1. Let D_8 be the dihedral group with 8 elements, with generators a, b such that $a^4 = 1 = b^2$, $bab^{-1} = a^{-1}$. Let H be the subgroup of D_8 generated by a^2 and b.

 (i) Show that the 1-dimensional subspace $V := \mathbb{C} \cdot (1 - a^2 + b - a^2b)$ of $\mathbb{C}[H]$ is an ideal in $\mathbb{C}[H]$.

 (ii) Write down the character of V.

 (iii) Write down the character of the induced representation $\text{Ind}_{H}^{D_8}(V)$. Is it irreducible?

2. Let G be a finite group, H be a subgroup of G, and let k be a field. Let V be a left $k[H]$-module. Define W to be the k-vector space of all functions $f : G \rightarrow V$ such that $f(hx) = h \cdot f(x)$ for all $h \in H$ and all $x \in G$.

 (i) For every element $y \in G$ and every element $f \in W$, define $y \cdot f$ to be the element in W such that $(y \cdot f)(x) = f(xy)$ for every $x \in G$. Show that this gives W a structure as a left $k[G]$-module.

 (ii) Show that W is isomorphic to $k[G] \otimes_{k[H]} V$ as a $k[G]$-module.

3. Let G be a finite group and let k be a field. Let V be a finite dimensional k-linear representation of G. Consider the tensor product $k[G] \otimes_k V$, the tensor product of the left regular representation with V, and regard $k[G] \otimes_k V$ as a left $k[G]$-module. Show that $k[G] \otimes_k V$ is a free left $k[G]$-module.

4. Let G be a finite group, and let H be a subgroup of G.

 (i) Let χ be an irreducible complex character of G. Write $\text{Res}_{H}^{G}(\chi) = \sum_{j=1}^{a} d_j \omega_j$, where the ω_j’s are distinct irreducible complex characters of H. Show that $\sum_{j=1}^{a} d_j^2 \leq [G : H]$.

 (ii) Let ω be an irreducible complex character of H. Write $\text{Ind}_{H}^{G}(\omega) = \sum_{i=1}^{b} e_i \chi_i$, where the χ_i’s are irreducible complex characters of G. Show that $\sum_{i=1}^{b} e_i^2 \leq [G : H]$.

5. Let G be a finite group, and let k be a field.

 (i) Show that the free left $k[G]$-module is an injective $k[G]$-module. (Hint: Use the construction $V \sim V^V$ for finite-dimensional k-linear representations of G. Also, See Shatz-Gallier for the definition of injective modules.)

 (ii) Show that every projective left $k[G]$-module is injective.

6. Let G be a finite group and let $\rho : G \rightarrow \text{GL}(V)$ be an irreducible linear representation of G on a finite dimensional vector space V over \mathbb{C}. Let $N \subseteq G$ be the subgroup of G consisting of all elements $x \in G$ such that $\rho(x) \in \mathbb{C}^\times \text{Id}_V$.

 (i) Let $G^n = G \times \cdots \times G$ be the product of n copies of G, $n \geq 1$. $\rho_n : G^n \rightarrow V \otimes \cdots \otimes V$ be the n-th exterior tensor power of (ρ, V). Let N_n be the subgroup of $N_n := N \times \cdots \times N$ consisting of all elements $(x_1, \ldots, x_n) \in N^n$ such that $x_1 \cdot \cdots \cdot x_n = 1$. Show that $\dim_{\mathbb{C}}(V)^n$ divides $\text{Card}(G^n/N_n)$.

 (ii) Show that $\dim_{\mathbb{C}}(V)$ divides $\text{Card}(G/N)$.
7. Let \(\rho : G \to GL(V) \) be a faithful finite dimensional complex representation of a finite group \(G \). Let \(\chi = \chi_\rho \) be the character of \(\rho \). Let \(\omega \) be an irreducible complex character of \(G \). For every \(m \in \mathbb{N} \), denote by \(\chi_m \) the character of \(V^\otimes m \).

(i) Let \(a_m := \langle \chi_m, \omega \rangle \) be the multiplicity of \(\omega \) in \(V^\otimes m \). Show that the generating function

\[
f(t) := \sum_{m \geq 0} a_m t^m \in \mathbb{C}[[t]]
\]

is a rational function and give a formula for the rational function \(f(t) \) in terms of the characters \(\chi \) and \(\omega \).

(ii) Determine the radius \(r_0 \) of convergence of the power series \(f(t) \).

(iii) Determine the order of poles of \(f(t) \) at points of the circle \(|t| = r_0 \).

(iv) Show that the number of poles of \(f(t) \) at points of the circle \(|t| = r_0 \) is equal to the number of conjugacy classes of \(G \) contained in the normal subgroup \(\rho^{-1}(\mathbb{C}^\times \text{Id}_V) \).

(v) Show that \(f(t) \) is not identically equal to 0. Deduce that \(\chi \) appears in \(V^\otimes n \) for some \(n \in \mathbb{N} \).

(vi) Show that there exists infinitely many natural numbers \(n \in \mathbb{N} \) such that \(\chi \) appears in \(V^\otimes n \).