Math 620 Exercise Set 8, Fall 2016

1. Given an explicit example of an idele class character χ for $\mathbb{A}_{\mathbb{Q}}^{\times} / \mathbb{Q}^{\times}$whose restriction to the archimedian component \mathbb{R}^{\times}of $\mathbb{A}_{\mathbb{Q}}^{\times}$is equal to the sign character of \mathbb{R}^{\times}.
2. Let K be an imaginary quadratic field.
(a) Show that there exists an idele class character $\chi: \mathbb{A}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$such that $\left.\chi_{\infty}\right|_{\left(K \otimes \otimes_{\mathbb{Q}} \mathbb{R}\right)^{\times}} \rightarrow \mathbb{C}^{\times}$is equal to the restriction to $\left(K \otimes_{\mathbb{Q}} \mathbb{R}\right)^{\times}$of a ring isomorphism $K \otimes \mathbb{Q} \mathbb{R} \xrightarrow{\sim} \mathbb{C}$. In other words, the archimedian component of χ comes from an embedding of K into \mathbb{C}.
(b) Suppose that $\chi_{1}, \chi_{2}: \mathbb{A}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$are two idele class characters such that their restrictions to $\left(K \otimes_{\mathbb{Q}} \mathbb{R}\right)^{\times}$are equal. Prove that there exists a positive integer n such that $\left(\chi_{1} \cdot \chi_{2}^{-1}\right)^{n}$ is trivial.
(c) Give an explicit description of the functional equation for the L-function $L(\chi, s)$, where χ is an idele class character as in (a).
3. Let F be a number field.
(a) Find a Schwartz function f on \mathbb{A}_{F} such that

$$
\zeta_{d^{\times} x}\left(f, \omega_{s}\right)=L_{\mathbb{R}}(s / 2)^{r_{1}} \cdot L_{\mathbb{C}}^{r_{2}}(s) \cdot \zeta_{F}(s)
$$

Here $d^{\times} x$ is the Haar measure on \mathbb{A}_{F}^{\times}we specified in lectures: recall that we specify first a Haar measure on $d x$ on \mathbb{A}_{F}, which is a restricted product of Haar measures $d x_{v}$'s on $\left(F_{v},+\right)$, normalized by the property that $\int_{\mathbb{A}_{F} / F} d x=1$. For each archimedian place v of F, let $d^{\times} x_{v}$ be $\frac{d x_{v}}{\left|x_{v}\right|_{v}}$. For each finite place v of F, let $d^{\times} x_{v}$ be $\left(1-q_{v}^{-1}\right)^{-1} \cdot \frac{d x_{v}}{\left|x_{v}\right|_{v}}$. Our preferred multiplicative Haar measure on \mathbb{A}_{F}^{\times}is the the restricted product of the $d^{\times} x_{v}$'s.
(b) Deduce from results on local constants that the function $Z_{F}(s):=\left|\operatorname{disc}_{F}\right|^{s / 2} \cdot L_{\mathbb{R}}(s / 2)^{r_{1}} \cdot L_{\mathbb{C}}^{r_{2}}(s)$. $\zeta_{F}(s)$ satisfies the functional equation

$$
Z_{F}(s)=Z_{F}(1-s) .
$$

(c) Deduce from the proof of gloal functional equation of zeta functions for \mathbb{A}_{F} that the Dedekind zeta function $\zeta_{F}(s)$ has a simple pole at $s-1$ with residue

$$
\kappa_{F}=\frac{2^{r_{1}}(2 \pi)^{r_{2}} R_{F}}{|\mu(F)| \cdot\left|\operatorname{disc}_{F}\right|^{1 / 2}}
$$

(d) Determine the order of zero/pole of $\zeta_{F}(s)$ at non-positive integers.
(e) Let χ be an idele class character of finite order for $\mathbb{A}_{F}^{\times} / F^{\times}$. Give an explicit form of the functional equation for $L_{F}(\chi, s)=L_{F}\left(\chi \omega_{s}\right)$.
4. (This problem leads you through Hecke's proof of the funcitonal equation for Dedekind zeta functions.) The function f you obtained in 1 (a) above is likely to be a product of a function f_{∞} on $F_{\infty}:=F \otimes_{\mathbb{Q}} \mathbb{R}$ and the characteristic function of $\mathscr{O}_{F} \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}$. Assume this is the case.
(a) Let $H(F)$ be the class group of \mathscr{O}_{F}. The canonical surjective homomorphism $\mathbb{A}_{K}^{\times} \rightarrow H(F)$ gives a decomposition of \mathbb{A}_{F}^{\times}into a disjoint union of cosets for the open subgroup $F \cdot\left(F_{\infty}^{\times} \times\left(\mathscr{O}_{F} \times_{\mathbb{Z}}\right.\right.$ $\hat{\mathbb{Z}})^{\times}$. Correspondingly the integral $\int_{\mathbb{A}_{F}^{\times}} f(x) \omega_{s}(x) d^{\times} x$ becomes a sum of h_{F} integrals, indexed by the class group $H(F)$. For each of the h_{F} integrals, first integrate (i.e. sum) over F^{\times}. You should see a family of $[F: \mathbb{Q}]$-variable theta series appearing. (In the sense that the sum over F^{\times} is the theta series minus the constant term of the theta series.)

Note: By a theta series we mean a series of the form $\sum_{\xi \in \Gamma} e^{-Q(\xi)}$, where V is a finite dimensional vector space over \mathbb{R}, Γ is a co-compact discrete subgroup of V, and Q is an \mathbb{R}-valued positive definite quadratic form on V.
(b) Rewrite each of the h_{F} integrals as an integral over $\prod_{v \in \Sigma_{F, \infty}} \mathbb{R}_{>0}^{\times} \cong\left(\mathbb{R}_{>0}^{\times}\right)^{r_{1}+r_{2}}$, where the integrand involves a theta series and a suitable power of the norm function on $\left(\mathbb{R}_{>0}^{\times}\right)^{r_{1}+r_{2}}$.
(c) Apply the Poisson summation formula, which results in a functional equation relating the theta series for a quadratic form Q to a theta series for a quadratic form Q^{\prime} on $V^{\prime}:=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})$ and the lattice $\Gamma^{\prime}:=\Gamma^{\perp}$ in V^{\prime}. The original integral now becomes an integral whose integrand has three terms, one term is a theta series without the constant term, plus two other explicit terms. The last two terms are easily integrated (absolutely convergent for $\operatorname{Re}(s)>1$.
(d) Use Fubini theorem for the integral left. Integrate first over the norm-one subgroup of $\left(\mathbb{R}_{>0}^{\times}\right)^{r_{1}+r_{2}}$, then over the quotient by the norm-one subgroup. Note that the quotient is naturally isomorphic to $\mathbb{R}_{>0}^{\times}$). In $\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}$, make a change of variable $t \mapsto 1 / t$. Congratulations! You have completed Hecke's proof of the functional equation. At this point you should see that you have actually proved h_{F} functional equations. Each of these functional equations relates a partial zeta function $\zeta_{\mathfrak{a}}(s)$, which is a sum over ideals in a fixed element \mathfrak{a} in the ideal class group $H(F)$, to $\zeta_{a^{-1}}(1-s)$.

