Notes on semisimple algebras

§1. Semisimple rings

(1.1) Definition A ring \(R \) with 1 is semisimple, or left semisimple to be precise, if the free left \(R \)-module underlying \(R \) is a sum of simple \(R \)-module.

(1.2) Definition A ring \(R \) with 1 is simple, or left simple to be precise, if \(R \) is semisimple and any two simple left ideals (i.e. any two simple left submodules of \(R \)) are isomorphic.

(1.3) Proposition A ring \(R \) is semisimple if and only if there exists a ring \(S \) and a semisimple \(S \)-module \(M \) of finite length such that \(R \cong \text{End}_S(M) \)

(1.4) Corollary Every semisimple ring is Artinian.

(1.5) Proposition Let \(R \) be a semisimple ring. Then \(R \) is isomorphic to a finite direct product \(\prod_{i=1}^s R_i \), where each \(R_i \) is a simple ring.

(1.6) Proposition Let \(R \) be a simple ring. Then there exists a division ring \(D \) and a positive integer \(n \) such that \(R \cong M_n(D) \).

(1.7) Definition Let \(R \) be a ring with 1. Define the radical of \(R \) to be the intersection of all maximal left ideals of \(R \). The above definitions uses left \(R \)-modules. When we want to emphasize that, we say that \(n \) is the left radical of \(R \).

(1.8) Proposition The radical of a semisimple ring is zero.

(1.9) Proposition Let \(R \) be a simple ring. Then \(R \) has no non-trivial two-sided ideals, and its radical is zero.

(1.10) Proposition Let \(R \) be an Artinian ring whose radical is zero. Then \(R \) is semisimple. In particular, if \(R \) has no non-trivial two-sided ideal, then \(R \) is simple.

(1.11) Remark In non-commutative ring theory, the standard definition for a ring to be semisimple is that its radical is zero. This definition is different from Definition 1.1. For instance, \(\mathbb{Z} \) is not a semisimple ring in the sense of Def. 1.1, while the radical of \(\mathbb{Z} \) is zero. In fact the converse of Prop. 1.10 holds; see Cor. 1.4 below.

(1.12) Exercise. Let \(R \) be a ring with 1. Let \(n \) be the radical of \(R \)

(i) Show that there exists a maximal left ideal in \(R \). Deduce that the radical of \(R \) is a proper left ideal of \(R \). (Hint: Use Zorn’s Lemma.)

(ii) Show that \(n \cdot M = (0) \) for every simple left \(R \)-module \(M \). (Hint: Show that for every \(0 \neq x \in M \), the set of all elements \(y \in R \) such that \(y \cdot x = 0 \) is a maximal left ideal of \(R \).)

(iv) Suppose that \(I \) is a left ideal of \(R \) such that \(I \cdot M = (0) \) for every simple left \(R \)-module \(M \). Prove that \(I \subseteq n \).
Therefore consider the element a.

Condition that $0 = a \otimes b$ for all a, b.

Let I be a left ideal of R such that $I^n = (0)$ for some positive integer n. Show that $I \subseteq n$.

Show that the radical of R/n is zero.

Exercise. Let R be a ring with 1 and let n be the (left) radical of R.

(i) Let $x \in n$. Show that $R \cdot (1 + x) = R$, i.e. there exists an element $z \in R$ such that $z \cdot (1 + x) = 1$.

(ii) Suppose that J is a left ideal of R such that $R \cdot (1 + x) = R$ for every $x \in J$. Show that $J \subseteq n$. (Hint: If not, then there exists a maximal left ideal m of R such that $J + m \ni 1$.)

(iii) Let $x \in n$, and let z be an element of R such that $z \cdot (1 + x) = 1$. Show that $z - 1 \in n$. Conclude that $1 + n \subset R^\times$.

(iv) Show that the n is equal to the right radical of R. (Hint: Use the analogue of (i)–(iii) for the right radical.)

§2. Simple algebras

Proposition Let K be a field. Let A be a central simple algebra over K, and let B be simple K-algebra. Then $A \otimes_K B$ is a simple K-algebra. Moreover $Z(A \otimes_K B) = Z(B)$, i.e. every element of the center of $A \otimes_K B$ has the form $1 \otimes b$ for a unique element $b \in Z(B)$. In particular, $A \otimes_K B$ is a central simple algebra over K if both A and B are.

Proof. We assume for simplicity of exposition that $\dim_K(B) < \infty$; the proof works for the infinite dimensional case as well. Let b_1, \ldots, b_r be a K-basis of B. Define the length of an element $x = \sum_{i=1}^r a_i \otimes b_i \in A \otimes B$, $a_i \in A$ for $i = 1, \ldots, r$, to be $\text{Card}\{ i \mid a_i \neq 0 \}$.

Let I be a non-zero ideal in $A \otimes_K B$. Let x be a non-zero element of I of minimal length. After relabelling the b_i’s, we may and do assume that x has the form

$$x = 1 \otimes b_1 + \sum_{i=2}^r a_i.$$

Consider the element $[a \otimes 1, x] \in I$ with $a \in A$, whose length is less than the length of x. Therefore $[a \otimes 1, x] = 0$ for all $a \in A$, i.e. $[a, a_i] = 0$ for all $a \in A$ and all $i = 2, \ldots, r$. In other words, $a_i \in K$ for all $i = 2, \ldots, r$. Write $a_i = \lambda_i \in K$, and $x = 1 \otimes b \in I$, where $b = b_1 + \lambda_2 b_2 + \cdots + \lambda_r b_r \in B$, $b \neq 0$. So $1 \otimes BbB \subseteq I$. Since B is simple, we have $BbB = B$ and hence $I = A \otimes_K B$. We have shown that $A \otimes_K B$ is simple.

Let $x = \sum_{i=1}^n a_i \otimes b_i$ be any element of $Z(A \otimes_K B)$, with $a_1, \ldots, a_r \in A$. We have

$$0 = [a \otimes 1, x] = \sum_{i=1}^r [a, a_i] \otimes b_i$$

for all $a \in A$. Hence $a_i \in Z(A) = K$ for each $i = 1, \ldots, r$, and $x = 1 \otimes b$ for some $b \in B$. The condition that $0 = [1 \otimes y, x]$ for all $y \in B$ implies that $b \in Z(B)$ and hence $x \in 1 \otimes Z(B)$. \[\square\]

2
Corollary Let A be a finite dimensional algebra over a field K, and let $n = \dim_K(A)$. If A is a central simple algebra over K, then

$$A \otimes_K A^{op} \xrightarrow{\sim} \text{End}_K(A) \cong M_n(K).$$

Conversely, if $A \otimes_K A^{op} \twoheadrightarrow \text{End}_K(A)$, then A is a central simple algebra over K. \[\square\]

Proof. Suppose that A is a central simple algebra over K. By Prop. 2.1, $A \otimes_K A^{op}$ is a central simple algebra over K. Consider the map

$$\alpha : A \otimes_K A^{op} \to \text{End}_K(A)$$

which sends $x \otimes y$ to the element $u \mapsto xuy \in \text{End}_K(A)$. The source of α is simple by Prop. 2.1, so α is injective because it is clearly non-trivial. Hence it is an isomorphism because the source and the target have the same dimension over K.

Conversely, suppose that $A \otimes_K A^{op} \twoheadrightarrow \text{End}_K(A)$ and I is a proper ideal of A. Then the image of $I \otimes A^{op}$ in $\text{End}_K(A)$ is an ideal of $\text{End}_K(A)$ which does not contain Id_A, so A is a simple K-algebra. Let $L := Z(A)$, then the image of the canonical map $A \otimes_K A^{op}$ in $\text{End}_K(A)$ lies in the subalgebra $\text{End}_L(A)$, hence $L = K$. \[\square\]

Lemma Let D be a finite dimensional central division algebra over an algebraically closed field K. Then $D = K$. \[\square\]

Corollary The dimension of any central simple algebra over a field is a perfect square.

Lemma Let A be a finite dimensional central simple algebra over a field K. Let $F \subset A$ be an overfield of K contained in A. Then $[F : K] \mid [A : K]^{1/2}$. In particular if $[F : K]^2 = [A : K]$, then F is a maximal subfield of A.

Proof. Write $[A : K] = n^2$, $[F : K] = d$. Multiplication on the left defines an embedding $A \otimes_K F \hookrightarrow \text{End}_F(A)$. By Lemma 3.1, $n^2 = [A \otimes_K : F]$ divides $[\text{End}_F(A) : F] = (n^2/d)^2$, i.e. $d^2 \mid n^2$. So d divides n. \[\square\]

Lemma Let A be a finite dimensional central simple algebra over a field K. If F is a subfield of A containing K, and $[F : K]^2 = [A : K]$, then F is a maximal subfield of K and $A \otimes_K F \cong M_n(F)$, where $n = [A : K]^{1/2}$.

Proof. We have seen in Lemma 2.5 that F is a maximal subfield of A. Consider the natural map $\alpha : A \otimes_K F \to \text{End}_K(A)$, which is injective because $A \otimes_K F$ is simple and α is non-trivial. Since the dimension of the source and the target of α are both equal to n^2, α is an isomorphism. \[\square\]

Proposition Let A be a central simple algebra over a field K. Then there exists a finite separable field extension F/K such that $A \otimes_K F \cong M_n(F)$, where $n = [A : K]^{1/2}$.
Proof. It suffices to show that \(A \otimes_K \mathbb{K}^{sep} \cong M_n(\mathbb{K}^{sep}) \). Changing notation, we may assume that \(K = \mathbb{K}^{sep} \). By Wedderburn’s theorem, we know that \(A \cong M_{m}(D) \), where \(D \) is a central division algebra over \(K = \mathbb{K}^{sep} \). Write \(n = md \) and \([D : K] = d^2 \), \(d \in \mathbb{N} \). Suppose that \(D \neq K \), i.e. \(d > 1 \). Then \(\text{char}(K) = p > 0 \), and every element of \(D \) is purely inseparable over \(K \). There exists a power \(q \) of \(p \) such that \(x^q \in K \) for every element \(x \in D \). Then for the central simple algebra \(B := D \otimes_K \mathbb{K}^{alg} \cong M_n(\mathbb{K}^{alg}) \), we have \(y^q \in \mathbb{K}^{alg} \) for every element \(y \in B \cong M_d(\mathbb{K}^{alg}) \). The last statement is clearly false, since \(d > 1 \). \(\square \)

(2.8) Theorem (Noether-Skolem) Let \(B \) be a finite dimensional central simple algebra over a field \(K \). Let \(A_1, A_2 \) be simple \(K \)-subalgebras of \(B \). Let \(\phi : A_1 \to A_2 \) be a \(K \)-linear isomorphism of \(K \)-algebras. Then there exists an element \(x \in B^\times \) such that \(\phi(y) = x^{-1}yx \) for all \(y \in A_1 \).

Proof. Consider the simple \(K \)-algebra \(R := B \otimes_K A_1^{opp} \), and two \(R \)-module structures on the \(K \)-vector space \(V \) underlying \(B \): an element \(u \otimes a \) with \(u \in B \) and \(a \in A_1^{opp} \) operates either as \(b \mapsto uba \) for all \(b \in V \), or as \(b \mapsto ub\phi(a) \) for all \(b \in V \). Hence there exists a \(\psi \in \text{GL}_K(V) \) such that

\[
\psi(uba) = u\psi(b)\phi(a)
\]

for all \(u, b \in B \) and all \(a \in A_1 \). One checks easily that \(\psi(1) \in B^\times \): if \(u \in B \) and \(u \cdot \psi(1) = 0 \), then \(\psi(u) = 0 \), hence \(u = 0 \). Then \(\phi(a) = \psi(1)^{-1} \cdot a \cdot \psi(1) \) for every \(a \in A_1 \). \(\square \)

(2.9) Theorem Let \(B \) be a \(K \)-algebra and let \(A \) be a finite dimensional central simple \(K \)-subalgebra of \(B \). Then the natural homomorphism \(\alpha : A \otimes_K Z_B(A) \to B \) is an isomorphism.

Proof. Passing from \(K \) to \(\mathbb{K}^{alg} \), we may and do assume that \(A \cong M_n(K) \), and we fix an isomorphism \(A \cong M_n(K) \).

First we show that \(\alpha \) is surjective. Given an element \(b \in B \), define elements \(b_{ij} \in B \) for \(1 \leq i, j \leq n \) by

\[
b_{ij} := \sum_{k=1}^{n} e_{ki} b e_{jk},
\]

where \(e_{ki} \in M_n(K) \) is the \(n \times n \) matrix whose \((k, i) \)-entry is equal to 1 and all other entries equal to 0. One checks that each \(b_{ij} \) commutes with all elements of \(A = M_n(K) \). The following computation

\[
\sum_{i,j=1}^{n} b_{ij} e_{ij} = \sum_{i,j,k} e_{ki} b e_{jk} e_{ij} = \sum_{i,j} e_{ii} b e_{jj} = b
\]

shows that \(\alpha \) is surjective.

Suppose that \(0 = \sum_{i,j=1}^{n} b_{ij} e_{ij}, b_{ij} \in Z_{B}(A) \) for all \(1 \leq i, j \leq n \). Then

\[
0 = \sum_{k=1}^{n} e_{kl} \left(\sum_{i,j} b_{ij} e_{ij} \right) e_{mk} = \sum_{k=1}^{n} b_{lm} e_{kk} = b_{lm}
\]

for all \(0 \leq l, m \leq n \). Hence \(\alpha \) is injective. \(\square \)
(2.10) Theorem Let B be a finite dimensional central simple algebra over a field K, and let A be a simple K-subalgebra of B. Then $Z_B(A)$ is simple, and $Z_B(Z_B(A)) = A$.

Proof. Let $C = \text{End}_K(A) \cong M_n(K)$, where $n = [A : K]$. Inside the central simple K-algebra $B \otimes_K C$ we have two simple K-subalgebras, $A \otimes_K K$ and $K \otimes_K A$. Here the right factor of $K \otimes_K A$ is the image of A in $C = \text{End}_K(A)$ under left multiplication. Clearly these two simple K-subalgebras of $B \otimes_K C$ are isomorphic, since both are isomorphic to A as a K-algebra. By Noether-Skolem, these two subalgebras are conjugate in $B \otimes_K C$ by a suitable element of $(B \otimes_K C)^\times$, therefore their centralizers (resp. double centralizers) in $B \otimes_K C$ are conjugate, hence isomorphic.

Let’s compute the centralizers first:

$$Z_{B \otimes_K C}(A \otimes_K K) = Z_B(A) \otimes_K C,$$

while

$$Z_{B \otimes_K C}(K \otimes_K A) = B \otimes_K A^{\text{opp}}.$$

Since $B \otimes_K A^{\text{opp}}$ is central simple over K, so is $Z_B(A) \otimes_K C$. Hence $Z_B(A)$ is simple.

We compute the double centralizers:

$$Z_{B \otimes_K C}(Z_{B \otimes_K C}(A \otimes_K K)) = Z_{B \otimes_K C}(Z_B(A) \otimes_K C) = Z_B(Z_B(A) \otimes_K K),$$

while

$$Z_{B \otimes_K C}(Z_{B \otimes_K C}(K \otimes_K A)) = Z_{B \otimes_K C}(B \otimes_K A^{\text{opp}}) = K \otimes_K A$$

So $Z_B(Z_B(A))$ is isomorphic to A as K-algebras. Since $A \subseteq Z_B(Z_B(A))$, the inclusion is an equality. \(\square\)

§3. Some invariants

(3.1) Lemma Let K be a field and let A be a finite dimensional simple K-algebra. Let M be an (A, A)-bimodule. Then M is free as a left A-module.

(3.2) Definition Let K be a field, B be a K-algebra, and let A be a finite dimensional simple K-subalgebra of B. Then B is a free left A-module by Lemma 3.1. We define the rank of B over A, denoted $[B : A]$, to be the rank of B as a free left A-module. Clearly $[B : A] = \dim_K(B)/\dim_K(A)$ if $\dim_K(A) < \infty$.

(3.3) Definition Let K be a field. Let B be a finite dimensional simple K-algebra, and let A be a simple K-subalgebra of A. Let N be a left simple B-module, and let M be a left simple A-module.

(i) Define $i(B, A) := \text{length}_B(B \otimes_A M)$, called the index of A in B.

(ii) Define $h(B, A) := \text{length}_A(N)$, called the height of B over A.

Recall that $[B : A]$ is the A-rank of B_A, where B_A is the free left A-module underlying B.

(3.4) Lemma Notation as in Def. 3.3.

(i) $\text{length}_B(B \otimes_A U) = i(B, A) \text{length}_A(U)$ for every left A-module U.
(ii) \(\text{length}_A(V) = h(B, A) \cdot \text{length}_B(V) \) for every left \(B \)-module \(V \).

(iii) \(\text{length}_B(B_s) = i(B, A) \cdot \text{length}_A(A_s) \).

(iv) \(\text{length}_A(B \otimes_A U) = [B : A] \cdot \text{length}_A(U) \)

(v) \([B : A] = h(B, A) \cdot i(B, A) \)

Proof. Statement (iii) follows from (iv) and the fact that \(B_s \cong B \otimes_A A_s \). To show (v), we apply (i) a simple \(A \)-module \(M \) and get

\[[B : A] = \text{length}_A(B \otimes_A M) = h(B, A) \text{length}_B(B \otimes_A M) = h(B, A) i(B, A) . \]

Another proof of (iv) is to use the \(A \)-module \(A_s \) instead of a simple \(A \)-module \(M \):

\[[B : A] \text{length}_A(A_s) = \text{length}_A(B_s) = \text{length}_B(B_s) h(B, A) = h(B, A) i(B, A) \text{length}_A(A_s) . \]

The last equality follows from (iii). □

(3.5) **Lemma** Let \(A \subset B \subset C \) be inclusion of simple algebras over a field \(K \). Then \(i(C, A) = i(C, B) \cdot i(B, A) \), \(h(C, A) = h(C, B) \cdot h(B, A) \), and \([C : A] = [C : B] \cdot [B : A] \). □

(3.6) **Lemma** Let \(K \) be an algebraically closed field. Let \(B \) be a finite dimensional simple \(K \)-algebra, and let \(A \) be a semisimple \(K \)-subalgebra of \(B \). Let \(M \) be a simple \(A \)-module, and let \(N \) be a simple \(B \)-module.

(i) \(N \) contains \(M \) as a left \(A \)-module.

(ii) The following equalities hold.

\[
\dim_K(\text{Hom}_B(B \otimes_A M, N)) = \dim_K(\text{Hom}_A(M, N)) = \dim_K(\text{Hom}_A(N, M))
= \dim_K(\text{Hom}_B(N, \text{Hom}_A(B, M)))
\]

(iii) Assume in addition that \(A \) is simple. Then \(i(B, A) = h(B, A) \).

Proof. Statements (i), (ii) are easy and left as exercises. The statement (iii) follows from the first equality in (ii). □

(3.7) **Lemma** Let \(A \) be a simple algebra over a field \(K \). Let \(M \) be a non-trivial finitely generated left \(A \)-module, and let \(A' := \text{End}_A(M) \). Then \(\text{length}_A(M) = \text{length}_{A'}(A'_s) \), where \(A'_s \) is the left \(A'_s \)-module underlying \(A' \).

Proof. Write \(M \cong U^n \), where \(U \) is a simple \(A \)-module. Then \(A' \cong M_n(D) \), where \(D := \text{End}_A(U) \) is a division algebra. So \(\text{length}_{A'}(A'_s) = n = \text{length}_A(M) \). □
(3.8) Proposition Let K be a field, B be a finite dimensional simple K-algebra, and let A be a simple K-subalgebra of B. Let N be a non-trivial B-module. Then

(i) $A' := \text{End}_A(N)$ is a simple K-algebra, and $B' := \text{End}_B(N)$ is a simple K-subalgebra of A'.

(ii) $i(A' , B') = h(B, A)$, and $h(A', B') = i(B, A)$.

Proof. The statement (i) is easy and omitted. To prove (ii), we have

$$\text{length}_A(N) = \text{length}_A(A') = i(A', B') \text{length}_{B'}(B') ,$$

where the first equality follows from Lemma 3.7 and the second equality follows from Lemma 3.4 (iii). We also have

$$\text{length}_A(N) = h(B, A) \text{length}_A(N) = h(B, A) \text{length}_{B'}(B')$$

where the last equality follows from Lemma 3.7. So we get $i(A', B') = h(B, A)$. Replacing (B, A) by (A', B'), we get $i(B, A) = h(A', B')$. □

§4. Centralizers

(4.1) Theorem Let K be a field. Let B be a finite dimensional central simple algebra over K. Let A be a simple K-subalgebra of B, and let $A' := Z_B(A)$. Let $L = Z(A) = Z(A')$. Then the following holds.

(i) A' is a simple K-algebra.

(ii) $A := Z_B(Z_B(A))$.

(iv) A and A' are linearly disjoint over L.

(v) If A is a central simple algebras over K, then $A \otimes A' \sim B$.

Proof. Let N be a simple B-module. Let $D := \text{End}_B(V)$. We have $D \subseteq \text{End}_K(N) \supseteq B$, and $Z(D) = Z(B) = K$. So $D \otimes_K A$ is a simple K-algebra, and we have $D \otimes_K A \sim D \cdot A \subseteq \text{End}_K(N) = C$, where $D \cdot A$ is the subalgebra of $\text{End}_K(N)$ generated by D and A. So

$$Z_C(D \cdot A) = Z_C(D) \cap Z_C(A) = B \cap Z_C(A) = A'.$$

Hence $A' = \text{End}_{D,A}(N)$ is simple, because $D \cdot A$ is simple. We have proved (i).

Apply Prop. 3.8 (ii) to the pair $(D \cdot A, D)$ and the $D \cdot A$-module N. We get

$$[A : K] = [D \cdot A : D] = [B : A']$$

since $Z_C(D) = B$. On the other hand, we have

$$[B : A] \cdot [A : K] = [B : K] = [B : A'] \cdot [A' : K] = [A : K] \cdot [A' : K]$$

so $[B : A] = [A' : K]$. We have proved (iii).
Apply (i) and (iii) to the simple K-subalgebra $A' \subseteq B$, we see that $A \subset Z_B(A')$ and $[A : K] = [A' : K]$, so $A = Z_B(Z_B(A))$. We have proved (ii).

Let $L := A \cap A' = Z(A) \subseteq Z(A') = Z(A)$. The last equality follows from (i). The tensor product $A \otimes_L A'$ is a central simple algebra over L since A and A' are central simple over L. So the canonical homomorphism $A \otimes_L A' \to B$ is an injection. We have prove (iv). The above inclusion is an equality if and only if $L = K$, because $\dim_L(B) = [L : K] \cdot [A : L] \cdot [A' : L]$.

Remark (1) Statements (i) and (ii) of Thm. 4.1 is the content of Thm. 2.10. The proof in 2.10 uses Noether-Skolem and the fact that the double centralizer of any K-algebra A in $\text{End}_K(A)$ is equal to itself. The proof in 4.1 relies on Prop. 3.8.

(2) Statement (v) of Thm. 4.1 is a special case of Thm. 2.9.

Corollary (4.2) Let A be a finite dimensional central simple algebra over a field K, and let F be a subfield of A which contains K. Then F is a maximal subfield of A if and only if $[F : K]^2 = [A : K]$.

Proof. Immediate from Thm. 4.1 (iii).

(4.3) **Proposition** Let A be a finite dimensional central simple algebra over K. Let F be an extension field of K such that $[F : K] = n := [A : K]^{1/2}$. Then there exists a K-linear ring homomorphism $F \hookrightarrow A$ if and only if $A \otimes_K F \cong M_n(F)$.

Proof. The “only if” part is contained in Lemma 2.6. It remains to show the “if” part. Suppose that $A \otimes_K F \cong M_n(F)$. Choose a K-linear embedding $\alpha : F \hookrightarrow M_n(K)$. The central simple algebra $B := A \otimes_K M_n(K)$ over K contains $C_1 := A \otimes_K \alpha(F)$ as a subalgebra, whose centralizer in B is $K \otimes_K \alpha(F)$. Since $C_1 \cong M_n(F)$ by assumption, C_1 contains a subalgebra C_2 which is isomorphic to $M_n(K)$. By Noether-Skolem, $Z_B(C_2)$ is isomorphic to A over K. So we get $F \cong Z_B(C_1) \subset Z_B(C_2) \cong A$.

(4.4) **Theorem** Let K be a field and let B be a finite dimensional central simple algebra over K. Let N be a non-trivial B-module of finite length. Let A be a simple K-subalgebra of B. Let $A' := Z_B(A)$ be the centralizer of A in B. Then we have a natural isomorphism

$$\text{End}_B(N) \otimes_K A' \cong \text{End}_A(N).$$

Proof. We know that A' is a simple K-algebra, and $R := \text{End}_B(N)$ is a central simple K-algebra. So $R \otimes_K A'$ is a simple K-algebra. Let C be the image of $R \otimes_K A'$ in $\text{End}_A(N)$; clearly we have $R \otimes_K A' \cong C$. Let $S := \text{End}_K(N)$. Let $C' := \text{End}_C(N)$. We have

$$C' = \text{End}_R(N) \cap \text{End}_A(N) = B \cap Z_S(A') = Z_B(A') = A;$$

the second and the fourth equality follows from the double centralizer theorem. Hence $C = \text{End}_A(N)$, again by the double centralizer theorem.

(4.5) **Corollary** Notation as in Prop. 4.4. Let $L := Z(A) = Z(A')$. Then $[A \otimes_L Z_B(A)]$ and $[B \otimes_K L]$ are equal as elements of $\text{Br}(L)$.

Proof. Take $N = B$, the left regular representation of B, in Thm. 4.4.