MATH 620 EXERCISE SET 7, FALL 2016

1. A classical theorem of Siegel asserts that

$$\lim_{F} \frac{\log(h_F R_F)}{\log(|\mathrm{disc}_F|^{1/2})} = 1$$

as *F* ranges through all quadratic fields (so that $|\text{disc}_F| \to \infty$). A well-known theorem of Estermann asserts that there are infinitely many integers $m \in \mathbb{Z}$ such that $m^2 + 1$ is square free. Use these two facts to show that there for every $\varepsilon > 0$, there are infinitely many real quadratic fields *F* satisfying

$$h_F > |\operatorname{disc}_F|^{1/2-\varepsilon}$$
.

2. This problem provides a family of totally real fields of *F* of a given degree $n = [F : \mathbb{Q}]$ and n - 1 units in \mathcal{O}_F^{\times} which generate a subgroup of finite index in \mathcal{O}_F^{\times} .

Choose and fix n-1 mutually distinct integers a_1, \ldots, a_{n-1} . For any integer m, let $g_m(x) \in \mathbb{Z}[x]$ be the polynomial

$$f_m(x) = (x-m)\prod_{i=1}^{n-1}(x-a_i) + 1.$$

Clearly $f_m(a_i) = 1$ for all i = 1, ..., n - 1. Show that there exists a positive integer M_0 such that for all m with $|m| \ge M_0$ the following statements hold

- (1) The polynomial $f_m(x)$ has *n* mutually distinct *real* roots $\alpha_m^{(1)}, \ldots, \alpha_m^{(n)}$. Moreover after suitably reordering these roots, we have $|\alpha_m^{(i)} a_i| \le 1/4$ for all $i = 1, \ldots, n-1$, and $|\alpha_m^{(n)} m| \le 1/4$.
- (2) There exists constants $b_1, \ldots, b_{n-1} \in \mathbb{Q}$ such that

$$\lim_{m \to \infty} m \cdot (\alpha_m^{(i)} - a_i) = b_i \qquad \forall i = 1, \dots, n-1$$

and there exists a constant C such that

$$|m \cdot (\alpha_m^{(n)} - m)| \le C$$

- (3) $f_m(x)$ is an irreducible monic polynomial of degree n in $\mathbb{Z}[x]$. So $F_m := \mathbb{Q}(\alpha_m^{(1)}) \cong \mathbb{Q}[x]/(f_m(x))$ is a totally real number field of degree n.
- (4) For each $i = 1, \ldots, n-1, a_i \alpha_m^{(1)} \in \mathscr{O}_{F_m}^{\times}$.
- (5) The n-1 units $a_1 \alpha_m^{(1)}, a_2 \alpha_m^{(1)}, \dots, a_{n-1} \alpha_m^{(1)}$ generate a subgroup of finite index of $\mathscr{O}_{F_m}^{\times}$.

3. Let a > 0 be a positive real number. Let K be a number field. $f : \sigma_{K,f} \to \mathbb{Z}$ be an integer-valued function on the set $\sigma_{K,f}$ of all finite places of K such that f vanishes outside a finite subset of $\sigma_{K,f}$. Let B(a, f) be the subset of \mathbb{A}_K consisting of all K-adeles $(x_v)_{v \in \Sigma_K}$ such that $\operatorname{ord}_v(x_v) \ge f(v)$ for all $v \in \Sigma_{K,f}$, and $\sum_{v \in \Sigma_{K,\infty}} |x_v|_v \le a$.

(a) Compute the volume of B(a, f) with respect to the Haar measure on \mathbb{A}_K such that \mathbb{A}_K/K has volume 1.

(b) Let $n := [K : \mathbb{Q}]$ and let $C_K := \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2}$ be the Minkowski constant attached to *K*, which depends only on the degree and the number of complex places of *K*. Use (a) to prove the following theorem of Minkowski: in any ideal class of \mathcal{O}_K , there exists an ideal *I* such that

$$\mathbf{N}(I) \leq C_K |\mathrm{disc}_K|^{1/2}.$$

(c) Use Minkowski's theorem to show that

$$|\operatorname{disc}_K| \ge \left(\frac{\pi}{4}\right)^n \frac{n^{2n}}{(n!)!} \ge 3$$

for all $n = [K : \mathbb{Q}] \ge 2$.

(d) Use Minkowski's theorem to show that there exists positive constant c such that

$$\log(|\operatorname{disc}_K|) \ge c \cdot [K : \mathbb{Q}].$$

for every number field K.

- 4. (Artin) Let $f(x) = x^5 x + 1$.
 - (a) Show that f(x) is irreducible over \mathbb{Q} .
 - (b) Let α be a root of f(x), and let $F = \mathbb{Q}(\alpha)$. Determine the number of real and complex places of *F*.
 - (c) It is a fact that the discriminant of the polynomial f(x) is $2869 = 19 \cdot 151$. (The discriminant of a polynomial can be expressed as a polynomial of the coefficients of the polynomial.) Use this fact to show that $\mathcal{O}_F = \mathbb{Z}[\alpha]$
 - (d) Use Minkowski's theorem to show that \mathcal{O}_F is a principal ideal domain.
 - (e) Determine the discriminant $\operatorname{disc}_F \in \mathbb{Z}$.

Remark. The classical definition of the discriminant d_K of a number field *K* is the following. Let x_1, \ldots, x_n be a \mathbb{Z} -basis of \mathcal{O}_F . Let $\sigma_1, \ldots, \sigma_n$ be the set of all embeddings of *K* into $\overline{\mathbb{Q}}$. Then

$$\operatorname{disc}_K := \operatorname{det}(\sigma_i(x_j))^2 = \operatorname{det}(\operatorname{Tr}_{K/\mathbb{Q}}(x_i \cdot x_j)) \in \mathbb{Z}.$$

This definition is independent of the chose of \mathbb{Z} -basis (x_1, \ldots, x_n) of \mathcal{O}_K . So the discriminant disc_K is a well-defined integer, not an ideal of \mathbb{Z} . In comparison, the ideal disc_{K/Q} in \mathbb{Z} we defined in class is disc_K $\cdot \mathbb{Z}$.