Math 620 Exercise Set 7, Fall 2016

1. A classical theorem of Siegel asserts that

$$
\lim _{F} \frac{\log \left(h_{F} R_{F}\right)}{\log \left(\left|\operatorname{disc}_{F}\right|^{1 / 2}\right)}=1
$$

as F ranges through all quadratic fields (so that $\left|\operatorname{disc}_{F}\right| \rightarrow \infty$). A well-known theorem of Estermann asserts that there are infinitely many integers $m \in \mathbb{Z}$ such that $m^{2}+1$ is square free. Use these two facts to show that there for every $\varepsilon>0$, there are infinitely many real quadratic fields F satisfying

$$
h_{F}>\left|\operatorname{disc}_{F}\right|^{1 / 2-\varepsilon} .
$$

2. This problem provides a family of totally real fields of F of a given degree $n=[F: \mathbb{Q}]$ and $n-1$ units in \mathscr{O}_{F}^{\times}which generate a subgroup of finite index in \mathscr{O}_{F}^{\times}.

Choose and fix $n-1$ mutually distinct integers a_{1}, \ldots, a_{n-1}. For any integer m, let $g_{m}(x) \in \mathbb{Z}[x]$ be the polynomial

$$
f_{m}(x)=(x-m) \prod_{i=1}^{n-1}\left(x-a_{i}\right)+1
$$

Clearly $f_{m}\left(a_{i}\right)=1$ for all $i=1, \ldots, n-1$. Show that there exists a positive integer M_{0} such that for all m with $|m| \geq M_{0}$ the following statements hold
(1) The polynomial $f_{m}(x)$ has n mutually distinct real roots $\alpha_{m}^{(1)}, \ldots, \alpha_{m}^{(n)}$. Moreover after suitably reordering these roots, we have $\left|\alpha_{m}^{(i)}-a_{i}\right| \leq 1 / 4$ for all $i=1, \ldots, n-1$, and $\left|\alpha_{m}^{(n)}-m\right| \leq 1 / 4$.
(2) There exists constants $b_{1}, \ldots, b_{n-1} \in \mathbb{Q}$ such that

$$
\lim _{|m| \rightarrow \infty} m \cdot\left(\alpha_{m}^{(i)}-a_{i}\right)=b_{i} \quad \forall i=1, \ldots, n-1
$$

and there exists a constant C such that

$$
\left|m \cdot\left(\alpha_{m}^{(n)}-m\right)\right| \leq C
$$

(3) $f_{m}(x)$ is an irreducible monic polynomial of degree n in $\mathbb{Z}[x]$. So $F_{m}:=\mathbb{Q}\left(\alpha_{m}^{(1)}\right) \cong \mathbb{Q}[x] /\left(f_{m}(x)\right)$ is a totally real number field of degree n.
(4) For each $i=1, \ldots, n-1, a_{i}-\alpha_{m}^{(1)} \in \mathscr{O}_{F_{m}}^{\times}$.
(5) The $n-1$ units $a_{1}-\alpha_{m}^{(1)}, a_{2}-\alpha_{m}^{(1)}, \ldots, a_{n-1}-\alpha_{m}^{(1)}$ generate a subgroup of finite index of $\mathscr{O}_{F_{m}}^{\times}$.
3. Let $a>0$ be a positive real number. Let K be a number field. $f: \sigma_{K, f} \rightarrow \mathbb{Z}$ be an integer-valued function on the set $\sigma_{K, f}$ of all finite places of K such that f vanishes outside a finite subset of $\sigma_{K, f}$. Let $B(a, f)$ be the subset of \mathbb{A}_{K} consisting of all K-adeles $\left(x_{v}\right)_{v \in \Sigma_{K}}$ such that $\operatorname{ord}_{v}\left(x_{v}\right) \geq f(v)$ for all $v \in \Sigma_{K, f}$, and $\sum_{v \in \Sigma_{K, \infty}}\left|x_{v}\right|_{v} \leq a$.
(a) Compute the volume of $B(a, f)$ with respect to the Haar measure on \mathbb{A}_{K} such that \mathbb{A}_{K} / K has volume 1 .
(b) Let $n:=[K: \mathbb{Q}]$ and let $C_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}}$ be the Minkowski constant attached to K, which depends only on the degree and the number of complex places of K. Use (a) to prove the following theorem of Minkowski: in any ideal class of \mathscr{O}_{K}, there exists an ideal I such that

$$
\mathbf{N}(I) \leq C_{K}\left|\operatorname{disc}_{K}\right|^{1 / 2}
$$

(c) Use Minkowski's theorem to show that

$$
\left|\operatorname{disc}_{K}\right| \geq\left(\frac{\pi}{4}\right)^{n} \frac{n^{2 n}}{(n!)!} \geq 3
$$

for all $n=[K: \mathbb{Q}] \geq 2$.
(d) Use Minkowski's theorem to show that there exists positive constant c such that

$$
\log \left(\left|\operatorname{disc}_{K}\right|\right) \geq c \cdot[K: \mathbb{Q}] .
$$

for every number field K.
4. (Artin) Let $f(x)=x^{5}-x+1$.
(a) Show that $f(x)$ is irreducible over \mathbb{Q}.
(b) Let α be a root of $f(x)$, and let $F=\mathbb{Q}(\alpha)$. Determine the number of real and complex places of F.
(c) It is a fact that the discriminant of the polynomial $f(x)$ is $2869=19 \cdot 151$. (The discriminant of a polynomial can be expressed as a polynomial of the coefficients of the polynomial.) Use this fact to show that $\mathscr{O}_{F}=\mathbb{Z}[\boldsymbol{\alpha}]$
(d) Use Minkowski's theorem to show that \mathscr{O}_{F} is a principal ideal domain.
(e) Determine the discriminant $\operatorname{disc}_{F} \in \mathbb{Z}$.

Remark. The classical definition of the discriminant d_{K} of a number field K is the following. Let x_{1}, \ldots, x_{n} be a \mathbb{Z}-basis of \mathscr{O}_{F}. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the set of all embeddings of K into $\overline{\mathbb{Q}}$. Then

$$
\operatorname{disc}_{K}:=\operatorname{det}\left(\sigma_{i}\left(x_{j}\right)\right)^{2}=\operatorname{det}\left(\operatorname{Tr}_{K / \mathbb{Q}}\left(x_{i} \cdot x_{j}\right)\right) \in \mathbb{Z} .
$$

This definition is independent of the chose of \mathbb{Z}-basis $\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{O}_{K}. So the discriminant disc ${ }_{K}$ is a well-defined integer, not an ideal of \mathbb{Z}. In comparison, the ideal $\operatorname{disc}_{K / \mathbb{Q}}$ in \mathbb{Z} we defined in class is $\operatorname{disc}_{K} \cdot \mathbb{Z}$.

