Math 626 Exercise Set 1

1. Let *R* be a non-zero commutative ring such that every ideal is a prime ideal. Show that *R* is a field.

2. Let $I, P_1, P_2, P_3, ..., P_m$ be ideals of a commutative ring $R, m \ge 2$ such that $I \subseteq \bigcup_{i=1}^m$ and P_i is a prime ideal for each $i \ge 3$. Show that there exists an *i* such that $I \subseteq P_i$.

3. (a) Give an explicit example of a homomorphism of commutative rings $A \rightarrow B$ such that *B* is a finite *A*-module and the going down property does not hold.

(b) Give an explicit example of a homomorphism of commutative rings $A \rightarrow B$ such that *B* is faithfully flat over *A* and the going up property does not hold.

4. (a) Show that for every prime ideal Q of a commutative ring R, there exists a minimal prime ideal of R contained in Q.

(b) Let $\phi : A \to B$ be a homomorphism of commutative rings. Show that going down holds for ϕ if and only if the following condition holds:

For every prime ideal \mathcal{P} in A and every prime ideal P of B containing \mathcal{P} whose image in $B/\mathcal{P}B$ is a minimal prime ideal of $B/\mathcal{P}B$, we have $\phi^{-1}(P) = \mathcal{P}$.

5. Let *I* be a finitely generated ideal in a commutative ring *R*. Suppose that (0: I) = (0). Show that the annihilator

$$\operatorname{Ann}_{R}(I/I^{2}) := \{ x \in R \mid x \cdot I \subseteq I^{2} \}$$

of the *R*-module I/I^2 is contained in the radical

$$\operatorname{rad}(I) := \{ y \in R \mid \exists n \in \mathbb{N} \text{ s.t. } y^n \in I \}$$

of *I*.

DEFINITION. Let *X* be a topological space.

- (a) A subset U of X is *retro-compact* if for every quasi-compact open subset $V \subseteq X$, the intersection $U \cap V$ is quasi-compact.
- (b) Let \mathfrak{F} be the family of subsets of the power set of *X*, consists of all subsets \mathfrak{G} of 2^X with the following properties: (a) Every retro-compact open subset of *X* belongs to \mathfrak{G} , (b) The complement of every element of \mathfrak{G} is an element of \mathfrak{G} .
- (c) All finite union of elements of \mathcal{G} is an element of \mathcal{G} . The family \mathfrak{F} has a unique minimal element $\mathcal{C} := \bigcap_{\mathcal{G} \in \mathfrak{F}} \mathcal{G}$. Elements of \mathcal{C} are called *constructible subsets* of *X*.

6. (i) Suppose that U, V are retro-compact open subsets of X. Show that $U \cap V$ and $U \cup V$ are both retro-compact.

(ii) Show that a subset of X is constructible if and only if it is a finite union of subsets of the form $U \cap (X \setminus V)$, where U, V are retro-compact open subsets of X.

7. Let *R* be a commutative ring. Show that an open subset *U* of Spec(*R*) is retro-compact if and only if there exists a finitely generated ideal *I* of *R* such that $\text{Spec}(R) \setminus U = \text{Spec}(R/I)$.

8. Let $\phi : A \to B$ be a homomorphism of commutative rings, and let ${}^a\phi : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ be the map between the spectra attached to ϕ . Show that if Z is a constructible subset of $\operatorname{Spec}(A)$, then ${}^a\phi^{-1}(Z)$ is a constructible subset of $\operatorname{Spec}(B)$.

9. Let *R* be a commutative ring, let *M* be a finitely generated *R*-module, and let $\alpha : R^{\oplus n} \to M$ be an *R*-linear surjection. Suppose that *M* is a finitely presented *R*-module. Show that Ker(α) is a finitely generated *R*-module.

10. Let *A* be a commutative ring, let *B* be a finitely generated *A*-algebra, and let $\phi : A[x_1, \dots, x_n] \to B$ be a surjective *R*-linear ring homomorphism, where $A[x_1, \dots, x_n]$ is the polynomial ring over *A* in variables $x_1, \dots, x_n, n \in \mathbb{N}$. Suppose that *B* is an *R*-algebra of finite presentation. Show that Ker(ϕ) is a finitely generated ideal of $A[x_1, \dots, x_n]$.

11. Let *A* be a commutative ring, and let *B* be a commutative *A*-algebra which is a finite *A*-module. Suppose that the *B* is of finite presentation as an *A*-algebra. Prove that the *A*-module underlying *B* is of finite presentation. (Hint: Show first that there exists a commutative *A*-algebra *B'* which is a finite free *A*-module and a surjective *A*-algebra homomorphism $B' \rightarrow B$.)

12. Let Z be a constructible subset of the spectrum Spec(A) of a commutative ring A. Show that there exists an A-algebra B of finite presentation over A such that Z is equal to the image of Spec(B) in Spec(A).