2
1 + · · · +X2

n). There is a condition on n, call it C(n), so
that A(n) is a UFD iff C(n) holds. Find explicitly C(n) and prove the theorem.

2. Consider the ring B(n) = C[X1, . . . , Xn]/(X2
1 +X2

2 +X3
3 + · · ·+X3

n). There is a condition on n, call
it D(n), so that B(n) is a UFD iff D(n) holds. Find explicitly D(n) and prove the theorem.

3. Investigate exactly what you can say if C(n) (respectively D(n)) does not hold.

4. Replace C by R and answer (1) and (2).
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5. Can you formulate a theorem about the ring A[X,Y ]/
(
f(X,Y )

)
of the form A[X,Y ]/

(
f(X,Y )

)
is a

UFD provided f(X,Y ) · · · ? Here, A is a given UFD and f is a polynomial in A[X,Y ]. Your theorem
must be general enough to yield (1) and (2) as easy consequences. (You must prove it too.)

Problem 42 (Exercise on projective modules) In this problem, A ∈ Ob(CR).

1. Suppose P and P ′ are projective A-modules, and M is an A-module. If

0 → K →P →M → 0 and
0 → K ′ →P ′ →M → 0

are exact, prove that K ′ � P ∼= K � P ′.

2. If P is a f.g. projective A-module, write PD for the A-module HomA(P,A). We have a canonical map
P → PDD. Prove this is an isomorphism.

3. Again, P is f.g. projective; suppose we’re given an A-linear map µ : EndA(P ) → A. Prove: there
exists a unique element f ∈ EndA(P ) so that (∀h ∈ EndA(P ))(µ(h) = tr(hf)). Here, you must define
the trace, tr, for f.g. projectives, P , as a well-defined map, then prove the result.

4. Again, P is f.g. projective; µ is as in (3). Show that µ(gh) = µ(hg) ⇐⇒ µ = a tr for some a ∈ A.

5. Situation as in (2), then each f ∈ EndA(P ) gives rise to fD ∈ EndA(PD). Show that tr(f) = tr(fD).

6. Using categorical principles, reformulate (1) for injective modules and prove your reformulation.

Problem 43 Suppose K is a commutative ring and a, b ∈ K. Write A = K[T ]/(T 2 − a); there is an
automorphism of A (the identity on K) which sends t to −t, where t is the image of T in A. If ξ ∈ A, we
write ξ for the image of ξ under this automorphism. Let H(K; a, b) denote the set

H(K; a, b) =

{(
ξ bη

η ξ

) ∣∣∣∣∣ ξ, η ∈ A
}
,

this is a subring of the 2 × 2 matrices over A. Observe that q ∈ H(K; a, b) is a unit there iff q is a unit of
the 2× 2 matrices over A.

1. Consider the non-commutative polynomial ring K〈X,Y 〉. There is a 2-sided ideal, I, in K〈X,Y 〉
so that I is symmetrically generated vis a vis a and b and K〈X,Y 〉/I is naturally isomorphic to
H(K; a, b). Find the generators of I and establish the explicit isomorphism.

2. For pairs (a, b) and (α, β) decide exactly when H(K; a, b) is isomorphic to H(K;α, β) as objects of the
comma category RNGK .

3. Find all isomorphism classes of H(K; a, b) when K = R and when K = C. If K = Fp, p �= 2 answer
the same question and then so do for F2.

4. When K is just some field, show H(K; a, b) is a “division ring” (all non-zero elements are units) ⇐⇒
the equation X2 − aY 2 = b has no solution in K (here we assume a is not a square in K). What is
the case if a is a square in K?

5. What is the center of H(K; a, b)?

6. For the field K = Q, prove that H(Q; a, b) is a division ring ⇐⇒ the surface aX2 + bY 2 = Z2 has no
points whose coordinates are integers except 0.
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Problem 44

1. If A is a commutative ring and f(X) ∈ A[X], suppose (∃ g(X) �= 0)(g(X) ∈ A[X] and g(X)f(X) = 0).
Show: (∃α ∈ A)(α �= 0 and αf(X) = 0). Caution: A may possess non-trivial nilpotent elements.

2. Say K is a field and A = K[Xij , 1 ≤ i, j ≤ n]. The matrix

M =

X11 . . . X1n

. . . . .
Xn1 . . . Xnn


has entries in A and det(M) ∈ A. Prove that det(M) is an irreducible polynomial of A.

Problem 45 Let A be a commutative noetherian ring and suppose B is a commutative A-algebra which is
f.g. as an A-algebra. If G ⊆ AutA−alg(B) is a finite subgroup, write

BG = {b ∈ B | σ(b) = b, all σ ∈ G}.

Prove that BG is also f.g. as an A-algebra; hence BG is noetherian.

Problem 46 Again, A is a commutative ring. Write RCF(A) for the ring of ∞×∞ matrices all of whose
rows and all of whose columns possess but finitely many (not bounded) non-zero entries. This is a ring
under ordinary matrix multiplication (as you see easily).

1. Specialize to the case A = C; find a maximal two-sided ideal, E , of RCF(C). Prove it is such and is
the only such. You are to find E explicitly. Write E(C) for the ring RCF(C)/E .

2. Show that there exists a natural injection of rings Mn (= n × n complex matrices) ↪→ RCF(C) so
that the composition Mn → E(C) is still injective. Show further that if p | q we have a commutative
diagram

Mp � �

����������
� � �� Mq

��

����������

E(C)

Problem 47 (Left and right noetherian) For parts (1) and (2), let A = Z〈X,Y 〉/(Y X, Y 2)—a
non-commutative ring.

1. Prove that
Z[X] ↪→ Z〈X,Y 〉 → A

is an injection and that A = Z[X] �
(
Z[X]y

)
as a left Z[X]-module (y is the image of Y in A); hence

A is a left noetherian ring.

2. However, the right ideal generated by {Xny | n ≥ 0} is NOT f.g. (prove!); so, A is not right noetherian.

3. Another example. Let

C =

{(
a b
0 c

) ∣∣∣∣∣ a ∈ Z; b, c,∈ Q

}
.

Then C is right noetherian but NOT left noetherian (prove!).

Problem 48 If {Bα, ϕ
β
α} is a right mapping system of Artinian rings and ifB = lim−→α

Bα andB is noetherian,
prove that B is Artinian.
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Problem 49 Suppose that A is a commutative noetherian ring and B is a given A-algebra which is flat and
finite as an A-module. Define a functor IdemB/A(−) which associates to each A-algebra, T the set
IdemB/A(T ) = Idem(B ⊗A T ) consisting of all idempotent elements of the ring B ⊗A T .

(1) Prove the functor IdemB/A is representable.

(2) Show the representing ring, C, is a noetherian A-algebra and that it is étale over A.

Problem 50 (Vector bundles) As usual, TOP is the category of topological spaces and k will be either the
real or complex numbers. All vector spaces are to be finite dimensional. A vector space family over X is an
object, V , of TOPX (call p the map V → X) so that

i. (∀x ∈ X)(p−1(x) (denoted Vx) is a k-vector space)

ii. The induced topology on Vx is the usual topology it has as a vector space over k.

Example: The trivial family X Π kn (fixed n).
Vector space families over X form a category, VF(X), if we define the morphisms to be those morphisms,
ϕ, from TOPX which satisfy:

(∀x ∈ X)(ϕx : Vx →Wx is a linear map.)

1. Say Y θ−→ X is a continuous map. Define a functor θ∗ : VF(X) � VF(Y ), called pullback. When Y
is a subspace of X, the pullback, θ∗(V ), is called the restriction of V to Y , written V � Y .
A vector space family is a vector bundle ⇐⇒ it is locally trivial, that is:
(∀x ∈ X)(∃ open U)(x ∈ U) (so that V � U is isomorphic (in VF(U)) to U Π kn, some n). Let
Vect(X) denote the full subcategory of VF(X) formed by the objects that are vector bundles.

2. Say X is an r-dimensional vector space considered in TOP. Write P(X) for the collection of all
hyperplanes through 0 ∈ X, then P(X) is a topological space and is covered by opens each isomorphic
to an (r − 1)-dimensional vector space. On P(X) we make an element of VF

(
P(X)

)
: W is the set of

pairs (ξ, ν) ∈ P(X) Π XD so that ξ ⊂ ker ν. Here, XD is the dual space of X. Show that W is a line
bundle on P(X).

3. If V ∈ Vect(X) and X is connected, then dim(Vx) is constant on X. This number is the rank of V .

4. A section of V over U is a map σ : U → V � U so that p ◦ σ = idU . Write Γ(U, V ) for the collection of
sections of V over U . Show: If V ∈ Vect(X), each section of V over U is just a compatible family of
locally defined vector valued functions on U . Show further that Γ(U, V ) is a vector space in a natural
way.

5. Say V and W are in Vect(X), with ranks p and q respectively. Show: Hom(V,W ) is isomorphic to the
collection of locally defined “compatible” families of continuous functions U → Hom(kp, kq), via the
local description

ϕ ∈ Hom(V,W )� ϕ̃ : U → Hom(kp, kq),

where ϕ(u, v) =
(
u, ϕ̃(u)(v)

)
. Here, V � U is trivial and v ∈ kp.

Now Iso(kp, kq) = {ψ ∈ Hom(kp, kq) | ψ is invertible} is an open of Hom(kp, kq).

6. Show: ϕ ∈ Hom(V,W ) is an isomorphism ⇐⇒ for a covering family of opens, U(⊆ X), we have
ϕ̃(U) ⊆ Iso(kp, kq) ⇐⇒ (∀x ∈ X)(ϕx : Vx →Wx is an isomorphism).

7. Show {x | ϕx is an isomorphism (here, ϕ ∈ Hom(U, V ))} is open in X.

8. Show all of (1) to (6) go over when X ∈ Ck−MAN (0 ≤ k ≤ ∞) with appropriate modifications; Ck

replacing continuity where it appears.
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Problem 51 (Linear algebra for vector bundles). First just look at finite dimensional vector spaces over k
(remember k is R or C) and say F is some functor from vector spaces to vector spaces (F might even be a
several variable functor). Call F continuous ⇐⇒ the map Hom(V,W ) → Hom

(
F (V ), F (W )

)
is continuous.

(Same definition for Ck, 1 ≤ k ≤ ∞, ω). If we have such an F , extend it to bundles via the following steps:

1. Suppose V is the trivial bundle: X Π kp. As sets, F (X Π kp), is to be just X Π F (kp), so we
give F (X Π kp) the product topology. Prove: If ϕ ∈ Hom(V,W ), then F (ϕ) is continuous, therefore
F (ϕ) ∈ Hom

(
F (V ), F (U)

)
. Show, further, ϕ is an isomorphism =⇒ F (ϕ) is an isomorphism.

2. Set F (V ) =
⋃

x∈X(x, Vx), then the topology on F (V ), when V is trivial, appears to depend on the
specific trivialization. Show this is not true—it is actually independent of same.

3. If V is any bundle, then V � U is trivial for small open U , so by (1) and (2), F (V � U) is a trivial
bundle. Topologize F (V ) by calling a set, Z, open iff Z ∩

(
F (V � U)

)
is open in F (V � U) for all U

where V � U is trivial. Show that if Y ⊆ X, then the topology on F (V � Y ) is just that on F (V ) � Y ,
that ϕ : V →W continuous =⇒ F (ϕ) is continuous and extend all these things to Ck. Finally prove:
If f : Y → X in TOP then f∗

(
F (V )

) ∼= F
(
f∗(V )

)
and similarly in Ck−MAN.

4. If we apply (3) , we get for vector bundles:

(a) V �W , more generally finite coproducts

(b) V D, the dual bundle

(c) V ⊗W
(d) Hom(V,W ), the vector bundle of (locally defined) homomorphisms.

Prove: Γ
(
U,Hom(V,W )

) ∼= Hom(V � U,W � U) for every open, U , of X. Is this true for the bundles
of (a), (b), (c)?

Problem 52 Recall that if R ∈ RNG, J(R)—the Jacobson radical of R— is just the intersection of all (left)
maximal ideals of R. The ideal, J(R), is actually 2-sided.

1. Say J(R) = (0) (e.g., R = Z). Show that no non-projective R-module has a projective cover.

2. Suppose Mi, i = 1, . . . , t are R-modules with projective covers P1, . . . , Pt. Prove that
∐

i Pi is a
projective cover of

∐
iMi.

3. Say M and N are R-modules and assume M and M �N have projective covers. Show that N has one.

4. In M is an R-module, write (as usual) MD = HomR(M,R). Then MD is an Rop-module. Prove that
if M is finitely generated and projective as an R-module, then MD has the same properties as an
Rop-module.

Problem 53 Let {Mα} be a given family of Rop-modules. Define, for R-modules, two functors:

U : N �
((∏

α

Mα

)
⊗R N

)
V : N �

∏
α

(Mα ⊗R N).

1. Show that V is right-exact and is exact iff each Mα is flat over R.

2. Show there exists a morphism of functors θ : U → V . Prove that θN : U(N) → V (N) is surjective if
N is finitely generated, while θN is an isomorphism if N is finitely presented.
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Problem 54 (Continuation of Problems 50 and 51). Let V and W be vector bundles and ϕ : V → W a
homomorphism. Call ϕ a monomorphism (respectively epimorphism) iff
(∀x ∈ X)(ϕx : Vx → Wx is a monomorphism (respectively epimorphism)). Note: ϕ is a monomorphism iff
ϕD : WD → V D is an epimorphism. A sub-bundle of V is a subset which is a vector bundle in the induced
structure.

1. Prove: If ϕ : V → W is a monomorphism, then ϕ(V ) is a sub-bundle of W . Moreover, locally on X,
there exists a vector bundle, G, say on the open U ⊆ X, so that (V � U)�G ∼= W � U (i.e., every sub-
bundle is locally part of a coproduct decomposition of W ). Prove also: {x | ϕx is a monomorphism} is
open in X. (Suggestion: Say x ∈ X, pick a subspace of Wx complementary to ϕ(Vx), call it Z. Form
G = X Π Z. Then there exists a homomorphism V � G → W , look at this homomorphism near the
point x.)

2. Say V is a sub-bundle of W , show that
⋃

x∈X(x,Wx/Vx) (with the quotient topology) is actually a
vector bundle (not just a vector space family) over X.

3. Now note we took a full subcategory of VF(X), so for ϕ ∈ Hom(V,W ) with V,W ∈ Vect(X), the
dimension of kerϕx need not be locally constant on X. When it is locally constant, call ϕ a bundle
homomorphism. Prove that if ϕ is a bundle homomorphism from V to W , then

(i)
⋃

x(x, kerϕx) is a sub-bundle of V

(ii)
⋃

x(x, Imϕx) is a sub-bundle of W , hence

(iii)
⋃

x(x, cokerϕx) is a vector bundle (quotient topology).

We refer to these bundles as kerϕ, Imϕ and cokerϕ, respectively. Deduce from your argument for (i)
that

(iv) Given x ∈ X, there exists an open U , with x ∈ U , so that (∀ y ∈ U)(rankϕy ≥ rankϕx). Of
course, this ϕ is not necessarily a bundle homomorphism.

Problem 55 (Continuation of Problem 54) In this problem, X is compact Hasudorff . We use two results
from analysis:

A) (Tietze extension theorem). If X is a normal space and Y a closed subspace while V is a real vector
space, then every continuous map Y → V admits an extension to a continuous map X → V . Same
result for X ∈ Ck−MAN and Ck maps.

B) (Partitions of unity). Say X is compact Hausdorff and {Uα} is a finite open cover of X. There exist
continuous maps, fα, taking X to R such that

(i) fα ≥ 0, (all α)

(ii) supp(fα) ⊆ Uα (so fα ∈ C0
0 (Uα))

(iii) (∀x ∈ X)(
∑

α fα(x) = 1).

The same is true for Ck−MAN (X compact!) and Ck functions (1 ≤ k ≤ ∞).

1. Extend Tietze to vector bundles: IfX is compact Hausdorff, Y ⊆ X closed and V ∈ Vect(X), then every
section σ ∈ Γ(Y, V �Y ) extends to a section in Γ(X,V ). (Therefore, there exist plenty of continuous
or C∞ global sections of V . FALSE for holomorphic sections). Apply this to the bundle Hom(V,W )
and prove: If Y is closed in X with X (as usual) compact Hausdorff or compact Ck-manifold and if
ϕ : V � Y →W � Y is an isomorphism of vector bundles, then there exists an open, U , with Y ⊆ U , so
that ϕ extends to an isomorphism V � U →W � U .
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2. Every vector space possesses a metric (take any of the p-norms, or take the 2-norm for simplicity). It’s
easy to see that metrics then exist on trivial bundles. In fact, use the 2-norm, so we can “bundleize”
the notion of Hermitian form (Problem 51) and get the bundle Herm(V ). Then an Hermitian metric
on V is a global section of Herm(V ) which is positive definite, at each x ∈ X. Show every bundle
possesses an Hermitian metric.

3. If we are given vector bundles and bundle homomorphisms, we say the sequence

· · · → Vj → Vj+1 → Vj+2 → · · ·

of such is exact iff for each x ∈ X, the sequence of vector spaces

· · · → Vj,x → Vj+1,x → Vj+2,x → · · ·

is exact. Prove: If 0 → V ′ → V → V ′′ → 0 is an exact sequence of vector bundles and bundle
homomorphisms, then V ∼= V ′ � V ′′. (This is not true for holomorphic bundles.)

4. Consider a vector bundle, V , and a subspace, Σ, of the vector space Γ(X,V ). We get the trivial bundle
X Π Σ and a natural homomorphism X Π Σ → V , via

(x, σ) → σ(x).

Prove: If X is compact Hausdorff (or compact Ck−MAN), there exists a finite dimensional subspace,
Σ, of Γ(X,V ) so that the map X Π Σ → V is surjective. Thus there exists a finite dimensional
surjective family of C-(respectively Ck-) sections of V . Use (3) to deduce: Under the usual assumption
on X, for each vector bundle, V , on X, there exists a vector bundle, W , on X, so that V �W is a
trivial bundle.

5. Write C(X) (respectively Ck(X), 1 ≤ k ≤ ∞) for the ring of continuous (respectively Ck) functions
(values in our field) on X, where X is compact Hausdorff (respectively a compact manifold). In a
natural way (pointwise multiplication), Γ(X,V ) is an A-module (A = C(X), Ck(X)), and Γ gives a
functor from vector bundles, V , to Mod(A). Trivial bundles go to free modules of finite rank over A
(why?) Use the results above to prove:

Γ gives an equivalence of categories: Vect(X) (as full subcaregory of V F (X)) and the full
subcategory of A-modules whose objects are f.g. projective modules.

Problem 56

1. Say M is a f.g. Z-module, �= (0). Prove there exists a prime p so that M ⊗Z Z/pZ �= (0). Deduce: No
divisible abelian group [cf. Problem 24] can be f.g.

2. Say M , M ′′ are Z-modules and M is f.g. while M ′′ is torsion free. Given ϕ ∈ Hom(M,M ′′) suppose
(∀primes p)(the induced map M ⊗Z Z/pZ → M ′′ ⊗Z Z/pZ is a monomorphism). Show that ϕ is a
monomorphism and M is free.

3. If M is a divisible abelian group, prove that M possesses no maximal subgroup. Why does Zorn’s
Lemma fail?

Problem 57 Given Λ, Γ ∈ RNG and a ring homomorphism Λ → Γ (thus, Γ is a Λ-algebra), if M is a
Λ-module, then M ⊗Λ Γ has the natural structure of a Γop-module. Similarly, if Z is both a Λop-module and
a Γ-module, then Z ⊗Λ M is still a Γ-module. Now let N be a Γ-module,

1. Prove there is a natural isomorphism

HomΓ(Z ⊗Λ M,N) ∼−→ HomΛ(M,HomΓ(Z,N)). (∗)

Prove, in fact, the functors M � M ⊗Λ Z and N � HomΓ(Z,N) are adjoint functors, i.e., (∗) is
functorial.
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2. Establish an analog of (∗):

HomΓ(M,HomΛ(Z,N)) ∼= HomΛ(Z ⊗Γ M,N) (∗∗)

under appropriate conditions on Z, M and N (what are they?)

3. Show: M projective as a Λop-module, Z projective as a Γop-module =⇒ M ⊗Λ Z is projective as a
Γop-module. In particular, M projective as a Λop-module =⇒ M ⊗Λ Γ is projective as a Γop-module
and of course, the same statement (without the op) for Z ⊗Λ M and Γ⊗Λ M . Show further that, if N
is Λ-injective, then HomΛ(Γ, N) is Γ-injective.

4. For abelian groups, M , write MD = HomZ(M,Q/Z). Then, if M is free, MD is injective as a Z-module
(why?). From this deduce: Every abelian group is a subgroup of an injective abelian group.

5. (Eckmann) Use (3) and (4) to prove the Baer Embedding Theorem: For every ring, Γ, each Γ-module
is a submodule of an injective Γ-module.

Problem 58 Here, A and B are commutative rings and ϕ : A → B a ring homomorphism so that B is an
A-algebra. Assume B is flat (i.e., as an A-module, it’s flat). Define a homomorphism

θ : HomA(M,N)⊗A B → HomB(M ⊗A B,N ⊗A B)

(functorial in M and N)—how?

1. If M is f.g. as an A-module, θ is injective.

2. If M is f.p. as an A-module, θ is an isomorphism.

3. Assume M is f.p. as an A-module, write a for the annihilator of M (= (M → (0))). Prove that a⊗AB
is the annihilator of M ⊗A B in B.

Problem 59 Let k be a field and f be a monic polynomial of even degree in k[X].

1. Prove there exist g, r ∈ k[X] such that f = g2 + r and deg r < 1
2 deg f . Moreover, g and r are unique.

Now specialize to the case k = Q, and suppose f has integer coefficients. Assume f(X) is not the
square of a polynomial with rational coefficients.

2. Prove there exist only finitely many integers, x, such that the value f(x) is a square, say y2, where
y ∈ Z. In which ways can you get the square of an integer, y, by adding 1 to third and fourth powers
of an integer, x?

3. Show there exists a constant, KN , depending ONLY on the degree, N , of f so that:

If all coefficients of f are bounded in absolute value by C (≥ 1) then whenever 〈x, y〉 is a
solution of y2 = f(x) (with x, y ∈ Z) we have |x| ≤ KNC

N .

4. What can you say about the number of points 〈x, y〉 with rational coordinates which lie on the (hyper-
elliptic) curve Y 2 = f(X)?

Problem 60 Consider Mod(Z) and copies of Z indexed by N = {1, 2, . . .}. Form the module
∏
N

Z. It is a

product of ℵ0 projective modules. Show M =
∏
N

Z is not projective as a Z-module. (Suggestions: Establish

that each submodule of a free module over a PID is again free, therefore we need to show M is not free.
Look at

K = {ξ = (ξj) ∈M | (∀n)(∃ k = k(n))(2n | ξj if j > k(n))}.10

This is a submodule of M ; show K/2K is a vector space over Z/2Z of the same dimension as K and finish
up. Of course, 2 could be replaced by any prime). So, products of projectives need not be projective.

10The condition means that limj �→∞ ξj is zero in the “2-adic numbers” Q2.
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Problem 61

1. Say A
θ−→ B is a homomorphism of commutative rings and suppose it makes B a faithfully flat

A-module. Show that θ is injective.

2. Hypotheses as in (1), but also assume B is finitely presented as an A-algebra (e.g., B is finitely
generated and A is noetherian). Show that there exists an A-module, M , so that B ∼= A �M , as
A-modules.

3. Assume A and B are local rings, θ : A→ B is a ring map (N.B. so that we assume
θ(mA) ⊆ mB) and B, as an A-module, is flat. Write N (A), respectively N (B), for the nilradicals of
A, respectively B. [That is,

N (A) =
{
ξ ∈ A | (∃n ∈ N)(ξn = 0)

}
, etc.]

Prove:

(a) If N (B) = (0), then N (A) = (0).

(b) If B is an integral domain, so is A.

Are the converses of (a), (b) true? Proof or counter-example.

Problem 62 Here, I is an index set and S(I) is the set of all finite subsets of I. Partially order S(I) by
inclusion, then it is directed11 Also, let C be a category having finite products or finite coproducts as the
case may be below (e.g., groups, Ω-groups, modules). Say for each α ∈ I we are given an object Mα ∈ C.
For ease of notation below, write MS =

∐
α∈S

Mα and M∗S =
∏

α∈S

Mα, where S ∈ S(I) is given. Prove:

If C has right limits and finite coproducts, then C has arbitrary coproducts; indeed,

lim−→
S∈S(I)

MS =
∐
α∈I

Mα.

Prove a similar statement for left limits and products.

Problem 63 Recall that a ring, Λ, is semi-simple12 iff every Λ-module, M , has the property:

(∀ submodules, M ′, of M)(∃ another submodule, M ′′, of M)(M ∼= M ′ �M ′′).

There is a condition on the positive integer, n, so that n has this condition ⇐⇒ Z/nZ is semi-simple. Find
the condition and prove the theorem.

Problem 64 In this problem, A ∈ CR. If α1, . . . , αm are in A, write
(
α1, . . . , αn

)
for the ideal generated by

α1, . . . , αn in A. Recall that K0(A), the Grothendieck group of A, is the quotient of the free abelian group
on the (isomorphism classes of) finitely generated A-modules (as generators) by the subgroup generated by
the relations: if 0→M ′ →M →M ′′ → 0 is exact in Mod(A), then [M ]− [M ′]− [M ′′] is a relation.

1. If α ∈ A, show that in K0(A) we have [
((α) → 0)

]
=
[
A/(α)

]
2. If A is a PID and M is a finite length A-module, show that [M ] = 0 in K0(A).

3. Prove: If A is a PID, then for all finitely generated A-modules, M , there exists a unique integer
r = r(M), so that [M ] = r[A] in K0(A); hence, K0(A) is Z. Prove further that
r(M) = dim(M ⊗A Frac(A)).

11One also says S(I) has the Moore–Smith property.
12Cf. also, Problem 145.
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Problem 65 Write LCAb for the category of locally compact abelian topological groups, the morphisms
being continuous homomorphisms. Examples include: Every abelian group with the discrete topology; R;
C; R/Z = T, etc. If G ∈ LCAb, write

GD = Homcts(G,T),

make GD a group via pointwise operations and topologize GD via the compact-open topology; that is, take
the sets

U(C, ε) =
{
f ∈ GD | Im(f � C) ⊆ −ε < arg z < ε

}
—where C runs over the compact subsets of G containing 0, ε is positive and we identify T with the unit
circle in C—as a fundamental system of neighborhoods at 0 in GD.

1. Suppose G is actually compact. Prove GD is discrete in this topology. Likewise, prove if G is discrete,
then GD is compact in this topology. Finally prove GD is locally compact in this topology.

2. If {Gα, ϕ
β
α} is a right (respectively left) mapping family of finite abelian groups, then{

GD
α ,
(
ϕβ

α

)D
}

becomes a left (respectively right) mapping family, again of finite abelian groups (how,
why?). Prove that (

lim−→
α

Gα

)D ∼= lim←−
α

GD
α

and (
lim←−
α

Gα

)D ∼= lim−→
α

GD
α

as topological groups. We call a group profinite ⇐⇒ it is isomorphic, as a topological group, to a left
limit of finite groups.

3. Prove the following three conditions are equivalent for an abelian topological group, G:

(a) G is profinite

(b) G is a compact, Hausdorff, totally disconnected group

(c) GD is a discrete torsion group.

4. For this part,
{
Gα

}
is a family of compact groups, not necessarily abelian, and the index set has

Moore–Smith. Assume we are given, for each α, a closed, normal subgroup of Gα, call it Sα, and that
β ≥ α =⇒ Gβ ⊆ Gα and Sβ ⊆ Sα. Show that the family

{
Hα = Gα/Sα

}
α

can be made into a left
mapping family, in a natural way, and that

lim←−
α

Hα
∼=
⋂
α

Gα/
⋂
α

Sα (as topological groups.)

5. If G is a compact topological group, write
{
Uα|α ∈ I

}
for the family of all open, normal subgroups of

G. Continue (3) by proving:

G is profinite ⇐⇒ G is compact and
⋂
α

Uα = {1}.

6. Here, G need not be abelian. We define Zp as lim←− Z/pnZ and Ẑ as lim←−
n

Z/nZ (Artin ordering for the

n’s). Quickly use (2) to compute ZD
p and (Ẑ)D. Now consider the following mathematical statements:

(a) Ẑ ∼=
∏

p Zp

(b) Q∗ ∼= Z/2Z Π
∏

p Z
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(c)
∞∑

n=1

1
ns

=
∏
p

1
1− 1/ps

, if Re s > 1

(d) A statement you know well and are to fill in here concerning arithmetic in Z.

Show (a)-(d) are mutually equivalent.

Problem 66 Fix an abelian group, A, for what follows. Write An = A, all n ∈ N and give N the Artin
ordering. If n � m (i.e. n|m) define ϕm

n : An → Am by ϕm
n (ξ) =

(
m
n

)
ξ, and define ψn

m : Am → An by
ψn

m(ξ) =
(

m
n

)
ξ, too. Let

Ã = lim−→
{
An, ϕ

m
n

}
and T (A) = lim←−

{
Am, ψ

n
m

}
.

(T (A) = full Tate group of A).

1. Prove that both Ã and T (A) are divisible groups.

2. Show that if A = A1
ϕ−→ Ã is the canonical map into the direct limit, then ker(ϕ) = t(A), the torsion

subgroup of A. Hence, every torsion free abelian group is a subgroup of a divisible group. Given any
abelian group , A, write

0 → K → F → A→ 0,

for some free abelian group F . Show that A may be embedded in F̃ /K; hence deduce anew that every
abelian group embeds in a divisible abelian group.

3. If A is a free Z-module, what is T (A)?

4. If A→ B → 0 is exact, need T (A) → T (B) → 0 also be exact? Proof or counterexample.

5. Show that if T (A) �= (0), then A is not finitely generated.

Problem 67 Again, as in Problem 61, let θ : A→ B be a homomorphism of commutative rings and assume
B is faithfully flat over A via θ. If M is an A-module, write MB for M ⊗A B.

1. Prove: M is finitely generated as an A-module iff MB is finitely generated as a B-module.

2. Same as (1) but for finite presentation instead of finite generation.

3. Show: M is locally free over A iff MB is locally free over B.

4. When, if ever, is S−1A faithfully flat over A?

Note, of course, that these are results on faithfully flat descent.

Problem 68 Here, Λ ∈ RNG and assume

0 →M ′ →M →M ′′ → 0

is an exact sequence of Λ-modules.

1. Assume further, M ′′ is a flat Λ-module. Prove: For all Λop-modules, N , the sequence

0 → N ⊗Λ M
′ → N ⊗Λ M → N ⊗Λ M

′′ → 0

is again exact. (You might look at the special case when M is free first.)

2. Again assume M ′′ is flat; prove M and M ′ are flat ⇐⇒ either is flat. Give an example of Λ, M ′, M ,
M ′′ in which both M and M ′ are flat but M ′′ is not flat.
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Problem 69 (Topologies, Sheaves and Presheaves). Let X be a topological space. We can make a category,
TX , which is specified by and specifies the topology as follows: Ob TX consists of the open sets in X. If
U, V ∈ Ob TX , we let

Hom(U, V ) =
{
∅ if U �⊆ V ,
{incl} if U ⊆ V ,

here {incl} is the one element set consisting of the inclusion map incl : U → V .

1. Show that U Π
X
V—the fibred product of U and V (over X) in TX—is just U ∩ V . Therefore TX has

finite fibred products.

2. If C is a given category (think of C as Sets, Ab, or more generally Λ-Modules) a presheaf on X with
values in C is a cofunctor from TX to C. So, F is a presheaf iff (∀ open U ⊆ X)(F (U) ∈ C) and when
U ↪→ V , we have a map ρU

V : F (V ) → F (U) (in C) usually called restriction from V to U . Of course,
we have ρW

V = ρW
U ◦ ρU

V . The basic example, from which all the terminology comes, is this:

C = R-modules (= vector spaces over R)
F (U) = {continuous real valued functions on the open set U}.

Now recall that a category is an abelian category iff for each morphism A
ϕ−→ B in C, there are two

pairs: (kerϕ, i) and (cokerϕ, j) with kerϕ and cokerϕ objects of C and i : kerϕ→ A, j : B → cokerϕ
so that:

(a) HomC(A,B) is an abelian group, operation denoted +
(b) kerϕ→ A→ B is zero in HomC(kerϕ,B)

(c) If C u−→ A→ B is zero, there is a unique morphism C → kerϕ so that u is the composition
C → kerϕ i−→ A

(d) Similar to (c) for coker, with appropriate changes.

Define Imϕ as ker(B
j−→ cokerϕ). Now exact sequences make sense in C (easy, as you see). Write

P(X, C) for the category of presheaves on X with values in C. If C is abelian show that P(X, C) is an
abelian category, too, in a natural way.

3. If A ∈ Ob C, we can make a presheaf A by: A(U) = A, all open U and if V ↪→ U then ρU
V = idA. This

is the constant presheaf with values in A. Generalize it as follows: Fix open U of X, define AU by:

AU (W ) =
∐

Hom(W,U)

A =
{

(0) if W �⊆ U
A if W ⊆ U .

Show AU is a presheaf and A is one of these AU ; which one? Generalize further: Say F is a presheaf
of sets on X, define AF by:

AF (W ) =
∐
F(W )

A =
{
functions : F(W ) → A | these functions have finite support

}
.

Make AF into a presheaf on X; it is a clear generalization of AU and this, in turn, generalizes A.

4. Just as with the defining example in (2), which is called the presheaf of germs of continuous functions on
X, so we can define the presheaf of germs of Ck-functions, real-analytic functions, complex holomorphic
functions, meromorphic functions when X is a real (resp. complex) manifold. Namely:

Ck(U) = {f : U → R | f is Ck on U} 0 ≤ k ≤ ∞
Cω(U) = {f : U → R | f is real analytic on U}
Hol(U) = {f : U → C | f is holomorphic on U}
Mer(U) = {f : U → C | f is meromorphic on U}.
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Prove: The collection {ZU | U open in X} is a set of generators for P(X,Ab); that is: For all presheaves
F , there is a subcollection of the U ’s, say {Uα | α ∈ Λ}, so that there is a surjection∐
I

( ∐
α∈Λ

ZU

)
� F , for some set I. (Then it turns out that every presheaf embeds in an injective

presheaf.)

5. Now sheaves are special kinds of presheaves. Say U ∈ TX and we have a family of morphisms of
TX : {Uα → U}α∈Λ (we’ll suppress mention of Λ in what follows). We call this family a covering
family ⇐⇒

⋃
α Uα = U , i.e. the Uα form an open covering of U . Of course, if ξ ∈ F (U), then

ρUα

U (ξ) ∈ F
(
Uα

)
, each α; here, F is a presheaf. Hence we get a map

θ : F (U)→
∏
α

F
(
Uα

)
.

Now if ξα ∈ F
(
Uα

)
, for each α, then ρUα∩Uβ

Uα

(
ξα
)

lies in F
(
Uα ∩ Uβ

)
therefore we get a map

p1,α : F
(
Uα

)
→
∏
β

F
(
Uα ∩ Uβ

)
.

Take the product of these over α and get a map

p1 :
∏
α

F
(
Uα

)
→
∏
α,β

F
(
Uα ∩ Uβ

)
.

If ξβ ∈ F
(
Uβ

)
then ρUα∩Uβ

Uβ

(
ξβ
)
∈ F

(
Uα ∩ Uβ

)
therefore we get a map

p2,β : F
(
Uβ

)
→
∏
α

F
(
Uα ∩ Uβ

)
.

Again the product over β gives:

p2 :
∏
β

F
(
Uβ

)
→
∏
α,β

F
(
Uα ∩ Uβ

)
,

hence we get two maps: ∏
γ

F
(
Uγ

) p1−→−→
p2

∏
α,β

F
(
Uα ∩ Uβ

)
.

Here is the definition of a sheaf : A sheaf, F , of sets is a presheaf, F , of sets so that (∀ open U)(
∀ covers

{
Uα → U

}
α

)
, the sequence

F (U) θ→
∏
γ

F
(
Uγ

) p1−→−→
p2

∏
α,β

F
(
Uα ∩ Uβ

)
(S)

is exact in the sense that θ maps F (U) bijectively to the set
(
ξγ
)
∈
∏
γ
F
(
Uγ

)
for which

p1

((
ξγ
))

= p2

((
ξγ
))

.

Show that the presheaves of germs of continuous, k-fold continuous, differentiable, analytic, holomorphic
and meromorphic functions are all sheaves. In so doing understand what exactness of sequence (S) means.
Prove, however, that A is NOT generally a sheaf. (Note: a sheaf with values in Ab or RNG or Ω-groups is
just a presheaf with these values which forms a sheaf of sets.) For which presheaves, F , is AF a sheaf?
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Problem 70 Consider P(X) and S(X) the categories of presheaves and sheaves of sets on X (our results
will also work for other image categories based on sets, e.g., Ab, RNG, TOP, etc.) We have the definition
of a sheaf so that

F (U) θ−→
∏
α

F (Uα)
p1−→−→
p2

∏
β,γ

F (Uβ ∩ Uγ) (S)

is exact for all open covers, {Uα −→ U}α of any open U .

(1) There are two parts to the exactness of (S): θ is injective and the image of θ is the equalizer of p1

and p2. Write that F satisfies (+) if θ is injective. Suppose that F is any presheaf, define

F (+) = lim−→{Uα−→U}
Ker (

∏
α

F (Uα)−→−→
∏
β,γ

F (Uβ ∩ Uγ))

(the limit taken over all open covers, {Uα −→ U}, of the open U). Show that F (+) satisfies (+).

(2) If 0 −→ F ′
ϕ−→ F is exact in P(X,Ab), set (Cokϕ)(U) = Cokerϕ(U) = Coker(F ′(U) −→ F (U)).

Prove that Cokϕ satisfies (+).

(3) Suppose that F satisfies (+) show that F (+) satisfies (S), i.e., F (+) is a sheaf. Show further that, if
F satisfies (+), then Ker (F (U) −→ F (+)(U)) = (0), i.e., F −→ F (+) is an injective map of presheaves. Set
F# = (F (+))(+), for any presheaf F .

(4) We know # is exact and i : S(X) → P(X) is left-exact. Prove that # is the left adjoint of i, that is

HomS(X)(F#, G) ∼= HomP(X)(F, i(G)).

(5) For the derived functor Hq(F ) (= (Rqi)(F )) of i : S(X,Ab)� P(X,Ab), prove that

(Hq(F ))# = (0).

Problem 71 (Grothendieck) In Problem 69, you proved the collection {ZU | U open in X} is a set of
generators for
P(X,Ab).

(1) Show that the collection {ZU} has the following property:

(G): For each presheaf, F , and for each monomorphism 0 −→ F ′ −→ F (in P(X,Ab)) with F ′ �= F , there
is an open U ⊆ X and a morphism ZU

ϕ−→ F , so that ϕ does not factor through a morphism ZU −→ F ′.

Prove moreover that property (G) is equivalent to the fact that {ZU | U open in X} is a family of
generators for P(X,Ab).

(2) Write Z for the coproduct
∐
all U

ZU in P(X,Ab), then Z is a generator for P(X,Ab). Show that

a presheaf, Q, on X is injective if and only if for each monomorphism 0 −→ W −→ Z, every morphism
θ : W → Q extends to a morphism Z −→ Q.

(3) Imitate the construction for rings R, ideals A ⊆ R and R-modules M , of an injective hull for M (with
the correspondence R←→ Z; A←→W ; M ←→ a presheaf F ) to show:

There exists a functor Q : F � Q(F ) and a morphism of functors ψ : id → Q so that

(a) (∀F ∈ P(X,Ab))(ψF : F → Q(F ) is a monomorphism)

and

(b) Each Q(F ) is an injective presheaf.
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This gives the proof that P(X,Ab) has enough injective objects.

(4) The ZU in S(X,Ab) defined as Z#
U form a set of generators for S(X,Ab). The same argument as in

(3) goes through and we obtain another proof (but similar to the text’s proof) that S(X,Ab) has enough
injectives.

Problem 72 (Grothendieck) Let P stand for the category of abelian presheaves, P(X,Ab), on the space
X.

(1) If U is an open in X and {Uα −→ U}α is an open covering of U , we have induced a diagram of
families of maps

U ←− {Uα} ←−←− {Uβ ∩ Uγ}β,γ

←−←−←− {Uδ ∩ Uε ∩ Uη}δ,ε,η

←−←−←−←−
· · ·

coming from the various projections (note that Uβ ∩ Uγ = Uβ

∏
Uγ ; Uδ ∩ Uε ∩ Uη = Uδ

∏
Uε

∏
Uη; etc.).

When F is a presheaf, we get a simplicial diagram

F (U) −→
∏
α

F (Uα) −→−→
∏
β,γ

F (Uβ ∩ Uγ)
−→−→−→

∏
δ,ε,η

F (Uδ ∩ Uε ∩ Uη)
−→−→−→−→

· · ·

and, by taking the alternating sum of these maps, we make a sequence

F (U) −→
∏
α

F (Uα) δ0

−→
∏
β,γ

F (Uβ ∩ Uγ) δ1

−→
∏
δ,ε,η

F (Uδ ∩ Uε ∩ Uη) δ2

−→ · · · . (∗)

For notation, write Cr({Uα −→ U}, F ) =
∏

α0,...,αr
F (Uα0 ∩ · · · ∩ Uαr

), so that (∗) becomes

F (U) −→ C0({Uα −→ U}, F ) δ0

−→ C1({Uα −→ U}, F ) δ1

−→ C2({Uα −→ U}, F ) δ2

−→ · · · . (∗∗)

Show that (∗∗) is an augmented complex (of abelian groups). We’ll call (∗∗) the explicit Čech cochain
complex of the cover {Uα −→ U} with coefficients in F . Denote by Hq

xpl({Uα −→ U}, F ) its qth cohomology
group (= Ker δq/Im δq−1).

(2) We know that HomP(ZV , F ) = F (V ) for all open V of X, show that

ZV =
∐

Hom(U,V )

Z.

(3) Now let F be an injective presheaf from P, show that

C0({Uα −→ U}, F ) δ0

−→ C1({Uα −→ U}, F ) δ1

−→ C2({Uα −→ U}, F ) δ2

−→ · · · (∗∗∗)

is an exact sequence. (Suggestions. Show that the exactness of (∗∗∗) is equivalent to the exactness of∐
α

ZUα
←−

∐
β,γ

ZUβ∩Uγ
←−

∐
δ,ε,η

ZUδ∩Uε∩Uη
←− · · · (†)

in the category P and check the latter exactness by evaluation on any open Y of X. For this, show that the
last sequence is induced by the simplicial diagram of indexing sets

∐
α

Hom(Y,Uα) ←−←−
∐
β,γ

Hom(Y,Uβ ∩ Uγ)
←−←−←−

∐
δ,ε,η

Hom(Y,Uδ ∩ Uε ∩ Uη)
←−←−←−←−

· · ·
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and we can identify
∐

β,γ Hom(Y,Uβ ∩Uγ) with M
∏
M , where M =

∐
α Hom(Y,Uα), etc. Thus, that (†) is

exact comes down to the exactness of the diagram∐
M

Z ←−←−
∐

M
Q

M

Z
←−←−←−

∐
M

Q
M

Q
M

Z
←−←−←−←−

· · · .

But, construct a contracting homotopy for this last diagram and so complete proving (∗∗∗) is exact.)

(4) Prove that the δ-functor F � H•xpl({Uα −→ U}, F ) is universal and show that we have an isomorphism

H•({Uα −→ U}, F ) ∼= H•xpl({Uα −→ U}, F )

(functorial in F ). Thus, the complex (∗∗∗) gives an explicit method for computing the cohomology groups,
H•({Uα −→ U},−), of the covering {Uα −→ U}α.

(5) Pass to the limit over all coverings of X and give an explicit complex to compute the Čech cohomology
groups Ȟ•(X,−).

Problem 73 If F is a sheaf of abelian groups on the space X, let’s agree to write F again when we consider
F as a presheaf.

(1) Show that there is an exact sequence

0 −→ Ȟ2(X,F ) −→ H2(X,F ) −→ Ȟ1(X,H1(F ))

and that if Ȟ3(X,F ) = (0), then

0 −→ Ȟ2(X,F ) −→ H2(X,F ) −→ Ȟ1(X,H1(F )) −→ 0

is exact.

(2) Let {Uα −→ X}α be an open cover of X and assume that

(∀α, β)(H1(Uα ∩ Uβ , F ) = (0)).

Deduce that the natural map
Ȟ2(X,F ) −→ H2(X,F )

is an isomorphism. If you assume only that

(∀α)(H1(Uα, F ) = (0))

can you still deduce that Ȟ2(X,F ) ∼= H2(X,F )? Proof or counter-example.

(3) Can you continue the line of argument of (2) applied to groups such as H?(Uα ∩ Uβ ∩ Uγ , F ),
etc. and deduce further isomorphisms between Čech and derived functor cohomology? For example, try
Ȟ3(X,F ) ∼= H3(X,F ).

(4) In a similar vein to (2) and (3) above, prove the following (known as Cartan’s Isomorphism Theorem):

For the space X, let U be a family of open sets covering X so that

(a) If U, V ∈ U , then U ∩ V ∈ U

(b) U contains arbitrarily small opens of X

(c) If U ∈ U and q > 0, then Ȟq(U,F ) = (0).

Then, the natural maps
Ȟq(X,F ) −→ Hq(X,F )

are isomorphisms for all q ≥ 0.
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(Suggestions: Use induction on q, but replace X by any of the U of U . Use a spectral sequence at the
induction step to get Ȟq(X,F ) ∼= Hq(X,F ). Now how do you further deduce Ȟq(U,F ) ∼= Hq(U,F ) all
U ∈ U to complete the induction?)

Remark: Two main uses of Cartan’s Theorem are when X is a manifold and U is the family of all finite
intersections of all sufficiently small open balls around each point of X and when X is an algebraic variety
(over a field) and U is the collection of its affine open subvarieties.

Problem 74 Let k be a field, X an indeterminate (or transcendental) over k. Write A = k[X] and consider
an ideal, a, of A. The ideal, a, determines a topology on k[X]—called the a-adic topology—defined by taking
as a fundamental system of neighborhoods of 0 the powers {an | n ≥ 0} of a. Then a fundamental system of
neighborhoods at ξ ∈ A is just the collection {ξ + an | n ≥ 0}.

1. Show A becomes a topological ring (i.e. addition and multiplication are continuous) in this topology.
When is A Hausdorff in this topology?

2. The rings A/an = An form a left mapping system. Write

Â = lim←−
n

A/an

and call Â the a-adic completion of A. There is a map A→ Â; when is it injective?

3. Consider a = (X) = all polynomials with no constant term. The ring Â in this case has special
notation: k[[X]]. Establish an isomorphism of k[[X]] with the ring of formal power series over k (in
X) i.e. with the ring consisting of sequences

(
cn
)
, n ≥ 0, cn ∈ k with addition and multiplication

defined by: (
cn
)

+
(
dn

)
=
(
cn + dn

)(
cn
)
·
(
dn

)
=
(
en

)
, en =

∑
i+j=n

cidj

((
cn
)
↔

∞∑
n=0

cnX
n explains the name

)
.

4. Show k[X] ↪→ k[[X]], that k[[X]] is an integral domain and a local ring. What is its maximal ideal?
Now (X) = a is a prime ideal of k[X], so we can form k[X](X). Prove that

k[X] ⊆ k[X](X) ⊆ k[[X]].

We have the (prime) ideal (X)e of k[X](X). Form the completion of k[X](X) with respect to the
(X)e-adic topology. What ring do you get?

Problem 75 If k is any field, write A = k[[T1, . . . , Tn]] for the ring of formal power series over k in the
indeterminates T1, . . . , Tn. Denote by Autk(A) the group of all k-automorphisms of A.

(1) Give necessary and sufficient conditions on the n power series S1(T1, . . . , Tn), . . . , Sn(T1, . . . , Tn) in
order that the map

σ : Tj → Sj(T1, . . . , Tn)

be an element of Autk(A). In so doing, describe the group Autk(A).

(2) If now k is no longer necessarily a field but merely a commutative ring with unity, answer question
(1) for this case.

(3) Fix k, a commutative ring with unity, and consider the category, Alg(k), of k-algebras (say commu-
tative). Define a functor Aut(k[[T1, . . . , Tn]]/k)(−) by sending B ∈ Alg(k) to AutB(B[[T1, . . . , Tn]]) ∈ Grp.
Is this functor representable? How?
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Problem 76 Prove that in the category of commutative A-algebras, the tensor product is the coproduct:

B ⊗A C ∼= B �
A
C.

Which A-algebra is the product B
∏
A

C (in commutative A-algebras)?

Problem 77 Suppose A is a (commutative) semi-local ring obtained by localizing a f.g. C-algebra with
respect to a suitable multiplicative subset. Let J be the Jacobson radical of A and write Â for the J-adic
completion of A. Is it true that every finitely generated Â-module, M , has the form M = M0⊗A Â for some
finitely generated A-module, M0? Proof or counter-example.

Problem 78 Here A is a commutative ring and we write Mn(A) for the ring of n× n matrices over A.

1. Prove: The following are equivalent

(a) A is noetherian

(b) For some n, Mn(A) has the ACC on 2-sided ideals

(c) For all n, Mn(A) has the ACC on 2-sided ideals.

2. Is this still valid if “noetherian” is replaced by “artinian” and “ACC” by “DCC”? Proof or counterex-
ample.

3. Can you make this quantitative? For example, suppose all ideals of A are generated by less than or
equal to N elements. What can you say about an upper bound for the number of generators of the
ideals of Mn(A)? How about the converse?

Problem 79 Refer to Problem 74. Write k((X)) for Frac(k[[X]]).

1. Show that

k((X)) =

{ ∞∑
j=−∞

ajX
j | aj ∈ k and (∃N)(aj = 0 if j < N)

}
where on the right hand side we use the obvious addition and multiplication for such expressions. If
ξ ∈ k((X)), write ord(ξ) = N ⇐⇒ N = largest integer so that a = 0 when j < N ; here, ξ �= 0. If
ξ = 0, set ord(ξ) = ∞. One sees immediately that k[[X]] =

{
ξ ∈ k((X)) | ord(ξ) ≥ 0

}
.

2. Write U for Gm

(
k[[X]]

)
and M for {ξ | ord(ξ) > 0}. Prove that k((X)) =M−1 ∪ U ∪ M (disjointly),

where
M−1 = {ξ | 1/ξ ∈M}.

Now fix a real number, c, with 0 < c < 1. Define for ξ, η ∈ k((X)),

d(ξ, η) = cord(ξ−η),

then it should be clear that k((X)) becomes a metric space and that addition and multiplication
are continuous in the metric topology. Prove that k((X)) is complete in this topology (i.e., Cauchy
sequences converge), and that the topology is independent of which number c is chosen (with 0 < c < 1).

3. Suppose u ∈ k[[X]], u =
∑∞

j=0 ajX
j , and a0 = 1. Pick an integer n ∈ Z and assume

(n, char(k)) = 1. Prove: There exists w ∈ k[[X]] such that wn = u. There is a condition on k so that
k((X)) is locally compact. What is it? Give the proof. As an example of limiting operations, prove

1
1− x =

∞∑
j=0

Xj = lim
N→∞

(1 +X + · · ·+XN ).
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4. Given
∞∑

j=−∞
ajX

j ∈ k((X)), its derivative is defined formally as

∞∑
j=−∞

jajX
j−1 ∈ k((X)).

Assume ch(k) = 0. Check mentally that α′ = 0
(
α ∈ k((X))

)
=⇒ α ∈ k. Is the map α → α′ a

continuous linear transformation k((X)) → k((X))? Set η =
∞∑

j=0

1
j!
Xj , so η ∈ k((X)). Prove that X

and η are independent transcendentals over k.

5. A topological ring is one where addition and multiplication are continuous and we have a Hausdorff
topology. Topological k-algebras (k has the discrete topology) form a category in which the morphisms
are continuous k-algebra homomorphisms. An element λ in such a ring is topologically nilpotent iff
limn→∞ λn = 0. Let Ntop denote the functor which associates to each topological k-algebra the set of
its topological nilpotent elements. Prove that Ntop is representable. As an application, let

s(X) =
∞∑

j=0

(−1)j X2j+1

(2j + 1)!
, c(X) =

∞∑
j=0

(−1)j X
2j

(2j)!
.

Then s′(X) = c(X) and c′(X) = −s(X), so c2(X)+s2(X) lies in k (the constants). Without computing
c2(X) + s2(X), show it is 1. (You’ll need Ntop, so be careful.)

6. Show that even though k(X) is dense in k((X)), the field k((X)) possesses infinitely many independent
transcendental elements over k(X). (Suggestion: Look in a number theory book under “Liouville
Numbers”; mimic what you find there.)

7. Let Ck

(
k((X))

)
=
{
α ∈ k((X)) | α is algebraic over k

}
. Show that Ck

(
k((X))

)
= k.

If ch(k) = 0 and R ⊆ k, write
(
m
j

)
=
m(m− 1) · · · (m− j + 1)

j(j − 1) · · · 3 · 2 · 1 for m ∈ R. If R �⊆ k, do this only for

m ∈ Q. Set

ym =
∞∑

j=0

(
m
j

)
Xj ∈ k[[X]].

If m ∈ Q and m = r/s, prove that ys
m = (1 + x)r.

Note that ym = 1 + O(X) and that O(X) ∈ Ntop

(
k[[X]]

)
. Let L(1 +X) =

∞∑
j=0

(−1)j X
j+1

(j + 1)
, and set

f(X)m = η
(
m · L(f(X))

)
, where

η(X) =
∞∑

j=0

1
j!
Xj and f(X) = 1 +O(X), some O(X)

and m ∈ R (here, R ⊆ k). Show that
(1 +X)m = ym.

Problem 80 Say K is a field, A is a subring of K. Write k = FracA.

1. If K is a finitely generated A-module, prove that k = A.

2. Suppose there exist finitely many elements α1, . . . , αm ∈ K algebraic over k such that

K = A[α1, . . . , αm].
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Prove
(
∃ b ∈ A

)(
b �= 0

)(
so that k = A[1/b]

)
. Prove, moreover, that b belongs to every maximal ideal of A.

Problem 81 Refer to Problem 69. Look at P(X,Ab). We know that the functor F � F (U) taking
P(X,Ab) to Ab is representable.

1. Grothendieck realized that when computing algebraic invariants of a “space” (say homology, cohomol-
ogy, homotopy, K-groups, . . . ) the sheaf theory one needs to use could be done far more generally and
with far more richness if one abstracted the notion of “topology”. Here is the generalization:

(a) Replace TX by any category T .

To do sheaves, we need a notion of “covering”:

(b) We isolate for each U ∈ Ob T some families of morphisms {Uα → U}α and call each of these
a “covering” of U . So we get a whole collection of families of morphisms called Cov T and we
require

(i) Any isomorphism {V → U} is in Cov T
(ii) If {Uα → U}α is in Cov T and for all α, {V (α)

β → Uα}β is in Cov T , then
{
V

(α)
β → U

}
α,β

is

in Cov T (i.e., a covering of a covering is a covering).
(iii) If {Uα → U}α is in Cov T and V → U is arbitrary then Uα Π

U
V exists in T and

{
Uα Π

U
V → V

}
α

is in Cov T (i.e., the restriction of a covering to V is a covering of V ; this allows the relative
topology—it is the axiom with teeth).

Intuition: A morphism V → U in T is an “open subset of U”. N.B. The same V and U can give
more than one “open subset” (vary the morphism) so the theory is very rich. In our original example:
T = TX ; the family {Uα → U}α is in Cov T when and only when

⋃
α Uα = U . Check the axioms (i),

(ii) and (iii).
Now a presheaf is just a cofunctor T → Sets or Ab, etc. and a sheaf is a presheaf for which

F (U)→
∏
γ

F
(
Uγ

) p1−→−→
p2

∏
α,β

F
(
Uα Π

U
Uβ

)
(S)

is exact for every U ∈ T and every {Uγ → U}γ in Cov T . One calls the category T and its distinguished
families Cov T a site (topology used to be called “analysis situs”).

Given a category, say T , assume T has finite fibred products. A family of morphisms {Uα → U}α in
T is called a family of universal, effective epimorphisms iff

(a) ∀Z ∈ Ob T
Hom(U,Z) →

∏
γ

Hom
(
Uγ , Z

)−→−→ ∏
α,β

Hom
(
Uα Π

U
Uβ , Z

)
is exact (in Sets) AND

(b) The same for
{
Uα Π

U
V → V

}
α

vis a vis all Z as in (a). (Condition (b) expresses universality,

and (a) expresses effectivity of epimorphisms.)

Decree that Cov T is to consist of families of universal, effective epimorphisms. Show that T with this
Cov T is a site—it is called the canonical site on T , denoted Tcan.
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2. For Tcan, every representable cofunctor on T is a sheaf (give the easy proof). Note that if T ⊆ T̃
where T̃ is a bigger category, and if Cov T lies in the universal, effective epimorphisms for T̃ , then any
cofunctor on T , representable in T̃ , is a sheaf on Tcan. For example, prove that if T̃ is all topological
spaces and TX is our beginning category of Problem 69, then TX ⊆ T̃ and prove that open coverings in
TX (as in Problem 69) are universal, effective epimorphisms in T̃ . Hence, for ANY topological space,
Y , U � Homtop.spaces(U, Y ) is a sheaf on TX .

3. Let T = Sets and let {Uα → U}α be in Cov T when
⋃

α(Images of Uα) = U . Prove that the sheaves
on T with values in Sets are exactly the representable cofunctors on T .

4. Generalize (3): If G is a given group, let TG be the category of sets with a G-action. Make (TG)can
the canonical site on TG. Prove: Coverings are families {Uα → U}α so that

⋃
α(Im Uα) = U (all

are G-sets, morphisms are G-morphisms). Once again, prove: The sheaves on (TG)can are exactly
the representable cofunctors on TG. Prove further: The sheaves on (TG)can with values in Ab form a
category equivalent to the category of G-modules; namely the equivalence is given by taking a sheaf
to its representing object, a G-module.

Problem 82 Consider the two rings A = R[T ] and B = C[T ]. Show that Max(B) is in one-to-one cor-
respondence with the points of the complex plane while Max(A) is in one-to-one correspondence with the
closed upper half plane: {ξ ∈ C | Im(ξ) ≥ 0}. Since A is a PID (so is B) we can characterize an ideal by
its generator. In these terms, which ideals of Max(A) correspond to points in Im(ξ) > 0, which to points on
the real line? What about SpecB and SpecA?

Problem 83 Suppose that f(X,Y ) and g(X,Y ) are two irreducible polynomials with complex coefficients.
Assume neither is a scalar multiple of the other. Show that the set

S = {(α, β) ∈ C2 | f(α, β) = g(α, β) = 0}

is finite. (There are many ways of doing this; try to pick a way that is as elementary as possible.)

Problem 84 When X is compact Hausdorff and A = C(X), we identified X and Max(A) in the text via
x → mx. Now Max(A) has the induced topology from SpecA.

1. Show the induced topology on Max(A) is compact Hausdorff by proving x → mx is a homeomorphism.

2. Prove all finitely generated ideals of A are principal but that no maximal ideal is finitely generated.

Problem 85

1. Given A→ B a homomorphism prove that B is faithfully flat over A iff B is flat over A and the map
SpecB → SpecA is surjective.

2. Say A → B is a homomorphism and B is faithfully flat over A. Assume A is noetherian. Show that
the topology on SpecA is the quotient topology from SpecB.

Problem 86 Here A is a commutative ring, but not necessarily with unity. Let A# denote A
∏

Z (category
of sets) with addition componentwise and multiplication given by

〈a, n〉〈b, q〉 = 〈ab+ nb+ qa, nq〉.

1. Clearly, A# is a commutative ring with unity 〈0, 1〉. A is a subring of A#, even an ideal. Suppose A
has the ACC on ideals, prove that A# does, too. Can you make this quantitative as in Problem 78
part (3)?

2. If you know all the prime ideals of A, can you find all the prime ideals of A#?
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Problem 87 Let B, C be commutative A-algebras, where A is also commutative. Write D for the A-algebra
B ⊗A C.

1. Give an example to show that SpecD is not SpecB ×
Spec A

SpecC (category of sets over SpecA).

2. We have A-algebra maps B → D and C → D and so we get maps SpecD → SpecB and
SpecD → SpecC (even maps over SpecA), and these are maps of topological spaces (over SpecA).
Hence, we do get a map

θ : SpecD → SpecB Π
Spec A

SpecC (top. spaces).

Show there are closed sets in SpecD not of the form θ−1(Q), where Q is a closed set in the product
topology of SpecB Π

Spec A
SpecC.

Problem 88 Let A = Z[T ], we are interested in SpecA.

1. If p ∈ SpecA, prove that ht(p) ≤ 2.

2. If {p} is closed in SpecA, show that ht(p) = 2. Is the converse true?

3. We have the map Z ↪→ Z[T ] = A, hence the continuous map SpecA π−→ Spec Z. Pick a prime number,
say p, of Z. Describe π−1(p), is it closed?

4. When exactly is a p ∈ SpecA the generic point (point whose closure is everything) of π−1(p) for some
prime number p?

5. Describe exactly those p ∈ SpecA whose image, π(p), is dense in Spec Z. What is ht(p) in these cases?

6. Is there a p ∈ SpecA so that the closure of {p} is all of SpecA? What is ht(p)?

7. For a general commutative ring, B, if p and q are elements of SpecB and if q ∈ {p} show that
ht(q) ≥ ht(p) (assuming finite height). If p, q are as just given and ht(q) = ht(p) is q necessarily p?
Prove that the following are equivalent:

(a) SpecB is irreducible (that is, it is not the union of two properly contained closed subsets)

(b) (∃ p ∈ SpecB)(closure of {p} = SpecB)

(c) (∃ unique p ∈ SpecB)(closure of {p} = SpecB)

(d) N (B) ∈ SpecB. (Here, N (B) is the nilradical of B)

8. Draw a picture of Spec Z[T ] as a kind of plane over the “line” Spec Z and exhibit in your picture all
the different kinds of p ∈ Spec Z[T ].

Problem 89 If A is a commutative ring, we can view f ∈ A as a “function” on the topological space SpecA
as follows: for each p in SpecA, as usual write κ(p) for Frac(A/p) [note that κ(p) = Ap/its max. ideal]
and set f(p) = image of f in A/p considered in κ(p). Thus, f : SpecA →

⋃
p∈Spec A

κ(p). Observe that if

f ∈ N (A), then f(p) = 0 all p, yet f need not be zero as an element of A.

1. Let A = k[X1, . . . , Xn]. There are fields, Ω, containing k so that

(a) Ω has infinitely many transcendental elements independent of each other and of the Xj over k
and

(b) Ω is algebraically closed, i.e., all polynomials with coefficients in Ω have a root in Ω.
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An example of this is when k = Q or some finite extension of Q and we take Ω = C. In any case, fix
such an Ω. Establish a set-theoretic map Ωn → SpecA so that f ∈ A = k[X1, . . . , Xn] viewed in the
usual way as a function on Ωn agrees with f viewed as a function on SpecA. We can topologize Ωn as
follows: Call a subset of Ωn k-closed iff there are finitely many polynomials f1, . . . , fp from A so that
the subset is exactly the set of common zeros of f1, . . . , fp. This gives Ωn the k-topology (an honest
topology, as one checks). Show that your map Ωn → SpecA is continuous between these topological
spaces. Prove, further, that Ωn maps onto SpecA.

2. Show that Ωn is irreducible in the k-topology. (Definition in 7(a) of Problem 88)

3. Define an equivalence relation on Ωn: ξ ∼ η ⇐⇒ each point lies in the closure (k-topological) of the
other. Prove that Ωn/ ∼ is homeomorphic to SpecA under your map.

Problem 90 (Continuation of Problem 89) Let A be an integral domain and write K for Frac(A). For each
ξ ∈ K, we set

dom(ξ) = {p ∈ SpecA | ξ can be written ξ = a/b, with a, b ∈ A and b(p) �= 0}.

1. Show dom(ξ) is open in SpecA.

2. If A = R[X,Y ]/(X2 + Y 2 − 1), set ξ = (1− y)/x (where x = X and y = Y ). What is dom(ξ)?

3. Set A = C[X,Y ]/(Y 2 −X2 −X3) and let ξ = y/x. What is dom(ξ)?

4. Note that as ideals of A (any commutative ring) are A-modules, we can ask if they are free or locally
free. Check that the non-zero ideal, a, of A is free ⇐⇒ it is principal and

(
a → (0)

)
= (0). The

second condition is automatic in a domain. Now look again at A = R[X,Y ]/(X2 +Y 2−1), you should
see easily that this is a domain. Characterize as precisely as you can the elements m ∈ Max(A) which
are free as A-modules. If there are other elements of Max(A), are these locally free? What is the
complement of Max(A) in SpecA? Prove that A⊗R C is a PID.

5. Consider the descent question for PIDs: Given rings S and T with S → T a homomorphism, suppose
A is an S-algebra and T is faithfully flat over S. If A⊗S T is a PID, is A necessarily a PID?

6. Do part (5) where PID is replaced by UFD.

Problem 91 Let p be an odd prime number, set m = 2p − 1 and write A = Z[
√
−m] ∼= Z[T ]/(T 2 + m).

Assume m is square free.

1. Let a be the ideal (p, 1 +
√
−m) of A. Prove that a is not principal, yet that a, as a module, is locally

free (necessarily of rank one). Prove further that A is not a UFD.

2. For p = 3 and 7, find all the ideals, a, which are not free, yet are locally free.

N.B. By results of the text you have non-free projectives here.

Problem 92 In this problem A is an integral domain and K = Frac(A).

1. Is it true that if p ∈ Spec
(
A[X]

)
and if p∩A = (0), then p is a principal ideal? Proof or counterexample.

2. Say A is a UFD and η ∈ K, with η �= 0. Write η = a/b, where a and b are relatively prime. Prove that
A[η] ∼= A[X]/(bX − a). When is A[η] a flat A-module?

3. If k is a field and ξ ∈ k(X) is a non-constant rational function, write ξ = f(X)/g(X) where f and g
are relatively prime polynomials. Of course, k(ξ) is a subfield of k(X), so k(X) is a k(ξ) vector space
(and a k(ξ)-algebra). Prove that dimk(ξ)

(
k(X)

)
<∞ and compute this dimension in terms of f and g.
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Problem 93 If A is a commutative ring and B = A[[X1, . . . , Xn]] denotes the ring of formal power series
in the variables X1, . . . , Xn (the case n = 1 was discussed in Problem 79) over A:

1. Prove:
A is noetherian ⇐⇒ B is noetherian

A is an integral domain ⇐⇒ B is an integral domain
A is a local ring ⇐⇒ B is a local ring.

2. Write K((X1, . . . , Xn)) for FracB, where K = FracA and A is a domain. Say A = K = C, n = 2. Is
C((X,Y )) equal to C((X))((Y ))? If not, does one contain the other; which?

Problem 94 If A is a noetherian ring, write X = SpecA with the Zariski topology. Prove the following are
equivalent:

1. X is T1

2. X is T2

3. X is discrete

4. X is finite and T1.

Problem 95 Call a commutative ring semi-local iff it possesses just finitely many maximal ideals.

1. If p1, . . . , pt ∈ SpecA and S = A−
⋃t

j=1 pj , then S−1A is semi-local.

2. Say A is semi-local and m1, . . . ,mt are its maximal ideals. Show that the natural map of rings

A/J (A) →
t∏

i=1

A/mi

is an isomorphism. (Here, J (A) is the Jacobson radical of A)

3. If A is semi-local, show Pic(A) = (0).

Problem 96 Let A be a domain. An element a ∈ A, not a unit, is called irreducible iff it is not the product
a = bc in which neither b nor c is a unit. The element a is a prime iff the principal ideal, Aa, is a prime
ideal. Of course, prime =⇒ irreducible.

1. Assume A is noetherian, show each non-unit of A is a finite product of irreducible elements. (A need
not be a domain for this.)

2. Prove that the factorization of (1) is unique (when it exists) iff every irreducible element of A is prime.

3. Say A is a UFD and S a multiplicative subset of A. Show that S−1A is a UFD. If A is locally a UFD
is A a UFD?

4. Prove: If A is noetherian then A is a PID ⇐⇒ A is a UFD and dimA = 1.

5. Assume A is just a domain. A weight function, w, on A is a function A− {0} → Z≥0 so that

(a) a | b =⇒ w(a) ≤ w(b), with equality ⇐⇒ b | a, too

(b) If a and b ∈ A and say a � b and b � a, then ∃ p, q, r ∈ A so that r = pa+ qb and
w(r) < min

{
w(a), w(b)

}
.

Prove: A domain is a PID ⇐⇒ it possesses a weight function. Can you characterize the fields among
the PIDs by their weight functions?
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Problem 97 Prove: A noetherian domain is a UFD iff each height 1 prime is principal.

Problem 98 Examples and Counterexamples:

1. Let A = k[X,Y ] with k a field; write m = (X,Y ). Show that q = (X,Y 2) is m-primary, but q is not a
power of any prime ideal of A. Therefore, primary ideals need not be powers of prime ideals.

2. Let A = k[X,Y,Z]/(XY − Z2) = k[x, y, z]. Write p for the ideal (x, z) of A. Prove that p ∈ SpecA,
but p2 is not primary. Hence, powers of non-maximal prime ideals need not be primary. What is the
primary decomposition of p2?

3. Say A = k[X,Y ] as in part (1) and write a = (X2,XY ). Show that a is not primary yet
√

a is
a prime ideal—which one? So, here a non-primary ideal has a prime radical. What is the primary
decomposition of a?

4. If A is a UFD and p is a prime element of A, then q = Apn is always primary. Conversely, show if q is
primary and

√
q = Ap, then (∃n ≥ 1)(q = Apn). Compare with (3) above.

Problem 99 Assume A is a noetherian integral domain. The argument at the end of Theorem 3.56 shows
that height one primes of A are elements of Pic(A) if A is normal .

(1) Use this remark to prove that in a normal (noetherian) domain, each isolated prime of a principal
ideal has height one (special case of Krull’s principal ideal theorem).

(2) Say A is a noetherian normal domain. Show that A is a UFD iff Pic(A) = (0).

Problem 100 A Little Number Theory.
Let Q be the rational numbers, and consider fields k = Q[X]/

(
f(X)

)
where f(X) is an irreducible polynomial

over Q. (Each finite extension of Q has this form, by Chapter 4, Section 4.6.) Such a k will be called a
“number field” and we write Ok for Intk(Z).

1. Show Ok is a noetherian normal domain with dimOk = 1.

2. If p ∈ SpecOk, then (Ok)p is a PID and Ok is a UFD iff Pic(Ok) = (0) iff Ok is a PID.

3. Let k be the fields: Q(i), Q(
√

2), Q(
√

3), Q(
√

5), Q(
√
−3), Q(

√
−5), Q(ζ), where ζ is a primitive 7th

root of 1. In each case, find Ok and compute Pic(Ok). Make a table.

4. In Q(
√
−3), look at Z[

√
−3] = {a+ b

√
−3 | a, b ∈ Z}. Is Z[

√
−3] = Ok? If not, what is Pic

(
Z[
√
−3]

)
?

Same question for Z[
√
−5].

5. Let A be a noetherian, normal domain of dimension 1, write k = FracA (e.g., Ok = A by (1)). We
examine submodules (for A) of k. Call one of these, M , a fractional ideal iff
(∃ b ∈ A)(b �= 0)(bM ⊆ A). Prove that the following are equivalent for A-submodules of k:

(a) M is a fractional ideal

(b) M is a finitely generated A-module

(c) M is a rank one projective A-module.

6. Under multiplication, MN , the fractional ideals form a group, denote it I(A). (MN goes over to
M ⊗A N in Pic(A)). Let CA be the (localizing) category of finite length modules over A and write
K̃(A) for the Grothendieck group, K0(CA), of CA. By the theory of associated primes, each M in CA

has a composition series
M = M0 ⊃M1 ⊃M2 ⊃ · · · ⊃Mn+1 = (0)

and
Mi/Mi+1

∼= A/pi for some pi ∈ Max(A).
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These pi are unique up to order and we set

χA(M) =
n∏

i=0

pi ∈ I(A).

Prove that χA is an isomorphism (first prove homomorphism) of the abelian groups K̃(A) −̃→ I(A).
What is the kernel of the map K̃(A) → Pic(A)?

7. Lastly, assume A is actually a PID. Say M = An is a free A-module of rank n and choose u ∈ EndAM .
Assume det(u) �= 0 and show

det(u) ·A = χA(cokeru).

Problem 101 More examples.

1. Let A = k[X,Y,Z,W ]/(XY −ZW ), where k is a field and char(k) �= 2. By Problem 34; A is a normal
domain. Compute Pic(A).

2. If A = C[t3, t7, t8] ⊆ C[t], compute Pic(A). If A = {f ∈ C[T ] | f ′(0) = f ′′(0) and f(1) = f(−1)}
compute Pic(A).

3. If A = C[X,Y,Z]/(X2 + Y 2 + Z2 − 1), show Pic(A) �= (0).

Problem 102

1. Write A = K[X,Y,Z], with K a field. Set a = (X,Y )(X,Z). Find a primary decomposition of a.

2. Let A = K[X,XY, Y 2, Y 3] ⊆ K[X,Y ] = B, here K is a field. Write p = Y B ∩ A = (XY, Y 2, Y 3).
Prove that p2 = (X2Y 2,XY 3, Y 4, Y 5) and is not primary. Find a primary decomposition of p2 involving
(Y 2, Y 3). All ideals are ideals of A.

Problem 103

1. Say A is an integral domain. Prove

A =
⋂

p∈Spec A

Ap =
⋂

m∈Max(A)

Am.

2. Now let A be a commutative ring and let f(T ) be a polynomial of degree d in A[T ]. Prove that
A[T ]/

(
f(T )

)
is an A-projective module of rank d iff the coefficient of T d in f(T ) is a unit of A.

Problem 104 Write A for the polynomial ring k[T1, . . . , TN ] in which k is a field and B = A/p for some
prime ideal, p, of A. Let the transcendence degree of B over k be d and assume d ≥ 1. Now let S0, S1, . . . , Sm

be further indeterminates independent of the T1, . . . , TN , write K for the rational function field k(S0, . . . , Sm)
and L for k(S1, . . . , Sm).

(1) For a polynomial f ∈ L⊗k A, write P for the ideal of K ⊗k A generated by p and the element f −S0

and prove that tr.d.K(K ⊗k A)/P ≤ d− 1.

(2) Assume further m ≤ N and consider the composed map

k[T1, . . . , Tm] ↪→ A −→ B.

We assume the composed map is injective and further that the polynomial f ∈ L⊗k A has the form

f =
m∑

j=1

SjTj + g(Tm+1, . . . , TN ).
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Prove that tr.d.K(K ⊗k A)/P = d− 1.

(3) Under the hypotheses of (2), assume for each prime ideal, B, of B, the local ring, BB, is regular.
Write C = (K ⊗k A)/P, and let q be any element of SpecC. Show that Cq is regular.

(4) Revisit Problem 83 and give a quick proof.

Problem 105 Suppose k is a field (if necessary, assume ch(k) = 0) and A and C are the following n × n
matrices with entries from k:

A =


a0 · · · · · an−1

an−1 a0 · · · · an−2

· · · · · · ·
· · · · · · ·
a1 a2 · · · an−1 a0

 ; C =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · ·
0 0 0 0 · · · 1
1 0 0 0 · · · 0


Of course, Cn = I.

(1) In k find all the eigenvalues and eigenvectors of C.

(2) Find a polynomial, f(X) ∈ k[X], so that A = f(C).

(3) Compute the eigenvalues of A in k and show that the corresponding eigenvectors are those of C.

(4) Give a criterion for A to be invertible. Can you give a criterion (in the same spirit) for A to be
diagonalizable?

Problem 106 A discrete valuation, ν, on a (commutative) ring A, is a function ν : A→ Z∪{∞} satisfying

(a) ν(xy) = ν(x) + ν(y)

(b) ν(x+ y) ≥ min
{
ν(x), ν(y)

}
, with equality if ν(x) �= ν(y)

(c) ν(x) =∞ ⇐⇒ x = 0.

A pair (A, ν) where A a commutative ring and ν is a discrete valuation is called a discrete valuation ring
(DVR). Prove the following are equivalent:

(1) A is a DVR

(2) A is a local PID

(3) A is a local, noetherian, normal domain of Krull dimension 1

(4) A is a local, noetherian, normal domain and (mA → A)
(

= {ξ ∈ FracA | ξmA ⊆ A}
)
�= A. Here, mA

is the maximal ideal of A.

Problem 107 Let A be a commutative ring with unity and assume A is semi-local (it possesses just finitely
many maximal ideals). Write J for the Jacobson radical of A and give A its J -adic topology.

1. Prove that A is noetherian iff each maximal ideal of A is finitely generated and each ideal is closed in
the J -adic topology.

2. Assume A is noetherian, then the map A → Ared gives Ared its J -adic topology. If Ared is complete
prove that A is complete.
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Problem 108

1. Let A be a local ring, give A its m-adic topology (m = mA is the maximal ieal of A) and assume A
is complete. Given an A-algebra, B, suppose B is finitely generated as an Â-module. Prove that B
is a finite product of A-algebras each of which is a local ring. Give an example to show that some
hypothesis like completness is necessary for the conclusion to be valid.

2. (Hensel) Again A is complete and local, assume f(X) ∈ A[X] is a monic polynomial. Write f(X)
for the image of f in (A/m)[X]. If f(X) factors as g(X)h(X) where g and h are relatively prime in
(A/m)[X], show that f factors as G(X)H(X) where G(X) = g(X);H(X) = h(X). What can you say
about degG, degH and uniqueness of this factorization? Compare parts (1) and (2).

Problem 109 In this problem, A is an integral domain and k = FracA. If ν and ω are two discrete
valuations of k (cf. Problem 106), the functions ν and ω are defined on A and extended to k via ν(a/b) =
ν(a)− ν(b), etc.), let’s call ν, ω inequivalent iff one is not a constant multiple of the other. Write S for a set
of inequivalent discrete valuations of k and say that A is adapted to S provided

A =
{
x ∈ k | (∀ν ∈ S)(ν(x) ≥ 0)

}
.

1. Prove the following are equivalent:

(a) A is a Dedekind domain
(b) (∀ ideals, a, of A)(∀x, x �= 0, x ∈ a)(∃ y ∈ a)(a = (x, y)).
(c) There is a family of discrete valuations of k, say S, for which A is adapted to S and so that the

following holds:

(∀ν, ω ∈ S)
(
ν �= ω =⇒ (∃ a ∈ A)(ν(a) ≥ 1 and ω(a− 1) ≥ 1)

)
.

2. Vis a vis part (1), describe a one-to-one correspondence S ↔ Max(A).

3. Take k = Q, consider all prime numbers p with p ≡ 1 (mod 4), write ordp(n) for the highest exponent,
e, so that pe | n. Then ordp is a discrete valuation of Q, and we set S =

{
ordp | p ≡ 1 (mod 4)

}
.

Illustrate (c) in part (1) above with this S. What is A, in concrete terms? It is pretty clear now how
to make many Dedekind domains.

4. Say A is a Dedekind domain and a, b are two non-zero ideals of A. Show ∃x ∈ k(= FracA), so that
a + xb = A.

5. Again, let A be a Dedekind domain and let L be a finite subset of Max(A). Write
AL =

⋂
{Ap | p �∈ L}, then A ⊆ AL and so Gm(A) ⊆ Gm(AL). Recall, Gm(B) is the group of units

of the ring B. Prove that Pic(A) is a torsion group ⇐⇒ Gm(AL)/Gm(A) is a free abelian group of
rank #(L) for every finite set, L, of Max(A).

Problem 110 (Suggested by A. Auel) Suppose that R is a P.I.D. and consider the functor

t : R-mod� R-mod

that assigns to each M its torsion submodule. Of course, t is left-exact; what are its right derived functors?
If instead, R is just a domain but we assume the Rpt are given as in your answer for the case of a P.I.D.,
must R be a P.I.D.? Proof or counter-example.

Problem 111 Here, k is a field and A = k[Xα]α∈I . The index set, I, may possibly be infinite. Write m
for the ideal generated by all the Xα, α ∈ I. Set Ai = A/mi+1, so A0 = k. These Ai form a left mapping
system and we set

Â = lim←−Ai

and, as usual, call Â the completion of A in the m-adic topology. Note that the kernel of Â → Aj is the
closure of mj+1 in Â.
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1. Show that Â is canonically isomorphic to the ring of formal power series in the Xα in which only
finitely many monomials of each degree occur.

2. Now let I = N (the counting numbers) and write m̂ for the closure of m in Â. By adapting Cantor’s
diagonal argument, prove that m̂ is not Âm. Which is bigger?

3. (Bourbaki) Again, I as in (2). Let k be a finite field, prove the

Lemma. If k is a finite field and λ > 0, (∃nλ)(∀n ≥ nλ), there is a homogeneous polynomial,
Fn ∈ k[n2 variables], so that degFn = n and Fn cannot be written as the sum of terms of degree n of
any polynomial P1Q1 + · · ·+ PλQλ, where Pj , Qj are in k[n2 variables] and have no constant term.

Use the lemma to prove (m̂)2 �= (̂m2).

4. Use (2) and (3) to prove that Â is not complete in the m̂-adic topology.

5. All the pathology exhibited in (2), (3) and (4) arises as I is not finite; indeed, when I is finite, prove:

(a) m̂ is Âm;

(b) m̂2 = (̂m2);

(c) Â is complete in the m̂-adic topology.

Problem 112 Consider the category TOP (topological spaces and continuous maps) and T2TOP the full
subcategory of Hausdorff topological spaces.

1. At first, use the ordinary Cartesian product in TOP, with the product topology. Denote this Y × Z.
Show that Y ∈ T2TOP ⇐⇒ the diagonal map ∆ : Y → Y × Y is closed.

2. For X,Y ∈ T2TOP, recall that X
f−→ Y is called a proper map ⇐⇒ f−1(compact) is compact. (Of

course, any map f : X → Y will be proper if X is compact.) Show that f : X → Y is proper iff
(∀T ∈ T2TOP)(fT : X ×

Y
T → Y ×

Y
T is a closed map.)

3. With (1) and (2) as background, look at another subcategory, AFF, of TOP: here A is a commutative
ring, AFF consists of the topological spaces SpecB, where B is an A-algebra. Maps in AFF are those
coming from homomorphisms of A-algebras, viz: B → C gives SpecC → SpecB. Define

(SpecB) Π (SpecC) = Spec (B ⊗A C)

and prove that AFF possesses products.

NB:

(a) The topology on SpecB Π SpecC is not the product topology—it is stronger (more opens and
closeds)

(b) SpecB Π SpecC �= SpecB × SpecC as sets.
(Cf. Problem 87)

Prove: The diagonal map ∆Y : Y → Y Π
Spec A

Y is closed (Y = SpecB). This recaptures (1) in the

non-Hausdorff setting of AFF.

4. Given f : SpecC → SpecB (arising from an A-algebra map B → C) call f proper ⇐⇒

(i) C is a finitely generated B-algebra and

(ii) (∀T = SpecD)(fT : SpecC Π
Spec A

SpecD → SpecB Π
Spec A

SpecD is a closed map.)
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Prove: If C is integral over B, then f is proper. However, prove also, Spec
(
B[T ]

)
→ SpecB is never

proper.

5. Say A = C. For which A-algebras, B, is the map SpecB → SpecA proper?

Problem 113 Assume A is noetherian local, mA is its maximal ideal, and

Â = lim←−
n

A/mn+1 = completion of A in the m-adic topology.

Let B, mB be another noetherian local ring and its maximal ideal. Assume f : A → B is a ring homomor-
phism and we always assume f(mA) ⊆ mB .

1. Prove: f gives rise to a homomorphism Â
bf−→ B̂ (and m bA → m bB).

2. Prove: f̂ is an isomorphism ⇐⇒

(a) B is flat over A

(b) f(mA) ·B = mB

(c) A/mA → B/mB is an isomorphism.

3. Use (2) to give examples of B’s that are finite A-modules, non-isomorphic to A, yet Â and B̂ are
isomorphic.

Problem 114 Suppose that f ∈ Z[X] is a non-constant polynomial.

(1) Show there exists an n ∈ Z so that f(n) is not a prime number.

(2) Consider the sequence {f(n)}∞n=1 and write P for the set of primes dividing at least one term of this
sequence. Show P is infinite.

Problem 115 If k is a field and f ∈ k[T ], suppose f has degree n and has n distinct roots α1, . . . , αn in
some extension of k. Write Ω = k(α1, . . . , αn) for the splitting field of f and further take n+ 1 independent
indeterminates X,u1, . . . , un over Ω. Let k̃ = k(u1, . . . , un), write Ω̃ for k̃(α1, . . . , αn) and let
ω = α1u1 + · · ·+ αnun ∈ Ω̃. If σ is an arbitrary permutation of α1, . . . , αn set

σω = σ(α1)u1 + · · ·+ σ(αn)un,

and finally set
h(X) =

∏
σ∈Sn

(X − σω).

1. Show that h(X) has coefficients in k[u1, . . . , un].

2. Split h(X) into irreducible factors in k̃[X]; show all the factors have the same degree, r. (Hint: Natural
Irrationalities). Moreover, prove if σω is a root of a given factor, the other roots of this factor are
exactly the τσω, with τ ∈ g(Ω/k). Hence, prove that r = #

(
g(Ω/k)

)
.

3. Using (2), give a procedure for explicitly determining those permutations, σ ∈ Sn, which belong to
g(Ω/k). Illustrate your procedure with the examples: k = Q, f = T 3 − 2 and
f = T 4 + T 3 + T 2 + T + 1.

Problem 116 Here k is a field and Ω is a finite normal extension of k. Prove that there exists a normal
tower of fields

k = k0 ⊂ k1 ⊂ k2 ⊂ · · · ⊂ kn = Ω

so that
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(a) the first r of these extensions are separable and the set {g(ki/ki−1) | 1 ≤ i ≤ r} is exactly the set of
composition factors of g(Ω/k), and

(b) The last n− r are each purely inseparable over the previous and kj arises from kj−1 by adjunction of
a root of Xp − aj , with aj ∈ kj−1. (Here, p = char(k).)

Problem 117 Let g1, . . . , gn be polynomials (one variable) with coefficients in k = k0, . . . , kn−1 respectively,
and with kj the splitting field for gj . In this case, we say kn arises from the successive solution of a chain
of equations g1 = 0, g2 = 0, . . . , gn = 0. If f is a polynomial, we say f = 0 can be solved by means of an
auxiliary chain, gi = 0, of equations ⇐⇒ kn contains a splitting field for f . When the gi(X) have the
special form gi(X) = Xmi − ai, we say f = 0 may be solved by radicals.

1. Suppose f = 0 may be solved by means of the auxiliary chain g1 = 0, . . . , gn = 0. Let s(G) denote the
set of simple constituents (composition factors) of a given finite group, G. Prove that
s
(
gk(f)

)
⊆
⋃

s
(
gkj−1(gj)

)
.

2. Prove “Galois’ Theorem”: If k is a field, f ∈ k[X], and Ω is a splitting field for f over k, assume(
char(k), [Ω : k]

)
= 1; then f = 0 is solvable by radicals ⇐⇒ gk(f) is a solvable group.

Problem 118 Here k is a field, α is a root of an irreducible polynomial, f ∈ k[X].

1. Prove: α lies in a field extension, L, of k obtained by successive solution of a chain of quadratic
equations g1 = 0, . . . , gn = 0 ⇐⇒ the degree of a splitting field for f over k is a power of 2.

2. Given a line in the plane, we conceive of the line as the real line and the plane as C. But, no numbers
are represented on the line. However, two points are indicated on the line; we take these as 0 and
1 and label them so. We are given a straight edge (no markings on it) and a pair of dividers (no
scale on it either) which we can set to any length and which will hold that length. But, if we reset
the dividers, the original setting cannot be recaptured if not marked on our plane as a pair of points
“already constructed.” We can use our implements to make any finite number of the following moves:

(a) Set the dividers to a position corresponding to two points already constructed, make any arc or
circle with the dividers where one leg is at a point already constructed. (A point is constructed
iff it is the intersection of an arc and a line, an arc and an arc, a line and a line.)

(b) Given any pair of previously constructed points use the straight edge to draw a line or segment
of a line through these points.

You should be able to see that from 0 and 1 we can construct p/q ∈ Q (all p, q) therefore it is
legitimate to label Q on our real axis. Call a point (x, y) ∈ C constructible iff its real and imaginary
parts are constructible; that is these numbers, constructed as lengths, can be obtained from Q by a
finite number of moves (a) and (b). Show that α ∈ C is constructible iff Q(α) may be obtained from
Q by the successive solution of a chain of quadratic equations.

3. Prove

(a) The duplication of a cube by straight edge and dividers is impossible.

(b) The trisection of an angle by straight edge and dividers is impossible (try π/3).

4. (Gauss) Prove that a regular n-gon is constructible by straight edge and dividers iff n = 2rp1p2 · · · pt,
where r is non-negative and the pj are distinct Fermat primes (cf. Problem 14).

Problem 119 What is wrong with the following argument?
Let k be a field, write f(X) ∈ k[X], deg(f) = n, and suppose f has n distinct roots α1, . . . , αn, in a suitable
extension field L/k. Write Ω for the normal extension k(α1, . . . , αn). An element, ω, of Ω has the form
ω = g(α1, . . . , αn), where g is a polynomial in n variables with coefficients in k. Let σ be an arbitrary



386 PROBLEMS

permutation of the αi, then σ maps g(α1, . . . , αn) to g(α′1, . . . , α
′
n) where α′j = σ(αj). If h(α1, . . . , αn) is

another polynomial with coefficients in k, then h(α1, . . . , αn) → h(α′1, . . . , α
′
n) by σ and we have

g(α1, . . . , αn) + h(α1, . . . , αn) → g(α′1, . . . , α
′
n) + h(α′1, . . . , α

′
n)

g(α1, . . . , αn)h(α1, . . . , αn) → g(α′1, . . . , α
′
n)h(α′1, . . . , α

′
n).

Thus, we have an automorphism of Ω and the elements of k remain fixed. So, the arbitrary permutation, σ,
belongs to the group of k-automorphisms of Ω; hence, the latter group has order greater than or equal to
n!. By Artin’s Theorem, [Ω : k] ≥ n!. (Theorem 4.32)

Problem 120 If k is a field, f ∈ k[X] a separable polynomial and Ω is a splitting field for f over k, write
g = g(Ω/k) and consider g as a subgroup of the permutation group on the roots of f . Show that g is a
transitive permutation group ⇐⇒ f is an irreducible polynomial over k. Use this to give a necessary
condition that σ ∈ Sn actually belongs to gk(f), for f an arbitrary separable polynomial of degree n over
k. Illustrate your condition by finding the Galois groups over Q of the polynomials: X5 − 1, X5 +X + 1.

Problem 121 Here, K is a finite field of q elements and q is odd.

1. Let sq : K∗ → K∗ be the homomorphism given by sq(x) = x2. Show that
#ker sq = #coker sq = 2 and # Im sq = (q − 1)/2.

2. Prove:

(∀x ∈ K∗)
(
x(q−1)/2 =

{ 1 if x is a square in K
−1 otherwise

)

3. If K = Fp, then K contains a square root of −1 iff p ≡ 1 mod 4.

4. For any finite field, K, every element of K is a sum of squares. Is it true that each element of K is a
sum of (at most) two squares?

Problem 122 If k is a field of characteristic zero and f ∈ k[X] is a monic polynomial, factor f into monic
irreducible polynomials in k[X] and set

f = g1g
2
2 · · · gr

r

where gj is the product of the distinct irreducible factors of f which divide f with exact exponent j. Prove
that the g.c.d. of f and its, derivative, f ′, is

g2g
2
3 · · · gr−1

r .

Assume Euclid’s algorithm for finding the g.c.d. of two polynomials. Show that g1, . . . , gr may be determined
constructively. If n is an integer, illustrate with

f(X) = Xn − 1 ∈ Q[X].

Problem 123 If k is a field and f , g are non-constant polynomials in k[X], with f irreducible, prove that
the degree of every irreducible factor of f

(
g(X)

)
in k[X] is divisible by deg f .

Problem 124 If k is a field, X is transcendental over k, and f(X) ∈ k[X] is irreducible in k[X], write
α1, . . . , αn for a full set of roots of f in a suitable extension field of k. If char(k) = 0, prove that none of the
differences αi − αj (i �= j) can lie in k. Give a counterexample for char(k) = p > 0 (any prime p).

Problem 125 Let k ⊆ K be two fields of characteristic zero. Assume the following two statements:

(a) Every f(X) ∈ k[X] of odd degree has a root in k

(b) (∀α ∈ k)(X2 − α has a root in K)
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1. Prove: Each non-constant polynomial g ∈ k[X] has a root in K.

2. Assume as well that K/k is normal of finite degree. Prove that K is algebraically closed. (Suggestion:
Use induction on ν where deg g = 2νn0 (n0 odd). If r ∈ Z, set γ(r)

ij = αi +αj +rαiαj , where α1, . . . , αn

are the roots of g in some Ω ⊇ K. Fix r, show there is a polynomial h(X) ∈ k[X], so that the γ(r)
ij are

roots of h; for all i, j. Show some γ(r)
ij ∈ K; now vary r and find r1 �= r2 so that γ(r1)

ij ∈ K, γ(r2)
ij ∈ K.)

3. Take k = R and K = C. By elementary analysis, (a) and (b) hold. Deduce C is algebraically closed
(Gauss’ first proof).

Problem 126 Let Q be the rational numbers, R the real numbers , X a transcendental over R and suppose
f ∈ Q[X] is a polynomial of degree 3 irreducible in Q[X] having three real roots α, β, γ. Show that if

k0 = Q ⊆ k1 ⊆ k2 ⊆ · · · ⊆ km

is a finite chain of fields each obtained from the preceding one by adjunction of a real radical ρj = nj√cj
(nj ∈ Z, nj > 0, cj ∈ kj−1), the field km cannot contain ANY of the roots, α, β, γ of f . (Suggestion: If
wrong, show we may assume each nj is prime, let kj be the field with maximal j where f is still irreducible.
If α ∈ kj+1 show ρj+1 ∈ kj(α).) This is the famous “casus irreducibilis” of the cubic equation f = 0: if the
three roots are real, the equation cannot be solved by real radicals.

Problem 127 Here, f is an irreducible quartic polynomial with coefficients in k; assume f has four dis-
tinct roots α1, α2, α3, α4 in some extension field of k. Write β = α1α2 + α3α4, L = k(β), and let Ω be
k(α1, α2, α3, α4).

1. Assume g(Ω/k) has full size, i.e., 24, find g(Ω/L).

2. Show that, in any case, β is the root of a cubic polynomial, h, with coefficients in k (Lagrange’s “cubic
resolvent” for f).

Problem 128 Let k be a field, char(k) �= 2, write K/k for an extension of degree 2 and L/K for an extension
also of degree 2.

1. Show ∃α, β with α ∈ K, in fact K = k(α), and α2 = a ∈ k and β ∈ L, β2 = u + vα; u, v ∈ k and
L = K(β). (All this is very easy).

2. Let Ω be a normal closure of k containing L. Show that [Ω : k] is 4 or 8. In the case v = 0 (part (1)),
show Ω = k(α, β) = L and that ∃σ, τ ∈ g(Ω/k) so that σ(α) = −α, σ(β) = β, τ(α) = α, τ(β) = −β.
Determine precisely the group g(Ω/k).

3. When v �= 0, let β1 be a conjugate, not equal to ±β, of β. Prove Ω = k(β, β1) and that ∃σ ∈ g(Ω/k)
such that σ(β) = β1 and σ(β1) is one of β or −β.

4. Show if [Ω : k] = 8 we may assume in (3) that σ maps β1 to −β. Prove σ is an element of order 4 and
that ∃ τ ∈ g(Ω/k), of order 2, with τ−1στ = σ−1. Deduce that g(Ω/k) = Gp{σ, τ}; which of the two
non-abelian groups of order 8 is it?

5. Illustrate (1)-(4) with a discussion of X4 − a over Q.

6. With the above notation, show that the normal closure of K is cyclic of degree 4 iff a can be written as
the sum of two squares, b2 + c2, in k. (Hints: if Ω is the field above, show g(Ω/k) is cyclic, order 4, iff
Ω contains exactly one subfield of degree 2 over k. Then u2−av2 must equal aw2 for some w ∈ k. Now
show a is the sum of two squares. You may need to prove that if −1 is a square then every element of
k is a sum of two squares in k; cf. Problem 121.) Investigate, from the above, which primes, p ∈ Z,
are the sum of two squares in Z.
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Problem 129 Suppose p is a prime number, let Sp denote the symmetric group on p letters and write G
for a transitive subgroup of Sp (i.e., the p letters form an orbit for G).

(1) If G contains a transposition, we know (Problem 13) that G = Sp. Use this to show there exist
extensions, K, of Q whose Galois group is Sp.

(2) Hilbert proved the following theorem:

Hilbert Irreducibility Theorem. If f ∈ Q[T1, . . . , Tr, Z1, . . . , Zs], where the T ’s and Z’s are all algebraically
independent, and if f is irreducible, then there exist integers a1, . . . , ar so that substituting aj for Tj (j =
1, . . . , r), the resulting polynomial f̃ ∈ Q[Z1, . . . , Zs] is still irreducible. (Actually, there are infinitely many
choices for the ajs.)

Use Hilbert’s theorem to exhibit Sn as a Galois group over Q.

(3) Now An is a subgroup of Sn; can you exhibit An as a Galois group over Q? (There is an old open
question: Is every finite group, G, the Galois group of some finite normal extension of Q? If G is solvable,
this is known (due to Shafarevich) and hard to prove. Many simple groups are known to be Galois groups
over Q.)

(4) Write f(X) = X5 + aX + 1 with a ∈ Z and let Ω be the splitting field of f over Q. Determine
G(Ω/Q).

Problem 130 (Bourbaki)

1. Say k is a field, char(k) = p > 2; let K = k(X,Y ) where X and Y are independent transcendentals
over k. Write L = K(θ), where θ is a root of

f(Z) = Z2p +XZp + Y ∈ K[Z].

Show that L/K is inseparable yet does not contain any purely inseparable elements over K. (Sugges-
tion: First show f is irreducible and say ∃β ∈ L, βp ∈ K,β �∈ K. Then prove f becomes reducible in
K(β)[Z] and that then X1/p and Y 1/p would lie in L. Prove then that [L : K] ≥ p2.)

2. Find the Galois group g(Ω/K) where Ω is a normal closure of L/K.

3. Now just assume char(k) �= 2, write K = k(X) in this case. Let σ, τ be the 2-torsion k-automorphisms
of K given by σ(X) = −X; τ(X) = 1−X (i.e., σ

(
f(X)

)
= f(−X), etc.). Show the fixed field of σ is

k(X2); that of τ is k(X2 −X). If char(k) = 0, show that Gp{σ, τ} is an infinite group and prove that
k = k(X2) ∩ k(X2 −X).

4. Now assume again char(k) = p > 2. Show in this case k(X2) ∩ k(X2 − X) is strictly bigger than
k—determine it explicitly and find the degree[

k(X) : (k(X2) ∩ k(X2 −X))
]
.

5. What is the situation in (3) and (4) if char(k) = 2?

Problem 131 (Various Galois groups). Determine the Galois groups of the following polynomials over the
given fields:

1. (X2 − p1) · · · (X2 − pt) over Q, where p1, . . . , pt are distinct prime numbers.

2. X4 − t over R(t).

3. Xp −m over Q, where p is a prime number and m is a square free integer. (Hint: Here, g fits into a
split exact sequence of groups

0 �� Z/pZ �� g
��
?��� � � �� 0.)
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4. X8 − 2 over Q(
√

2), over Q(i), over Q. (Cf. Problem 128)

Problem 132 Show that x7 − 7x+ 3 has a simple group of order 168 as its Galois group over Q. Can you
be more precise as to which group this is?

Problem 133

1. Here K/k is a finite extension of fields. Show the following are equivalent:

(a) K/k is separable

(b) K ⊗k L is a product of fields (product in the category of rings) for any field L over k

(c) K ⊗k k is a product of fields

(d) K ⊗k K is a product of fields.

2. Now assume K/k is also a normal extension, and let

Kpi = {α ∈ K | α is purely inseparable over k}.

For the map
θ : Kpi ⊗k Kpi → Kpi via θ(ξ ⊗ η) = ξη,

show that the kernel of θ is exactly the nilradical of Kpi ⊗k Kpi.

3. Prove: If K/k is a finite normal extension, then K ⊗k K is an Artin ring with exactly [K : k]s prime
ideals. The residue fields of all its localizations at these prime ideals are each the same field, K. A
necessary and sufficient condition that K/k be purely inseparable is that K ⊗k K be a local ring.
(Hints: K = Ks ⊗k Kpi and the normal basis theorem.)

Problem 134 Throughout this problem, G is a finite group, k is a field, and R = k[G]. We further assume
that (#(G), char(k)) = 1.

(1) If S is a k-algebra (not necessarily commutative) write Fcn(G,S) for the k-module of all functions
from G to S under pointwise addition and k-multiplication.

For f ∈ Fcn(G,S), we set ∫
G

f(σ)dσ =
1

#(G)

∑
σ∈G

f(σ).

Further, write fτ (σ) = f(τσ) and show that∫
G

fτ (σ)dσ =
∫

G

f(τσ)dσ =
∫

G

f(σ)dσ

as well as ∫
G

1dσ = 1.

(We can write this as d(τσ) = dσ and refer to the above as the “left invariance of the integral”. Of course,
the integral is also right invariant as well as “inverse invariant” (i.e., d(σ−1) = dσ.) The integral is also
called a “mean” on G as it averages the values of the function f .

(2) If M is an R-module (i.e., a G-module which is also a k-vector space) and N is a sub-R-module of M ,
write π for any k-projection of M onto N . (So then, M = Ker π�N as k-spaces.) Now π ∈ Endk(M)(= S),
so we can form

T =
∫

G

(σ−1πσ)dσ.
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Prove that T is a G-invariant projection from M onto N and that

M = Ker T �N, as R-modules.

Deduce

Maschke’s Theorem (1898) If G,R and k are as above with (#(G), char(k)) = 1, then R is semi-simple
as k-algebra.

(3) If M is a simple R-module, prove that M is finite-dimensional as a k-vector space. (R-modules
are called (linear) representation spaces for G and the map G −→ Aut(M), making M a G-module, is
called a representation of G with space M . The dimension of M (as k-space) is called the degree of the
representation.) It is a known theorem of Wederburn that a simple k-algebra with the D.C.C. (on left ideals)
is isomorphic (as k-algebra) to the r × r matrices over a division ring, D. If k is algebraically closed, prove
that D is k itself. Now prove that

(a) For each finite group, G, and algebraically closed field, k, with (#(G), char(k)) = 1, the number of
non-isomorphic simple k[G]-modules is finite,

and

(b) We have g = f2
1 + · · ·+ f2

t , where fj is the degree of the jth simple R-module and g = #(G).

Problem 135 Say R is a not necessarily commutative ring but that R is noetherian (on the left).

(1) Given a f.g. R-module, M , show that projdimR(M) ≤ d if and only if for all finitely generated
R-modules, N , we have

Extd+1
R (M,N) = (0).

(2) Does the same criterion work for non f.g. R-modules M?

Problem 136 (Yoneda) Here, R is a ring and M ′,M ′′ are R-modules.

(1) Consider exact sequences of the form

0 −→M ′ −→ X1 −→ X2 −→M ′′ −→ 0 (E2)

where the Xi are R-modules. Call such “2-fold extensions of M ′′ by M ′” and, on the model of ordinary
extensions, define an equivalence relation on the 2-fold extensions. Prove that the equivalence classes so
defined are in 1-1 correspondence with Ext2R(M ′′,M ′).

(2) Generalize part (1) to “n-fold extensions”:

0 −→M ′ −→ X1 −→ · · · −→ Xn −→M ′′ −→ 0 (En)

including the 1-1 correspondence of the equivalence classes with Extn
R(M ′′,M ′).

(3) We know Extn
R(A,B) is a co-functor in A and a functor in the variable B. If M ′ −→ M̃ ′ and if

ξ ∈ Extn
R(M ′′,M ′) is represented by

0 −→M ′ −→ X1 −→ · · · −→ Xn −→M ′′ −→ 0,

describe explicitly an n-fold extension representing the image of ξ in Extn
R(M ′′, M̃ ′). Same question but for

a morphism M ′′ −→ M̃ ′′ and an element ξ̃ ∈ Extn
R(M̃ ′′,M ′).

(4) Extn
R(−,−) is an abelian group, as we know. Start with n = 1 and describe, in terms of representing

extensions,
0 −→M ′ −→ X −→M ′′ −→ 0,
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the abelian group structure on Extn
R(M ′′,M ′). (Of course, you must show your explicit construction of the

equivalence class of a sum of two extensions

0 −→M ′ −→ X −→M ′′ −→ 0 (a)
0 −→M ′ −→ Y −→M ′′ −→ 0 (b)

is independent of the choice of the representatives (a) and (b).) Continue with the general case of n-fold
extensions.

(5) Say
0 −→M ′ −→ X1 −→ · · · −→ Xr −→ Z −→ 0

and
0 −→ Z −→ Y1 −→ · · · −→ Ys −→M ′′ −→ 0

are an r-fold (resp. s-fold) extension of Z by M ′ (resp. of M ′′ by Z). We can splice these to obtain an
r + s-fold extension of M ′′ by M ′:

0 −→M ′ −→ X1 −→ · · · −→ Xr −→ Y1 −→ · · · −→ Ys −→M ′′ −→ 0.

Prove that this process respects the equivalence relation on extensions and therefore yields a map

θ : Exts
R(M ′′, Z)

∏
Extr

R(Z,M ′) −→ Extr+s
R (M ′′,M ′).

Show that from an r-fold extension

0 −→M ′ −→ X1 −→ · · · −→ Xr −→ Z −→ 0 (Er)

we obtain an “iterated connecting homomorphism”

δr : HomR(M ′, A) −→ Extr
R(Z,A)

for any R-module, A. If we take A = M ′ and compute δr(idM ′), we get an element χ(Er) in Extr
R(Z,M ′).

Prove that χ(Er) depends only on the equivalence class of Er and gives the 1-1 correspondence of part (2).
Discuss the pairing θ in terms of these “characteristic classes”, χ(Er), of extensions.

(6) Show that θ is actually bi-additive, hence it is Z-bilinear and therefore we get a map

Exts
R(M ′′, Z)⊗Z Extr

R(Z,M ′) −→ Extr+s
R (M ′′,M ′).

Take M = Z = M ′′, call the common value M . Then we can compute θ(α, β) and θ(β, α) for
α ∈ Extr

R(M,M) and β ∈ Exts
R(M,M). Is θ commutative? Is θ graded commutative

(θ(α, β) = (−1)rsθ(β, α))? Neither?

Problem 137 We take G to be a group and write R for Z[G].

(1) Recall from Chapter 5, Section 5.3, that there is an isomorphism

Hp(G,M) ∼= Extp
R(Z,M)

for every p ≥ 0. Here, M is a G-module (so, an R-module). When p = 2, the left hand group classifies group
extensions

0 −→M −→ G −→ G −→ 1 (E)

up to equivalence, while the right hand side classifies 2-extensions (of R-modules)

0 −→M −→ X1 −→ X2 −→ Z −→ 0, (E)



392 PROBLEMS

again up to equivalence.

In terms of exact sequences and natural operations with them describe the 1-1 correspondence between
sequences (E) and (E).

(2) Again, with the G-action on M fixed, extensions (E) can be classified by equivalence classes of 2-
cocycles of G with values in M . Given such a 2-cocycle, show how to construct, explicitly, a 2-extension (E).
Carry through the verification that cohomologous 2-cocycles yield equivalent 2-extensions.

(3) Transfer the Yoneda addition of 2-extensions from Problem 136 to the addition of group extensions—
the so called Baer addition.

Problem 138

1. Let A = k[X1, . . . , Xn]/
(
f(X1, . . . , Xn)

)
, where k is a field. Assume, for each maximal ideal, p, of

A, we have (grad f)(p) �= 0 (i.e., (∀ p)(∃ component of grad f not in p)). Show that Derk(A,A) is a
projective A-module.

2. Suppose now A = k[X,Y ]/(Y 2 −X3), char(k) �= 2, �= 3. Consider the linear map A�A→ A given by
the matrix (X2, Y ); find generators for the kernel of this map.

3. In the situation of (2), show that Derk(A,A) is not projective over A.

Problem 139 Suppose in a ring R (assumed commutative for simplicity) we have elements f1, . . . , fr. We

let
−→
f = (f1, . . . , fr); prove that

K•(
−→
f ) ∼= K•(

−→
f1 )⊗R · · · ⊗R K•(

−→
fr ),

where on the right hand side we mean the total complex.

Problem 140 For G a group and M a right G-module, let M be considered as a “trivial” (left) Z[G]-module
and consider the bar complex as in Section 5.3, Chapter 5 of the text with boundary map

∂n(m⊗ σ1 ⊗ · · · ⊗ σn) = mσ1 ⊗ σ2 ⊗ · · · ⊗ σn +
n−1∑
i=1

(−1)im⊗ σ1 ⊗ · · · ⊗ σiσi+1 ⊗ · · · ⊗ σn

+ (−1)n+1m⊗ σ1 ⊗ · · · ⊗ σn−1.

Define
H̃n(G,M) = Ker ∂n/Im ∂n+1

and prove that M � {H̃•(G,M)} is a universal ∂-functor as stated in the text. Thus, complete, by elemen-
tary methods, the identification of group homology for (right) G-modules, M , and Hochschild homology for
the ring Z[G] and the modules ε∗M (definition on page 283, top).

Problem 141 Suppose that G is a profinite group and that H is a closed subgroup of G.

(1) Show that c.d(H) ≤ c.d(G).

(2) If H is open in G (and hence automatically closed in G), can you strengthen the inequality of (1)?

(3) Suppose G is a finite group. Prove that

c.d(G) =
{ 0
∞

and c.d(G) = 0 when and only when G = {1}.
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Problem 142 For simplicity, assume in this problem that A is a commutative ring. If
−→
f = (f1, . . . , fr)

and −→g = (g1, . . . , gr) are two ordered sequences of elements of A, write
−→
fg for the sequence (f1g1, . . . , frgr).

Now, we have a map

ϕ−→g : K•(
−→
fg) −→ K•(

−→
f )

induced by
ϕ−→g (ξ1, . . . , ξr) = (g1ξ1, . . . , grξr).

(1) Show that this map is a chain map.

(2) Write
−→
fp = (fp

1 , . . . , f
p
r ), then, for 0 < s < t, we get a map

ϕ−−→
ft−s

: K•(
−→
f t ) −→ K•(

−→
fs)

and hence

ϕ•−−→
ft−s

(M) : K•(
−→
fs ,M) −→ K•(

−→
f t ,M).

We set

C•((
−→
f ),M) = lim−→K•(

−→
f t ,M)

(with respect to these maps) and further set

H•((
−→
f ),M) = H•(C•((

−→
f ),M)).

Prove that

H•((
−→
f ),M) = lim−→H•(

−→
f t ,M).

(3) Now, fix
−→
f and for the given −→g , define

Eg : K•(
−→
f ) −→ K•(

−→
f )

by the equation

(Eg)•(z) =

 r∑
j=1

gjej

 ∧ z; the ej are a base for Ar.

Prove that

d ◦ Eg + Eg ◦ d =

(
r∑

i=1

gifi

)
id on Kt(

−→
f ), all t ≥ 0.

Deduce the

Proposition Suppose f1, . . . , fr generate the unit ideal of A, then for all A-modules, M , the complexes

K•(
−→
f t ); K•(

−→
f t ,M); K•(

−→
f t ,M); C•((

−→
f t ),M)

have trivial (co)homology in all dimensions.

(4) The homology and cohomology modules H0(
−→
f ,M), Hr(

−→
f ,M), H0(

−→
f ,M), Hr(

−→
f ,M) depend only

on the ideal, A, generated by f1, . . . , fr. Is it true that H•((
−→
f ),M) depends only on A as (3) suggests?
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Problem 143 Give the proof of “Lemma C” (= Lemma 5.51 of the text) following the methods used for
“Lemmas A & B”.

Problem 144 If A is a P.I.D., prove that gldim(A) ≤ 1. Under what conditions does the strict inequality
hold? You may wish to investigate first the relations between gldim(A) and gldim(Ap) for a commutative
(noetherian?) ring, A, and all its prime ideals, p. Is the inequality gldim(A) ≤ 1 still valid if A is just a
principal ideal ring (not a domain)? If A is a Dedekind ring, what is gldim(A)?

Problem 145

1. Prove the six conditions of Proposition 5.72 are indeed equivalent.

2. Prove that the ten conditions listed in Proposition 5.73 are equivalent.

Problem 146 Here, A is a commutative ring, A is an ideal of A and M is an A-module.

1. Prove that the number of elements in a maximal M -regular sequence from A is independent of the
choice of these elements (from A). Thus, depthAM is well-defined.

2. Reformulate Koszul’s Proposition (our 5.68) in terms of A-depth.

3. If A and M are graded and (f1, . . . , ft) =
−→
f is an M -regular sequence of homogeneous elements then

any permutation of (f1, . . . , ft) is still an M -regular sequence.

Problem 147 (R. Brauer) Here, G is a group and T is a finite subgroup of order m. For σ, τ ∈ G, we define

σ ∼ τ ⇐⇒ (∃t ∈ T )(σ−itτ i ∈ T, all i ∈ Z).

1. Show that ∼ is an equivalence relation and that each equivalence class has m elements.

2. Say σ ∼ τ , prove there is an x ∈ T so that τm = x−1σmx.

3. Let S be a subset of Z(G); pick a suitable T as above and show: Given n ∈ Z, either

#({z ∈ G | zn ∈ S}) = ∞

or this cardinality is divisible by g.c.d(n,m).

4. When #(G) = g <∞, show that the cardinality of the set in (3) is divisible by g.c.d(g, n).

Problem 148 If F (r) is the free group of rank r, and if Γn(F (r)) is the nth term in the lower central series
for F (r), prove that the group G = F (r)/Γn(F (r)) is torsion-free.

Problem 149 Suppose A is a commutative ring, write GL(A) for the group
⋃∞

n=1 GL(n,A) in which
GL(n,A) is a subgroup of GL(n+ 1, A) by the map

ξ →
(
ξ 0
0 1

)
1. When A = Z, consider elements of GL(n+ 1,Z) of the form I

∗
...
∗

0 · · · 0 ∗


 n

︸ ︷︷ ︸
n

and their transposes. Show these matrices generate GL(n+ 1,Z) (as a group).
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2. Prove that for any α ∈ GL(n,A), there exist elements x, β ∈ GL(A) with β of the form

β =

(
I 0

0 ∗

) }
n}
r︸︷︷︸ ︸︷︷︸

n r

and α = xβx−1.

Problem 150 Let k be a field, ch(k) �= 2 and write F for any overfield of k. Denote by Vn(F ) the set of all
symmetric, nilpotent n× n matrices, A, with entries in F and rank(A) = n− 1.

1. In the ring of all n×n matrices over F , show that if a matrix commutes with A it must be a polynomial
(coefficients in F ) in A.

2. When n = 2 and F = Fp, prove that V2(F ) is non-empty when and only when p ≡ 1 (mod 4).

3. If n = 3 and p ≡ 1 (mod 4) then V3(Fp) �= ∅. Show, moreover, that V3(F3) �= ∅.

4. Let Zp denote the ring of p-adic integers with p �= 2. Prove there is an n × n symmetric matrix, B,
with entries in Zp so that Bn = pC iff Vn(Fp) �= ∅. (Here, C is an invertible n× n matrix with entries
in Zp.)

5. As usual, write F for the algebraic closure of F and On(F ) for the group of orthogonal matrices for
the standard diagonal form (entries in F ). If D ∈ GL(n, F ), write Cay(D) = D
D (this is the Cayley
transform of D) and show the map

D → Cay(D)

is an isomorphism of the coset space On(F )\GL(n, F ) with the set, Sn(F ), consisting of symmetric,
invertible n× n matrices from F . Is this true when F replaces F?

6. Write N for the nilpotent matrix (n× n)

N =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

 .

If S is a symmetric n× n matrix prove that SN = N
S iff S has the form

S =


sn sn−1 · · · s2 s1
sn−1 sn−2 · · · s1 0

...
...

...
...

s2 s1 · · · 0 0
s1 0 · · · 0 0


and show further that S is invertible iff s1 is a unit.

7. Say p �= 2, prove that Vn(Fp) �= ∅. Using only (5) and (6) above, determine how big an extension, K,
of Fp you need to guarantee Vn(K) �= ∅.

Problem 151 (Continuation of Problem 150) Here, ch(F ) �= 2.

1. Prove On(F ) acts transitively on Vn(F ).
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2. Show Vn(F ) is a principal homogeneous space (= a torsor) for the group POn(F ), which, by definition,
is On(F )/(±I).

3. If n is odd, show Vn(F ) is a torsor for SOn(F ); while if n is even, prove Vn(F ) has two components.

Problem 152 (Sierpinski) Write π(x) for the nunmber of prime integers less than or equal to the positive
real number x. The Prime Number Theorem asserts that limx�→∞ π(x)

/(
x

log x

)
= 1. Call a rational number

special if it has the form p
q where p and q are prime integers. Prove that the special rational numbers are

dense in the positive reals.

Problem 153 Suppose (Bα, ϕ
β
α) is a right mapping system of Artinian rings. Write B for lim−→Bα, and

assume B is noetherian. Prove that B is Artinian. That is, B is Artinian iff it is noetherian.

Problem 154 Fix a commutative ring, R, and an R-module, E. Suppose A and B are submodules of E so
that B is free (of rank r) and is a direct summand of E. Prove that for an integer q ≥ 0, the following are
equivalent:

(a) The map
∧q

A −→
∧q(E/B) is zero.

(b) The map
∧q((A+B)/B) −→

∧q(E/B) is zero.

(c) The map
∧q+r(A+B) −→

∧q+r
E is zero.

Problem 155 Throughout this problem A,B,C are three subgroups of a group, G, and we assume
AB = BA, AC = CA and C ⊆ B.

1. Prove that (B : C) = (AB : AC)/(A ∩B : A ∩ C).

2. Suppose ϕ maps B onto a group B∗ and write C∗ for the image of C under ϕ. Prove that

(B : C) = (B∗ : C∗)(Kerϕ : Ker (ϕ � C)).

3. Here, let ϕ and ψ be in End(G); assume ϕψ and ψϕ are each the trivial homomorphism. Let H be
any subgroup of G stable under both ϕ and ψ. Show that

(G : H)(Ker (ϕ � H) : Im(ψ � H)) = (ϕ(G) : ϕ(H))(ψ(G) : ψ(H))(Kerϕ : Imψ).

4. Under the hypotheses of (3), if (G : H) <∞, deduce Herbrand’s Lemma:

(Kerϕ : Imψ)(Ker (ψ � H) : ϕ(H)) = (Kerψ : Imϕ)(Ker (ϕ � H) : ψ(H)).

Problem 156 Suppose A is a (commutative) local or semi-local ring. Recall that the (strict) Henselization
of A, denoted Ah, is the right limit, lim−→ C, in which C runs over the family of finitely presented étale
A-algebras.

1. If B is a semi-local A-algebra (A also being semi-local) and if B is integral over A, prove that B⊗AA
h

is both semi-local and isomorphic to Bh.

2. Suppose A is local and Henselian (i.e. A = Ah), show that for every p ∈ SpecA the integral closure of
A/p in Frac(A/p) is again a local ring.

Problem 157 (Eilenberg) Let R be the non-commutative polynomial ring in n variables, T1, . . . , Tn, over
the field k; so, R = k〈T1, . . . , Tn〉. If M is a two-sided R-module, then a crossed homomorphism from R to
M is an R-module map R −→M so that

f(ξη) = ξf(η) + f(ξ)η.

(Also called a derivation).
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1. Given elements m1, . . . ,mn from M , show that the assigment Tj → mj gives rise to a unique crossed
homomorphism R −→M . Here, there is no restriction on the mj .

2. As in Section 5.3 of the text, consider the augmentation ideal, J, for the map ∂0 : Re → R. Prove that
J is a free Re-module on the base Tj ⊗ 1− 1⊗ T op

j , j = 1, 2, . . . , n.

3. Deduce from (2) that dimRe(R) = 1 (n > 0) in contradistinction to the commutative case.

Problem 158 (Serre) Here, G is a group and it acts on a set, S.

1. Suppose G is finite and S is finite. Write χ for the function on G to C given by

χ(σ) = # of fixed points of σ on S.

Prove Burnside’s Lemma: The number of orbits of G acting on S equals
∫
χ(σ)dσ (cf. Problem 134

for notation). (Suggestions. Show it suffices to give the proof when S is an orbit. In this case write∫
χ(σ)dσ =

∫ (∑
x∈Sσ

1
)
dσ =

∑
s∈S

∫
Gx

1dσ,

where Gx = {σ ∈ G | σx = x}.)

2. Apply part (1) to the set S
∏
S with its G-action to see that χ2(σ) counts the fixed points of σ on

S
∏
S. Prove:

∫
χ2(σ)dσ ≥ 2.

3. Write G0 = {σ ∈ G | χ(σ) = 0} = the σ’s of G having no fixed points. Set n = #(S) and prove∫
G−G0

(χ(σ)− 1)(χ(σ)− n)dσ ≤ 0.

Next assume n ≥ 2 and G acts transitively on S. Prove that∫
G

(χ(σ)− 1)(χ(σ)− n)dσ ≥ 1

and evaluate
∫

G0
(χ(σ)− 1)(χ(σ)− n)dσ. Put all together to prove the

Cameron-Cohen Inequality : If n ≥ 2 and S is a G-orbit then

#(G0)
#(G)

≥ 1
n
.

Deduce Jordan’s Theorem: If G acts on S transitively and #(S) ≥ 2, then there is a σ ∈ G having no
fixed point on S.

Problem 159 (Kaplansky) R is a ring and we are interested in “big” R-modules, i.e., those generated by
more than ℵ0 generators. For this reason, modules finitely or countably generated will be called “atoms”
and we use the locution “finite atom” for a f.g. module.

1. Suppose M is an R-module that is a coproduct of (an arbitrary number of) atoms, say M =
∐
Mi.

Suppose further P is a direct summand of M ; that is,

M = P �Q (some Q)

Prove there exists a well-ordered increasing family {Sα}α an ordinal of submodules of M having the
following properties:
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(a) Each Sα is a coproduct of some of the Mi

(b) Each Sα splits as (Sα ∩ P )
∐

(Sα ∩Q)

(c) If α is a limit ordinal, then Sα =
⋃

β<α Sβ

(d) Sα+1/Sα is an atom.

(Hints: We use transfinite induction. By (c) we know how to proceed at a limit ordinal, check properties
(a) and (b). The only point is to construct Sα+1 from Sα. One of the Mi is not contained in Sα, call
it M∗. Write the generators of the atom M∗ as

x11 x12 x13 x14 · · ·

Begin with x11 and split it into its P and Q components giving us two new elements of M . Show only
finitely many Mi’s appear in the coproduct decomposition of these new elements; so, if we take∐
{Mi |Mi appears} we get an atom. Write its generators as a second row of the infinite matrix being

constructed. Repeat for x12 and get the third row x31 x32 · · · . Now just as in the counting of Q take
the elements in “diagonal order”: x11, x12, x21, x13, x22, x31, · · · and keep repeating. Show that

Sα+1 = module generated by Sα and all xij

has (a) and (b) ((d) is obvious).)

2. Write Pα = P ∩ Sα, show Pα is a direct summand of Pα+1, that Pα =
⋃

β<α Pβ (when α is a limit
ordinal) and that Pα+1/Pα is an atom. Finally, deduce P is a coproduct of atoms and so prove

Kaplansky’s Theorem. Every direct summand of a module which is a coproduct of atoms is itself a
coproduct of atoms. Every projective R-module is a coproduct of atoms.


