MATH 620 EXERCISE SET 8, FALL 2016

1. Given an explicit example of an idele class character χ for $\mathbb{A}^{\times}_{\mathbb{Q}}/\mathbb{Q}^{\times}$ whose restriction to the archimedian component \mathbb{R}^{\times} of $\mathbb{A}^{\times}_{\mathbb{Q}}$ is equal to the sign character of \mathbb{R}^{\times} .

- 2. Let *K* be an imaginary quadratic field.
 - (a) Show that there exists an idele class character $\chi : \mathbb{A}_K^{\times} \to \mathbb{C}^{\times}$ such that $\chi_{\infty}|_{(K \otimes_{\mathbb{Q}} \mathbb{R})^{\times}} \to \mathbb{C}^{\times}$ is equal to the restriction to $(K \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$ of a ring isomorphism $K \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\sim} \mathbb{C}$. In other words, the archimedian component of χ comes from an embedding of K into \mathbb{C} .
 - (b) Suppose that $\chi_1, \chi_2 : \mathbb{A}_K^{\times} \to \mathbb{C}^{\times}$ are two idele class characters such that their restrictions to $(K \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$ are equal. Prove that there exists a positive integer *n* such that $(\chi_1 \cdot \chi_2^{-1})^n$ is trivial.
 - (c) Give an explicit description of the functional equation for the L-function $L(\chi, s)$, where χ is an idele class character as in (a).
- 3. Let *F* be a number field.
 - (a) Find a Schwartz function f on \mathbb{A}_F such that

$$\zeta_{d^{\times}x}(f, \omega_s) = L_{\mathbb{R}}(s/2)^{r_1} \cdot L_{\mathbb{C}}^{r_2}(s) \cdot \zeta_F(s)$$

Here $d^{\times}x$ is the Haar measure on \mathbb{A}_{F}^{\times} we specified in lectures: recall that we specify first a Haar measure on dx on \mathbb{A}_{F} , which is a restricted product of Haar measures dx_{v} 's on $(F_{v}, +)$, normalized by the property that $\int_{\mathbb{A}_{F}/F} dx = 1$. For each archimedian place v of F, let $d^{\times}x_{v}$ be $\frac{dx_{v}}{|x_{v}|_{v}}$. For each finite place v of F, let $d^{\times}x_{v}$ be $(1 - q_{v}^{-1})^{-1} \cdot \frac{dx_{v}}{|x_{v}|_{v}}$. Our preferred multiplicative Haar measure on \mathbb{A}_{F}^{\times} is the the restricted product of the $d^{\times}x_{v}$'s.

(b) Deduce from results on local constants that the function $Z_F(s) := |\operatorname{disc}_F|^{s/2} \cdot L_{\mathbb{R}}(s/2)^{r_1} \cdot L_{\mathbb{C}}^{r_2}(s) \cdot \zeta_F(s)$ satisfies the functional equation

$$Z_F(s) = Z_F(1-s).$$

(c) Deduce from the proof of gloal functional equation of zeta functions for \mathbb{A}_F that the Dedekind zeta function $\zeta_F(s)$ has a simple pole at s - 1 with residue

$$\kappa_F = rac{2^{r_1} (2\pi)^{r_2} R_F}{|\mu(F)| \cdot |\mathrm{disc}_F|^{1/2}}$$

- (d) Determine the order of zero/pole of $\zeta_F(s)$ at non-positive integers.
- (e) Let χ be an idele class character of finite order for $\mathbb{A}_F^{\times}/F^{\times}$. Give an explicit form of the functional equation for $L_F(\chi, s) = L_F(\chi \omega_s)$.

4. (This problem leads you through Hecke's proof of the functional equation for Dedekind zeta functions.) The function f you obtained in 1(a) above is likely to be a product of a function f_{∞} on $F_{\infty} := F \otimes_{\mathbb{Q}} \mathbb{R}$ and the characteristic function of $\mathscr{O}_F \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}$. Assume this is the case.

(a) Let H(F) be the class group of 𝒫_F. The canonical surjective homomorphism A[×]_K → H(F) gives a decomposition of A[×]_F into a disjoint union of cosets for the open subgroup F · (F[×]_∞ × (𝒫_F ×_Z Â)[×]. Correspondingly the integral ∫_{A[×]_F} f(x) ω_s(x) d[×]x becomes a sum of h_F integrals, indexed by the class group H(F). For each of the h_F integrals, first integrate (i.e. sum) over F[×]. You should see a family of [F : Q]-variable theta series appearing. (In the sense that the sum over F[×] is the theta series minus the constant term of the theta series.)

Note: By a theta series we mean a series of the form $\sum_{\xi \in \Gamma} e^{-Q(\xi)}$, where *V* is a finite dimensional vector space over \mathbb{R} , Γ is a co-compact discrete subgroup of *V*, and *Q* is an \mathbb{R} -valued positive definite quadratic form on *V*.

- (b) Rewrite each of the h_F integrals as an integral over $\prod_{v \in \Sigma_{F,\infty}} \mathbb{R}^{\times}_{>0} \cong (\mathbb{R}^{\times}_{>0})^{r_1+r_2}$, where the integrand involves a theta series and a suitable power of the norm function on $(\mathbb{R}^{\times}_{>0})^{r_1+r_2}$.
- (c) Apply the Poisson summation formula, which results in a functional equation relating the theta series for a quadratic form Q to a theta series for a quadratic form Q' on $V' := \text{Hom}_{\mathbb{R}}(V,\mathbb{R})$ and the lattice $\Gamma' := \Gamma^{\perp}$ in V'. The original integral now becomes an integral whose integrand has three terms, one term is a theta series without the constant term, plus two other explicit terms. The last two terms are easily integrated (absolutely convergent for Re(s) > 1.
- (d) Use Fubini theorem for the integral left. Integrate first over the norm-one subgroup of (ℝ[×]_{>0})^{r₁+r₂}, then over the quotient by the norm-one subgroup. Note that the quotient is naturally isomorphic to ℝ[×]_{>0}). In ∫₀[∞] = ∫₀¹ + ∫₁[∞], make a change of variable t → 1/t. Congratulations! You have completed Hecke's proof of the functional equation. At this point you should see that you have actually proved h_F functional equations. Each of these functional equations relates a partial zeta function ζ_a(s), which is a sum over ideals in a fixed element a in the ideal class group H(F), to ζ_{a⁻¹}(1-s).