1. Let K be a finite separable extension field of k.
 (a) Show that the character group of $\text{Res}_{K/k}(\mathbb{G}_m)$ is naturally isomorphic to the free \mathbb{Z}-module generated by the set of embeddings of K into the separable closure k^{sep} of k.
 (b) Describe the action of $\text{Gal}(k^{\text{sep}}/K)$ on the character group of $\text{Res}_{K/k}(\mathbb{G}_m)$.

2. Let T be a torus over \mathbb{R}. Prove that $T(\mathbb{R})$ is compact if and only if the non-trivial element $\tau \in \text{Gal}(\mathbb{C}/\mathbb{R})$ operates on $X^*(T)$ as -1.

3. Prove that $T(\mathbb{R})$ is Zariski dense in T for any torus T over \mathbb{R}.

4. Let T be a torus over \mathbb{R}.
 (i) Prove that for any homomorphism $\nu : \mathbb{G}_m \rightarrow T$ over \mathbb{C}, there exists a homomorphism $h : S \rightarrow T$ over \mathbb{R} such that $h \circ \mu = \nu$.
 (ii) If $h_1, h_2 : S \rightarrow T$ are two \mathbb{R}-homomorphisms of tori over \mathbb{R} such that $h_1 \circ \mu = h_2 \circ \mu$, then $h_1 = h_2$.

5. Let T be a torus over \mathbb{R}. Prove that for any homomorphism $\chi : T \rightarrow \mathbb{G}_m$, there exists exactly one \mathbb{R} homomorphism $h : T \rightarrow S$ such that $\chi_z \circ h = \chi$.

6. Prove that the homomorphism $\text{Nm} \circ \beta : \mathbb{G}_m \times \mathbb{C}^\times \rightarrow \mathbb{G}_m$ is equal to the square morphism on the first factor of the source and is trivial on the second factor.

7. (i) Find all \mathbb{R}-endomorphisms of the torus S.
 (ii) Find all \mathbb{R}-homomorphisms from S to \mathbb{C}^\times.

8. Let V be a finite dimensional vector space over \mathbb{Q}. Let $h : S \rightarrow \text{GL}(V_\mathbb{R})$ be an \mathbb{R}-homomorphism, giving $V_\mathbb{R}$ the structure of a real Hodge structure. Then (V, h) is a \mathbb{Q}-Hodge structure if and only if the weight cocharacter

 \[w_h := h \circ w : \mathbb{G}_m \rightarrow \text{GL}(V_\mathbb{R}) \]

 of $\text{GL}(V_\mathbb{R})$ is defined over \mathbb{Q}.

9. Let V be an irreducible \mathbb{R}-Hodge structure, and $\dim_{\mathbb{Q}}(V) = 2$ of weight n. Prove that the homomorphism $h_V : S \rightarrow \text{GL}(V)$ has the form $h_V = h_1 \circ [n]_S$, where $h_1 : S \rightarrow \text{GL}(V)$ is an \mathbb{R}-homomorphism giving V the structure of a real Hodge structure of weight 1.

10. Prove that every one-dimensional \mathbb{Q}-Hodge structure is isomorphic to $\mathbb{Q}(i)$ for some $i \in \mathbb{Z}$.

1
11. Give an example of a subgroup \(S \) of \(\text{GL}_n(\mathbb{C}) \) such that the smallest \(\mathbb{Q} \)-subvariety \(Z \) of the \(\mathbb{Q} \)-algebraic group \(\text{GL}_n \) which contains \(S \) is not a stable under multiplication. In other words, \(Z \) is not a \(\mathbb{Q} \)-algebraic subgroup.

(Hint: Here is one example. Take an integer \(m \geq 2 \). Consider the following subsubgroup
\[
S = \left\{ \text{Ad} \left(\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \right) \cdot \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix} : A \in \text{GL}_m(\mathbb{C}) \right\}
\]

of \(\text{GL}_{2m} \), where \(b = (b_{ij}) \) is an element of \(M_m(\mathbb{C}) \) such that \(\text{tr. deg } \mathbb{Q}(n_{ij}) = m^2 \). Then it is not difficult to show that the \(\mathbb{Q} \)-Zariski closure of \(S \) is equal to
\[
\left\{ \begin{bmatrix} A & B \\ 0 & A \end{bmatrix} : \text{tr}(A^i B) = 0, i = 0, 1, \ldots, m-1 \right\}
\]

On the other hand, one can show that the smallest \(\mathbb{Q} \)-subgroup containing \(S \) is equal to
\[
\left\{ \begin{bmatrix} A & B \\ 0 & A \end{bmatrix} \right\}
\]

Notice that this group is not reductive.)

12. Let \(F \) be a totally real number field. Let \(V \) be a two-dimensional vector space over \(F \), with a \(\mathbb{Q} \)-Hodge structure of Hodge type \(\{(0, -1), (-1, 0)\} \) on \(V \), such that the subset \(F \subset \text{End}_{\mathbb{Q}}(V) \) consists of Hodge cycles. In other words, the action of \(F \) on \(V \) preserves the Hodge filtration. Prove that the Mumford-Tate group \(\text{MT}(V) \) is either \(\text{GL}_F(V) \), or is isomorphic to the inverse image of \(\mathbb{G}_m \) under
\[
N_{K/F} : \text{Res}_{K/\mathbb{Q}}(\mathbb{G}_m) \to \text{Res}_{F/\mathbb{Q}}(\mathbb{G}_m),
\]

where \(K \) is a totally imaginary quadratic extension field of \(F \).

13. Let \(V \) be a finite dimensional vector space over \(\mathbb{C} \), which is a direct sum of two nontrivial subspaces \(V_0 \) and \(V_1 \) such that the dimensions \(n_0, n_1 \) of \(V_0, V_1 \) are relatively prime. Let \(G \) be a connected reductive algebraic subgroup of \(\text{GL}(V) \) such that the commutant of \(G \) in \(\text{GL}(V) \) is equal to the group of homotheties on \(V \). Assume moreover that \(G \) contains the subgroup \(H \) of \(\text{GL}(V) \) consisting of all elements which act as homotheties on \(V_0 \) and on \(V_1 \).

(a) Let \(Z \) be the center of \(G \) and let \(G^{\text{der}} \) be the derived group of \(G \). Show that \(Z \) is equal to the group of homotheties on \(V \), and the action of \(G^{\text{der}} \) is irreducible.

(b) For any finite dimensional linear representation \(W \) of the torus \(H \), denote by \(\chi_H(W) \) the character of \(V \); \(\chi_H(W) \) is a linear combination of elements of the character group \(X^{\ast}(H) \) with coefficients in \(\mathbb{Z}_{\geq 0} \). Show that if \(W_1, W_2 \) are \(H \)-modules such that \(\chi_H(V) = \chi_H(W_1) \cdot \chi_H(W_2) \), then either \(W_1 \) or \(W_2 \) is one-dimensional.
(c) Deduce from (b) that G^{der} is an almost simple semisimple algebraic subgroup of $\text{SL}(V)$.

(d) Use the fact that the center of G^{der} contains a cyclic subgroup of order $n = \dim(V)$ and the classification of simply connected semisimple algebraic groups to prove that G^{der} is equal to $\text{SL}(V)$.

14. Let V be a \mathbb{Q}-Hodge structure of type $\{(0, -1), (-1, 0)\}$, such that $\text{End}_{\mathbb{Q}\text{-Hdg}}(V)$ contains a imaginary quadratic field K. Decompose $V^{-1,0}$ as

$$V^{-1,0} = V_0^{-1,0} \oplus V_1^{-1,0}$$

such that K operates on $V_0^{-1,0}$ via an embedding $\sigma : K \hookrightarrow \mathbb{C}$, and K operates on $V_1^{-1,0}$ via the complex conjugate of σ. Prove that if the dimensions n_0, n_1 of $V_0^{-1,0}, V_1^{-1,0}$ are relatively prime, then the Mumford-Tate group $\text{MT}(V)$ is isomorphic to $\text{GL}(V)$.

(Note: Problems 13 and 14 are taken from Serre, Proc. Cof. Local Fields, Driebergen, 118–131, 1966.)