1. Compute the character table of the quaternion group with 8 elements.

2. Let \(N \) be the subgroup of \(\text{GL}_3(\mathbb{F}_3) \) consisting of all upper-triangular unipotent \(3 \times 3 \) matrices with entries in \(\mathbb{F}_3 \). Determine the character table of \(N \).

3. Determine the character table of the quaternion group \(Q_{16} \) with 16 elements defined in Assignment 2.

4. Let \(G \) be a finite group whose cardinality is an odd number. Prove that \(\chi(i) \neq \overline{\chi(i)} \) for any nontrivial complex irreducible character \(\chi(i) \). (Hint: Use a suitable orthogonality relation to show that if \(\chi(i) = \overline{\chi(i)} \), then \(\frac{\chi(i)(1)}{2} \) would be an algebraic integer.)

5. Let \(G \) be a finite group and let \(\chi(i) \) be the character of an irreducible linear representation of \(G \) on a finite dimensional vector space \(V \) over \(\mathbb{C} \). Let \(n = \text{Card}(G) \).

 (i) Show that \(\chi(\sigma) \) is an algebraic integer in the cyclotomic field \(\mathbb{Q}(\mu_n) \) for every \(\sigma \in G \).

 (ii) Let \(\sigma \) be an element of \(G \) such that \(\chi(\sigma) \neq 0 \). Show that

 \[
 \text{Tr}_{\mathbb{Q}(\mu_n)/\mathbb{Q}}(\chi(\sigma) \cdot \overline{\chi(\sigma)}) \geq [\mathbb{Q}(\mu_n) : \mathbb{Q}].
 \]

 (Hint: Use the fact that the arithmetic means of a finite number of elements in \(\mathbb{R}_{\geq 0} \) is bigger than or equal to their geometric means.)

 (iii) Assume that \(\dim_{\mathbb{C}}(V) > 1 \). Prove that there exists an element \(\sigma \in G \) such that \(\chi(\sigma) = 0 \).

 (iv) Let \(\tau \) be an automorphism of the cyclotomic field \(\mathbb{Q}(\mu_n) \). Show that there exists an integer \(a \) such that \(\tau(\chi(\sigma)) = \chi(\sigma^a) \) for every \(\sigma \in G \).

6. (extra credit) Determine the character table of the finite group \(\text{SL}_2(\mathbb{F}_5) \).