
MATH 602 EXERCISE SET 2, FALL 2016

1. Let D be a Dedekind domain and let K be the field of fractions of D. For every non-zero maximal
ideal ideal ℘ of D, let D℘ be the localization of D at ℘, let D̂℘ = lim←−n

D/℘n be the ℘-adic completion
of D, and let K̂℘ be the field of fractions of D̂℘.

(a) Show that D̂℘ is naturally isomorphic to the completion of the discrete valuation ring D℘ for
every non-zero maximal ℘ of D.

(b) Let I,J be two non-zero D-submodules of K. Show that the following statements are equivalent.

(b1) I ⊆ J

(b2) I ·D℘⊆ J ·D℘ as D℘-submodules of K, for every maximal ideal ℘ of D.

(b3) I · D̂℘⊆ J · D̂℘ as D̂℘-submodules of K̂℘, for every maximal ideal ℘ of D. Here I · D̂℘ is
the D̂℘-submodule of K̂℘ generated by I; similarly for J · D̂℘.

2. (a) Is there a field automorphism of R whose restriction to R∩Q is a non-trivial field automorphism
of R∩Q? Either give a proof or a counter-example.

(b) Is there a field automorphism of Qp whose restriction to Qp∩Q is a non-trivial field automor-
phism of Qp∩Q? Either give a proof or a counter-example. (Please examine the logic of your proof
carefully. I have experience many a purported (but circular) proof for this problem.)

3. (a) Determine the ring of integers of the number field Q( 3
√

2).
(b) Determine the ring of integers of the number field Q[T ]/(T 3 +T +1).
(c) Determine the ring of integers of the number field Q(eπ

√
−1/4).

(d) Compute the discriminants of the above number fields.
[Note: You might want also to do the same thing for all quadratic fields. This is treated in many
textbooks in number theory, and also in many textbooks in algebra.]

4. Explicitely describe/determine the group Qp
×/(Qp

×)2, where p is a prime number.
[Your answer will depend on the parity of p.]

5. (This problem is a summary of a few basic properties of the conductor of an order of the ring of
integers OL of a number field L with respect to a subfield K.)

Let A be a Dedekind domain and let K be the fraction field of A. Let L be a finite separable
extension of K and let B be the integral closure of A in L. Let O be an order in B, i.e. O is a subring
of B which contains A and O contains a K-basis of L. (Consequently B/O is an A-module of finite
length.) Let

c(O) = {x ∈ L |x ·B⊆O},

the conductor of the order O , which was written as (O : B) in class. Let

D−1(B/A) = {x ∈ L |TrL/K(x ·B)⊂ A},

the inverse different of B/A. Let

D−1(O/A) = {x ∈ L |TrL/K(x ·O)⊂ A}.
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(a) Show that c(O) is the largest ideal of B which is contained in O . (This was given in class as an
exercise.)

(b) Prove that
c(O) = {x ∈ L |x ·D−1(O/A)⊆D−1(B/A)}.

(c) Suppose that α ∈ B is an element of B such that L = K(α) and let f (T ) be the minimal polyno-
mial of α over K. Show that

c(A[α]) = f ′(α) ·D−1(O/A).

Note that this property implies the following.

– If B = A[α], then D(B/A) is equal to f ′(α)B.

– c(A[α]) ⊃ f ′(α)B. In particular the localization A[α] at all prime ideals of B relatively
prime to f ′(α) is equal to B. Among other things this gives a lower bound of A[α], and
reduces the computation of B to a finite number of local problems.

6. Formulate and prove a generalization of Hensel’s Lemma in more than one variables.
(Your answer should specialize to the one-variable version given in class. For some reason most text-
books treatment for general Hensel’s Lemma only covers the weaker/simpler case when the Jacobian
determinant is a unit. You are asked to do better, i.e. the Jacobian determinant is non-zero but not
necessarily a unit in the local field in question.)
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