EXERCISE 3A, 10/9/2005

CORRECTION TO EXERCISE 3 AND DISCUSSION OF RELATED ISSUES

 (i) Statements (i), (ii) of are wrong. In fact the abscissa of convergence for \(F(s) \) is at most \(\frac{1}{2} \); see Problem 3 below.
 (ii) There is a closed formula for the coefficients \(b_n \) of \(F(s) = \left(\sum_{n \geq 1} (-1)^{n-1} n^{-s} \right)^2 = \sum_{n \geq 1} b_n n^{-s} \):
 \[
 b_n = \begin{cases}
 d(n) & \text{if } n \text{ is odd} \\
 -3d(n) + 4d(n/2) = (a - 3)d(m) & \text{if } n = 2^a m, \ a \geq 1, \ m \text{ odd}
 \end{cases}
 \]
 (iii) \(\sum_{n \text{ odd}, n \leq N} d(n) = \frac{1}{4} N \log N + O(N) \).
 (iv) It would be interesting to determine the abscissa of convergence of \(F(s) \).

2. Show that if \(\sum_{n \geq 1} a_n n^{-s} \) is absolutely convergent at \(s = s_0 \) and \(\sum_{n \geq 1} b_n n^{-s} \), then their formal product is also convergent at \(s = s_0 \).

3. Consider two Dirichlet series \(f(s) = \sum_{n \geq 1} a_n n^{-s} \) and \(g(s) = \sum_{n \geq 1} b_n n^{-s} \). Let
 \[
 h(s) = \sum_{n \geq 1} u_n n^{-s}, \quad u_n = \sum_{d \mid n} a_d u_{n/d} \quad \forall n \geq 1
 \]
 be the formal product of \(f(s) \) and \(g(s) \). Let
 \[
 A(n) = \sum_{m \leq n} a_n, \quad B(n) = \sum_{m \leq n} b_n, \quad U(N) = \sum_{n \leq N} u_n.
 \]
 (i) Suppose that \(f(s) \) converges at \(s = s_1 \) with \(\text{Re}(s_1) = \epsilon_1 > 0 \) and \(g(s) \) converges at \(s = s_2 \) with \(\text{Re}(s_2) = \epsilon_2 > 0 \). Show that there exist positive numbers \(C_1, D_1, C_2, D_2 \) such that
 \[
 |A_n| \leq C_1 n^{\epsilon_1}, \ |a_n| \leq D_1 n^{\epsilon_1}, \ |B_n| \leq C_2 n^{\epsilon_2}, \ |b_n| \leq D_2 n^{\epsilon_2}.
 \]
 (ii) Notation as in (i) above. Show that
 \[
 |U(N)| \leq 2(C_1 D_2 + C_2 D_1) N^{1 + \epsilon_1 + \epsilon_2}
 \]
 (iii) Assume that \(f(s) \) and \(g(s) \) are both convergent for \(\text{Re}(s) > 0 \). Prove that \(\sum_{n \geq 1} u_n n^{-s} \) is convergent for \(\text{Re}(s) > \frac{1}{2} \).

4. Let \(f(s) = \sum_{n \geq 1} (-1)^{n-1} (\log 2n)^{-2} n^{-s} \), and let \(F(s) = f(s)^2 = \sum_{n \geq 1} b_n n^{-s} \).
 (i) Show that \(f(s) \) is convergent at \(s = 0 \).
 (ii) Find the abscissa of convergence and the abscissa of absolute convergence for \(f(s) \)
 (iii) Show that \(F(s) \) diverges at \(s = 0 \).
 (Hint: Show that the \(b_n \)'s are unbounded.)