Let \(G \) be the generator of \(\mathbb{Z} \) the element \(\mathbb{Z} \) semi-direct product \((\mathbb{Z}/2\mathbb{Z}) \rtimes_\rho (\mathbb{Z}/2\mathbb{Z})\) for the action \(\rho : \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(\mathbb{Z}/2^{n-1}\mathbb{Z})\), where the generator of \(\mathbb{Z}/2\mathbb{Z} \) acts on \(\mathbb{Z}/2^{n-1}\mathbb{Z} \) as \(a \mapsto -a \forall a \in \mathbb{Z}/2^{n-1}\mathbb{Z} \).

(ii) Let \(n \geq 4 \) be a positive integer. Let \(\text{SD}_{2^n} \) be the semi-direct product \((\mathbb{Z}/2^{n-1}\mathbb{Z}) \rtimes_\tau (\mathbb{Z}/2\mathbb{Z})\) for the action \(\tau : \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(\mathbb{Z}/2^{n-1}\mathbb{Z})\), where the generator of \(\mathbb{Z}/2\mathbb{Z} \) acts on \(\mathbb{Z}/2^{n-1}\mathbb{Z} \) as \(a \mapsto (2^{n-2} - 1)a \forall a \in \mathbb{Z}/2^{n-1}\mathbb{Z} \).

(iii) Let \(n \geq 3 \) be a positive integer. Let \(G \) be the semi-direct product \((\mathbb{Z}/2^{n-1}\mathbb{Z}) \rtimes_\mu (\mathbb{Z}/4\mathbb{Z})\) for the action \(\mu : \mathbb{Z}/4\mathbb{Z} \to \text{Aut}(\mathbb{Z}/2^{n-1}\mathbb{Z})\), where the generator \(1 = 1 + 4\mathbb{Z} \) of \(\mathbb{Z}/4\mathbb{Z} \) operates on \(\mathbb{Z}/2^{n-1}\mathbb{Z} \) as \(a \mapsto -a \forall a \in \mathbb{Z}/2^{n-1}\mathbb{Z} \). Notice that \(\mathbb{Z}(G) \) is isomorphic to \((\mathbb{Z}/2\mathbb{Z})^2\), generated by the elements \((2^{n-2} + 2^{n-1}Z, 4Z), (2^{n-1}Z, 2 + 4Z)\). Define the quaternion group \(Q_{2^n} \) with \(2^n \) elements to be the quotient of \(G \) by the subgroup of \(\mathbb{Z}(G) \) generated by the element \((2 + 2^{n-1}Z, 2 + 4Z)\) of order two.

1. For \(G = \text{Mod}_{p^n} \) determine the Frattini subgroup \(\Phi(G) \), the commutator subgroup \([G, G]\), the \(p \)-rank of \(G \) (i.e. the largest integer \(m \) such that \(G \) contains a subgroup isomorphic to \(\mathbb{Z}^m \)), the ascending central series of \(G \) and the descending central series of \(G \).

2. For \(G = \text{D}_{2^n}, \text{SD}_{2^n}, \text{Q}_{2^n} \), determine the Frattini subgroup \(\Phi(G) \), the commutator subgroup \([G, G]\), the \(2 \)-rank of \(G \), the ascending central series of \(G \) and the descending central series of \(G \).

3. Suppose that \(G \) is a non-commutative (finite) \(p \)-group for a prime number \(p \) such that \(G \) has a cyclic normal subgroup of index \(p \). Prove that \(G \) is isomorphic to a \(\text{Mod}_{p^n} \) if \(p \) is odd, and \(G \) is isomorphic to a \(\text{Mod}_{2^n}, \text{D}_{2^n}, \text{SD}_{2^n} \) or \(\text{Q}_{2^n} \) if \(p = 2 \).

4. Let \(G \) be a finite \(p \)-group, where \(p \) is a prime number. Show that there is a characteristic subgroup \(H \) of \(G \) such that \(\Phi(H) \leq Z(H) = Z_G(H) \geq [G, H] \). Here \([G, H]\) is the subgroup of \(G \) generated by commutators of the form \(x^{-1}y^{-1}xy \) with \(x \in G, y \in H \). A subgroup of \(G \) with the above properties is called a critical subgroup of \(G \). (Hint: Consider the partially order set \(\mathcal{S} \) of all characteristic subgroups \(H \) of \(G \) such that \(\Phi(H) \leq Z(H) \geq [G, H] \), and show that every maximal element in \(\mathcal{S} \) is a critical subgroup of \(G \).)

5. Find a critical subgroup for each of the following groups: \(\text{Mod}_{p^n}, \text{D}_{2^n}, \text{SD}_{2^n}, \text{Q}_{2^n} \).

6. Let \(G = S_3 = \text{D}_3 \), and let \(N \) be the normal subgroup with 3 elements in \(G \). Denote by \(e_N \) the element
\[
e_N := \frac{1}{3} \sum_{x \in N} x \in \mathbb{Q}[G]
\]
in the rational group algebra \(\mathbb{Q}[G] \) of \(G \).

(i) Show that \(e_N \in Z(\mathbb{Q}[G]) \), and \(e_N^2 = e_N \). Consequently the ideals \(e_N \mathbb{Q}[G] = e_N \mathbb{Q}[G]e_N = \mathbb{Q}[G]e_N \) and \((1 - e_N)\mathbb{Q}[G] = (1 - e_N)\mathbb{Q}[G](1 - e_N) = \mathbb{Q}[G](1 - e_N)\) have natural structure as rings with unit, and we have a natural isomorphism
\[
\mathbb{Q}[G] = e_N \mathbb{Q}[G] \times (1 - e_N)\mathbb{Q}[G](1 - e_N)
\]
of \(\mathbb{Q} \)-algebras.
(ii) Prove that the map \(x \to e_N x \) defines a surjective ring homomorphism \(\pi \) from \(\mathbb{Q}[G] \) to \(\mathbb{Q}[G/N] \cong \mathbb{Q}[\mathbb{Z}/2\mathbb{Z}] \) whose kernel is equal to \((1 - e_N)\mathbb{Q}[G](1 - e_N) \). Show that \(\mathbb{Q}[G/N] \) is isomorphic to \(\mathbb{Q} \times \mathbb{Q} \) as \(\mathbb{Q} \)-algebras.

(iii) Show that \(\mathbb{Q}[G]/e_N \mathbb{Q}[G]e_N \cong (1 - e_N)\mathbb{Q}[G](1 - e_N) \) is a four-dimensional simple \(\mathbb{Q} \)-algebra, i.e. it has no non-trivial two-sided ideals.

(iv) Is \(\mathbb{Q}[G]/e_N \mathbb{Q}[G]e_N \) isomorphic to \(M_2(\mathbb{Q}) \)? (Either establish an isomorphism or show that no such isomorphism exists.)

7. Let \(p \geq 5 \) be prime number. Let \(G = D_{2p} \), the dihedral group with \(2p \) element. Let \(N \) be the normal cyclic subgroup of order \(p \) in \(G \). Let \(e_N := \frac{1}{p} \sum_{x \in N} x \in \mathbb{Q}[G] \).

(i) Show that \(e_N \in \mathbb{Q}[G] \) and \(e_N^2 = 1 \).

(ii) Let \(\pi : \mathbb{Q}[G] \to \mathbb{Q}[G/N] \cong \mathbb{Q}[\mathbb{Z}/2\mathbb{Z}] \) be the surjective ring homomorphism induced by the canonical surjection \(G \to G/N \). Show that \((1 - e_N) \) generates \(\text{Ker}(\pi) \).

(iii) The ideal \((1 - e_N)\mathbb{Q}[G] = (1 - e_N)\mathbb{Q}[G](1 - e_N) = \mathbb{Q}[G](1 - e_N) \) of \(\mathbb{Q}[G] \) has a natural structure as a \(\mathbb{Q} \)-algebra; denote it by \(A \). Show that \(A \) is isomorphic to \(\mathbb{Q}[G]/e_N \mathbb{Q}[G] \) as a \(\mathbb{Q} \)-algebra. Prove that the center of \(\mathbb{Q}[G]/e_N \mathbb{Q}[G] \) is equal to the field \(\mathbb{Q}[N]/e_N \mathbb{Q}[N] := F \).

(iv) Is \(\mathbb{Q}[G]/e_N \mathbb{Q}[G] \) isomorphic to \(M_2(\mathbb{Q}) \)? (Either establish an isomorphism or show that no such isomorphism exists.)

8. Let \(Q = Q_8 \) be the quaternion group with 8 elements. The center \(Z = Z(Q) \) of \(Q \) is generated by the unique element \(\sigma \) of order 2 in \(Q \). Let \(e_Z := \frac{1 + \sigma}{2} \in \mathbb{Q}[Q] \). Denote by \(A \) the \(\mathbb{Q} \)-algebra \(\mathbb{Q}[Q]/e_Z \mathbb{Q}[Q] \).

(i) Show that the center of \(A \) is \(\mathbb{Q} \), i.e. \(\text{dim}_\mathbb{Q}(Z(A)) = 1 \), and \(\text{dim}_\mathbb{Q}(A) = 4 \).

(ii) Is \(A \) isomorphic to \(M_2(\mathbb{Q}) \)? (Either establish an isomorphism or show that no such isomorphism exists.)