Math 620 Exercise Set 4, Fall 2016

1. Let K be a number field. The questions below are related to the above property shown in class.

The subset $\mathbb{A}_{K, 1}^{\times} \subset \mathbb{A}_{K}$ is closed in \mathbb{A}_{K}. Moreover the topology on $\mathbb{A}_{K, 1}^{\times}$induced by the inclusion $\mathbb{A}_{K, 1}^{\times} \hookrightarrow \mathbb{A}_{K}^{\times}$coincides with the topology induced by the inclusion $\mathbb{A}_{K, 1}^{\times} \hookrightarrow \mathbb{A}_{K}$.

The proof is based on the following (easy) fact: for any positive number $c<1$, there exists a finite subset $S \subset \Sigma_{K}$ which contains $\Sigma_{K, \infty}$ such that $\|x\|_{v}<c$ for all $v \notin S$ and all $x \in \mathfrak{m}_{v}^{\wedge}$.
(i) The infinite product of normalized absolute values defines a function

$$
\|\cdot\|: \mathbb{A}_{K} \rightarrow[0, \infty), \quad\left(x_{v}\right)_{v \in \Sigma_{k}} \mapsto \prod_{v \in \Sigma_{K}}\left\|x_{v}\right\|
$$

on \mathbb{A}_{K}, where $\|\cdot\|_{v}$ is the normalized absolute value on K_{v}^{\wedge}. Show that it is upper semicontinuous but not lower semi-continuous.
(ii) Show that for every positive number $a>0$, the set

$$
\left\{x \in \mathbb{A}_{K}^{\times}:\|x\| \geq a\right\}
$$

is a closed subset of \mathbb{A}_{K}.
(iii) Show that for every positive number $a>0$, the set

$$
\left\{x \in \mathbb{A}_{K}^{\times}:\|x\| \leq b\right\}
$$

is not a closed subset of \mathbb{A}_{K}.
(iv) Show that for every two positive numbers a, b with $a<b$, the set

$$
\left\{x \in \mathbb{A}_{K}^{\times}: a \leq\|x\| \leq b\right\}
$$

is a closed subset of \mathbb{A}_{K}.
2. Let K be a number field.
(a) Let $K^{\times} \cdot \prod_{v \in \Sigma_{K, f}} \mathscr{O}_{K_{v}}^{\times}$be the subgroup of $\mathbb{A}_{K, f}^{\times}=\prod_{v \in \Sigma_{K, f}}^{\prime} K_{v}^{\times}$generated by K^{\times}and $\prod_{v \in \Sigma_{K, f}} \mathscr{O}_{K_{v}}^{\times}$. Show that $K^{\times} \cdot \prod_{v \in \Sigma_{K, f}} \mathscr{O}_{K_{v}}^{\times}$is a closed subgroup of $\mathbb{A}_{K, f}^{\times}$.
(b) Assume that the subring of algebraic integers \mathscr{O}_{K} in K is a principal ideal domain. Is $\mathbb{A}_{K, f}^{\times}$equal to $K^{\times} \cdot \prod_{v \in \Sigma_{K, f}} \mathscr{O}_{K_{v}}^{\times}$? Either give a proof or give a counter-example.
3. Let K be a global field. Let $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$ be a system of m polynomials in n variables x_{1}, \ldots, x_{n}. Let $V(K)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in K^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \forall i=1, \ldots, m\right\}$. Let $V\left(\mathbb{A}_{K}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}_{K}^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \forall i=1, \ldots, m\right\}$, endowed with the subspace topology induced from the product topology of \mathbb{A}_{K}^{n}. Is $V(K)$ a discrete subset of $V\left(\mathbb{A}_{K}\right)$? Either give a proof or give a counter-example.
4. Let $\operatorname{SL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ be the group of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbb{A}_{\mathbb{Q}}$ and $a d-b c=1$, endowed with the topology as a subspace of \mathbb{A}_{K}^{4}.
(a) Show that $\mathrm{SL}_{2}(\mathbb{Q})$ is a discrete subgroup of $\mathrm{SL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$
(b) Show that $\mathrm{SL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathrm{SL}_{2}(\mathbb{Q})$ is non-compact.
(c) Show every left Haar measure on $\mathrm{SL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ is a right Haar measure.
(d) Show that $\mathrm{SL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathrm{SL}_{2}(\mathbb{Q})$ has finite measure for any Haar measure on $\mathrm{SL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.

