MATH 602 EXERCISE SET 2, FALL 2016

1. Let *D* be a Dedekind domain and let *K* be the field of fractions of *D*. For every non-zero maximal ideal \wp of *D*, let D_{\wp} be the localization of *D* at \wp , let $\hat{D}_{\wp} = \varprojlim_n D / \wp^n$ be the \wp -adic completion of *D*, and let \hat{K}_{\wp} be the field of fractions of \hat{D}_{\wp} .

- (a) Show that \hat{D}_{\wp} is naturally isomorphic to the completion of the discrete valuation ring D_{\wp} for every non-zero maximal \wp of D.
- (b) Let I, J be two non-zero D-submodules of K. Show that the following statements are equivalent.
 - (b1) $I \subseteq J$
 - (b2) $I \cdot D_{\wp} \subseteq J \cdot D_{\wp}$ as D_{\wp} -submodules of K, for every maximal ideal \wp of D.
 - (b3) $I \cdot \hat{D}_{\wp} \subseteq J \cdot \hat{D}_{\wp}$ as \hat{D}_{\wp} -submodules of \hat{K}_{\wp} , for every maximal ideal \wp of D. Here $I \cdot \hat{D}_{\wp}$ is the \hat{D}_{\wp} -submodule of \hat{K}_{\wp} generated by I; similarly for $J \cdot \hat{D}_{\wp}$.

2. (a) Is there a field automorphism of \mathbb{R} whose restriction to $\mathbb{R} \cap \overline{\mathbb{Q}}$ is a non-trivial field automorphism of $\mathbb{R} \cap \overline{\mathbb{Q}}$? Either give a proof or a counter-example.

(b) Is there a field automorphism of \mathbb{Q}_p whose restriction to $\mathbb{Q}_p \cap \overline{\mathbb{Q}}$ is a non-trivial field automorphism of $\mathbb{Q}_p \cap \overline{\mathbb{Q}}$? Either give a proof or a counter-example. (Please examine the logic of your proof carefully. I have experience many a purported (but circular) proof for this problem.)

- 3. (a) Determine the ring of integers of the number field $\mathbb{Q}(\sqrt[3]{2})$.
 - (b) Determine the ring of integers of the number field $\mathbb{Q}[T]/(T^3 + T + 1)$.
 - (c) Determine the ring of integers of the number field $\mathbb{Q}(e^{\pi\sqrt{-1}/4})$.
 - (d) Compute the discriminants of the above number fields.

[Note: You might want also to do the same thing for all quadratic fields. This is treated in many textbooks in number theory, and also in many textbooks in algebra.]

4. Explicitly describe/determine the group $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$, where *p* is a prime number. [Your answer will depend on the parity of *p*.]

5. (This problem is a summary of a few basic properties of the conductor of an order of the ring of integers \mathcal{O}_L of a number field *L* with respect to a subfield *K*.)

Let *A* be a Dedekind domain and let *K* be the fraction field of *A*. Let *L* be a finite separable extension of *K* and let *B* be the integral closure of *A* in *L*. Let \mathcal{O} be an *order* in *B*, i.e. \mathcal{O} is a subring of *B* which contains *A* and \mathcal{O} contains a *K*-basis of *L*. (Consequently B/\mathcal{O} is an *A*-module of finite length.) Let

$$\mathfrak{c}(\mathscr{O}) = \{ x \in L \, | \, x \cdot B \subseteq \mathscr{O} \},\$$

the conductor of the order \mathcal{O} , which was written as $(\mathcal{O}: B)$ in class. Let

$$\mathscr{D}^{-1}(B/A) = \{ x \in L \,|\, \mathrm{Tr}_{L/K}(x \cdot B) \subset A \},\$$

the inverse different of B/A. Let

$$\mathscr{D}^{-1}(\mathscr{O}/A) = \{ x \in L \, | \, \mathrm{Tr}_{L/K}(x \cdot \mathscr{O}) \subset A \}.$$

- (a) Show that $\mathfrak{c}(\mathcal{O})$ is the largest ideal of *B* which is contained in \mathcal{O} . (This was given in class as an exercise.)
- (b) Prove that

$$\mathfrak{c}(\mathscr{O}) = \{ x \in L \, | \, x \cdot \mathscr{D}^{-1}(\mathscr{O}/A) \subseteq \mathscr{D}^{-1}(B/A) \}.$$

(c) Suppose that $\alpha \in B$ is an element of *B* such that $L = K(\alpha)$ and let f(T) be the minimal polynomial of α over *K*. Show that

$$\mathfrak{c}(A[\alpha]) = f'(\alpha) \cdot \mathscr{D}^{-1}(\mathscr{O}/A).$$

Note that this property implies the following.

- If $B = A[\alpha]$, then $\mathcal{D}(B/A)$ is equal to $f'(\alpha)B$.
- $\mathfrak{c}(A[\alpha]) \supset f'(\alpha)B$. In particular the localization $A[\alpha]$ at all prime ideals of *B* relatively prime to $f'(\alpha)$ is equal to *B*. Among other things this gives a lower bound of $A[\alpha]$, and reduces the computation of *B* to a finite number of local problems.

6. Formulate and prove a generalization of Hensel's Lemma in more than one variables.

(Your answer should specialize to the one-variable version given in class. For some reason most textbooks treatment for general Hensel's Lemma only covers the weaker/simpler case when the Jacobian determinant is a unit. You are asked to do better, i.e. the Jacobian determinant is non-zero but not necessarily a unit in the local field in question.)