1. Let K be an imaginary quadratic field. For every $z \in K$ with $\text{Im}(z) > 0$, let L_z be the lattice $\mathbb{Z} + \mathbb{Z} \cdot z \subset \mathbb{C}$, and let E_z be the elliptic curve \mathbb{C}/L_z. Denote by $j(z) = j(E_z)$ the j-invariant of E_z.

(i) The ring of endomorphisms $\text{End}(E_z)$ of E_z is an order of \mathcal{O}_K, necessarily equal to $\mathbb{Z} + f\mathcal{O}_K$ for a unique $f \in \mathbb{N}_{>0}$. Show that $K(j(z))$ is the ring class field of K with conductor f, i.e. the abelian extension of K which corresponds to the subgroup

$$(\mathbb{Z} + f\mathcal{O}_K) \otimes \mathbb{Z} \cdot \widehat{\mathbb{Z}} / (K_\infty^\times \cdot K^\times) \subset \mathcal{A}_K^\times / (K_\infty^\times \cdot K^\times)$$

under class field theory.

(ii) Let K^\dagger be the extension field of K generated by \mathbb{Q}^{cyc} and all elements of the form $j(z)$, with $z \in K$, $\text{Im}(z) > 0$. Describe the abelian extension K^\dagger of K using class field theory, and show that $\text{Gal}(K_{ab}^\dagger/K^\dagger)$ is a product of groups of order 2.

2. Let k be a number field. Denote by k^S the quotient of k^\times by $\text{Res}_{k/\mathbb{Q}}\mathbb{G}_m$ such that

$$X^*(k^S) = \{ \chi \in X^*(k^\times) \mid (1 - \sigma)(1 + \iota)\chi = (1 + \iota)(1 - \sigma)\chi = 0, \ \forall \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \}$$

where ι denotes a complex conjugation. Prove that there exists a subgroup $\Gamma \subset \mathcal{O}_K^\times$ of finite index such that for every subgroup $\Gamma_1 \subset \Gamma$ of finite index, the quotient of k^\times by the Zariski closure of Γ_1 is equal to k^S.

3. Let k be a number field. Recall that a \mathbb{C}^\times-valued algebraic Hecke character

$$\psi : \mathbb{A}_k^\times \rightarrow \mathbb{C}^\times$$

is a continuous character such that the restriction

$$\psi_{\infty,+} : k_{\infty,+}^\times = (k \otimes \mathbb{R})_+^\times \rightarrow \mathbb{C}^\times$$

of ψ to the neutral component $k_{\infty,+}$ of $k_\infty = k \otimes \mathbb{R}$ coincides with the restriction to $k_{\infty,+}$ of a character χ_ψ of k^\times defined over \mathbb{C}; sometimes χ_ψ is called the infinity type of ψ. Use the problem 2 above to show the following.

(i) For every algebraic Hecke character ψ of \mathbb{A}_k^\times, the infinity component ψ_{∞} factors through the quotient $k^\times \rightarrow k^S$.

(ii) If two algebraic Hecke characters ψ, ψ' have the same infinity component, then $\psi' \cdot \psi^{-1}$ has finite order.

(iii) Every character of k^S is the infinity component of an algebraic Hecke character of \mathbb{A}_k^\times.
4. We use the geometric normalization for the reciprocity law
\[\text{rec}_Q : \mathbb{A}_{\mathbb{Q}}^\times / \mathbb{Q}^\times \to \text{Gal}(\mathbb{Q}_{ab}^\times / \mathbb{Q}). \]

Let \(\chi_{\text{cyc}} : \text{Gal}(\mathbb{Q}_{ab}^\times / \mathbb{Q}) \to (\hat{\mathbb{Z}})^\times \) be the cyclotomic character coming describing the action of \(\text{Gal}(\mathbb{Q}_{ab}^\times / \mathbb{Q}) \) on the torsion points of \(\mathbb{G}_m \).

(i) Show that \(\chi_{\text{cyc}} \circ \text{rec}_Q \) can be uniquely extended to an algebraic Hecke character
\[\psi_{\text{cyc}} : \mathbb{A}_{\mathbb{Q}}^\times / \mathbb{Q}^\times \to \hat{\mathbb{Z}}^\times \times \mathbb{R}^\times \subset \mathbb{A}_{\mathbb{Q}}^\times \]
such that \(\psi_{\text{cyc}} \) is the product of a continuous homomorphism \(c : \mathbb{A}_{\mathbb{Q}}^\times \to \hat{\mathbb{Z}}^\times \) and a homomorphism \(\mathbb{G}_m(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{G}_m(\mathbb{A}_{\mathbb{Q}}) \) coming from a character \(\chi \) of \(\mathbb{G}_m \).

(ii) Show that the restriction of \(\psi_{\text{cyc}} \) to \(\mathbb{Q}^\times \) is
\[\psi_{\text{cyc}}|_{\mathbb{Q}^\times} : a \mapsto (p^{\text{ord}_p(a)}, p^{\text{ord}_p(a)} a, p^{\text{ord}_p(a)}) \in (\prod_{\ell \neq p} \hat{\mathbb{Z}}_\ell^\times) \times \mathbb{Z}_p^\times \times \mathbb{R}^\times \]
and the restriction of \(\psi_{\text{cyc}} \) to \(\mathbb{R}^\times \) is
\[\psi_{\text{cyc}}|_{\mathbb{R}^\times} : a \mapsto (\text{sgn}(a), |a|) \in \hat{\mathbb{Z}}^\times \times \mathbb{R}^\times \]

5. (This problem is due to Shimura-Taniyama.) Let \(C \) be the projective completion of the affine curve over \(\mathbb{Q} \) given by the equation \(y^2 = x^p - 1 \), where \(p \) is an odd prime number. Let \(\mathbb{Q}(\mu_p) \) be the cyclotomic field generated by the \(p \)-th roots of unity, and let \(\mathbb{Z}[\mu_p] = \mathbb{Q}(\mu_p) \). There is an action of \(\mu_p \) on \(C \) defined over \(\mathbb{Q}_p \), given by
\[\zeta_p : (x, y) \to (\zeta_p x, y) \]
where \(\zeta_p \) is a primitive \(p \)-th root of unity. This action gives an action of \(\mu_p \) on the Jacobian \(\text{Jac}(C) =: A \) of \(C \), so that \(A \) is an abelian variety with CM by \(\mathbb{Z}[\mu_p] \).

(i) Prove that the genus of \(C \) is \(g = \frac{p-1}{2} \).

(ii) Show that for \(i = 1, \ldots, g \), the meromorphic differential forms \(\omega_i = \frac{x^{i-1} dx}{y} \) extends to regular differential forms on \(C \) and form a basis of \(\text{H}^0(C, K_C) \).

(iii) The Galois group \(\text{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q}) \) is canonically isomorphic to \((\mathbb{Z}/p\mathbb{Z})^\times \), and consists of elements
\[\sigma_i : \zeta_p \mapsto \zeta_p^i, \quad i \in (\mathbb{Z}/p\mathbb{Z})^\times \]
Show that the CM-type of \(A \) is equal to \(\{ \sigma_1, \ldots, \sigma_g \} \) and that the reflex field is equal to \(\mathbb{Q}(\mu_p) \).

(iv) Deduce from the theory of complex multiplication that for every ideal \(a \subset \mathbb{Z}[\mu_p] \), there exists an element \(x \in \mathbb{Q}(\mu_p) \) such that \(N_{\mu}(a) = (x) \) and \(N(a) = x\bar{x} \), where \(N_{\mu} \) denotes the reflex type norm. Note that this is a special case of the Stickelberger relation, see Lang’s *Algebraic Number Theory*, Chap. 4, §4, Theorem 11.