Math 626 Exercise Set 2

1. Give an example of a commutative ring and a non-trivial A-module M of finite presentation such that $Ass_A(M) = \emptyset$.

2. Let *M* be a module over a commutative ring *R*. We define two variants of the definition of *associated primes*.

(a) Define $\operatorname{Ass}_d(M)$ to be the set consisting of all elements $\mathscr{D} \in \operatorname{Spec}(R)$ such that there exists a multiplicatively closed subset $S \subseteq R$ with the following properties: (i) $S \cap \mathscr{D} = \emptyset$, (ii) $\mathscr{D} \cdot S^{-1}R$ is a maximal element of the family of all ideals $J \subseteq S^{-1}R$ of $S^{-1}R$ such that for each $a \in J$, there exists a non-zero element $y \in S^{-1}M$ with $a \cdot y = 0$.

(When M = R/I for an ideal I in R, $Ass_d(R/I)$ is classically known as the set of *prime divisors* of I, as defined by Nagata.)

(b) Define Ass_w(M) to be the set consisting of all elements ℘ ∈ Spec(R) such that there exists an element x ∈ M such that ℘ is a minimal element in the family of all prime ideals containing Ann_R(x).

(The definition of $Ass_w(M)$ is due to Bourbaki.)

- (1) Show that M = (0) is equivalent to $Ass_w(M) = \emptyset$ and also equivalent to $Ass_d(M) = \emptyset$.
- (2) Suppose that $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of *R*-modules. Do the inclusions

$$\operatorname{Ass}_{w}(M') \subseteq \operatorname{Ass}_{w}(M) \subseteq \operatorname{Ass}_{w}(M') \cup \operatorname{Ass}_{w}(M'')$$

hold? Do the inclusions

$$\operatorname{Ass}_d(M') \subseteq \operatorname{Ass}_d(M) \subseteq \operatorname{Ass}_d(M') \cup \operatorname{Ass}_d(M'')$$

hold?

- (3) Show that $Ass_w(M) \subseteq Ass_d(M)$.
- (4)* Does the equality $Ass_w(M) \subseteq Ass_d(M)$ hold for every module M over a commutative ring R?
- (5) Suppose that R is Noetherian. Show that

$$\operatorname{Ass}_{W}(M) = \operatorname{Ass}(M) = \operatorname{Ass}_{d}(M).$$

3. Let *R* be a commutative ring. Let $a \in R$ be an element of *R* which a not a zero-divisor of *R*. Let *b* be an element of *R*, so that we have an element $\frac{b}{a}$ in the total ring of fractions frac(*R*) of *R*. Suppose that $\frac{b}{a} \notin R$. Show that either there exist an embedded prime in Ass(*R*/*aR*), or there exists a minimal element \mathcal{D} in the family of all prime ideals containing *I* such that $a \cdot R_{\mathcal{D}} \not\subseteq b \cdot R_{\mathcal{D}}$.

4. Let *P* be a prime ideal of a commutative ring *R*. Is it true that P^2 is a *P*-primary ideal in *R*? Either give a proof or give a counter-example.

5. (An example of a Noetherian ring with infinite Krull dimension)

Let *k* be a field. Let $(J_i)_{i \in \mathbb{N}}$ be a family of finite subsets. We assume that the cardinalities of the sets J_i are unbounded.

For each $i \in \mathbb{N}$, introduce a finite set of variables $(x_{i,j})_{j\in J_i}$, and let $R' := k[x_{i,j}]_{i\in\mathbb{N}, j\in J_i}$ be the polynomial ring in the infinitely many variables $x_{i,j}$. For each $i \in \mathbb{N}$, let $P_i = \sum_{j\in J_i} x_{i,j}R'$ be the ideal of R' generated by the elements $(x_{i,j})_{j\in J_i}$. Clearly P_i is a prime ideal for each i.

Let $S := R' \setminus \bigcup_{i \in \mathbb{N}} P_i$ be the complement of the union of the prime ideals P_i . Let $R := S^{-1}R$ be the localization of R' with respect to S. For each $i \in \mathbb{N}$, let $\mathfrak{m}_i := P_i R$ be the maximal ideal of R corresponding to the prime ideal P_i . Clearly the height of \mathfrak{m}_i is equal to $\operatorname{card}(J_i)$ for each i, hence the Krull dimension of R is ∞ .

(a) Define subrings R'_n of R' in finitely variables by

$$R'_n := k[x_{i,j}]_{i \le n, j \in J_i},$$

so that we have $R'_0 \subseteq R'_1 \subseteq R'_2 \subseteq \cdots$ and $R = \bigcup_{n \in \mathbb{N}} R'_n$. Show that $P_i \cap R'_n = 0$ if i > n. In particular for every non-zero element $a \in R'$, there exists a natural number N such that $a \notin P_i$ for all $i \ge N$.

(b) Show that if an ideal *I* of *R'* is contained in $\bigcup_{i \in \mathbb{N}} P_i$, then there exists $i_0 \in \mathbb{N}$ such that $I \subseteq P_{i_0}$. Deduce that every maximal ideal of *R* is equal to \mathfrak{m}_i for some $i \in \mathbb{N}$.

(Hint: The finiteness statement (a) may be useful.)

- (c) Show that the local ring $R_{\mathfrak{m}_i}$ is Noetherian for every $i \in \mathbb{N}$.
- (d) Show that the Krull dimension of *R* is equal to $\max(\operatorname{card}(J_i) \mid i \in \mathbb{N})$.
- (e) Show that *R* is a Noetherian ring.

6. Let k be a field. In this problem we discuss how to show that the transcendance degree of k((x)) over k is infinite.

- (a) Let κ be the prime subfield of k. Thus $\kappa \cong \mathbb{Q}$ if char(k) = 0, and $\kappa \cong \mathbb{F}_p$ if char(k) = p > 0.
 - (a1) Show that the transcendence degree of κ((x)) over κ is equal to card(R).
 (Hint: What is the cardinality of κ((x))? Relate the cardinality of κ((x)) to the cardinality of the algebraic closure of κ((x)) and also to the transcendance degree of κ((x)) over κ.)
 - (a2) Show that the natural ring homomorphism $k \otimes_{\kappa} \kappa((x)) \rightarrow k((x))$ is injective.
 - (a2) Show that the transcendence degree of $k \otimes_{\kappa} \kappa((x))$ over k equal to card(\mathbb{R}). In particular the transcendance degree of k((x)) over k is infinite.
- (b) Let p be a prime number. Recall that we have a Z-valued p-adic valuation on the fraction field of Z_(p)[[x]].
 - (b1) Suppose that and f(x) is an element of $\mathbb{Q}[[x]]$ which is integral over $\mathbb{Z}_{(p)}[[x]]$. Show that $f(x) \in \mathbb{Z}_{(p)}[x]$.
 - (b2) Suppose that $f(x) = \sum_{n \in \mathbb{N}} a_n x^n$ is an element of $\mathbb{Q}((x))$ which is algebraic over the fraction field of $\mathbb{Z}_{(p)}[[x]]$. Show that there exist $c, d \in \mathbb{N}$ such that $\operatorname{ord}_p(a_n) \ge -cn d$ for all $n \in \mathbb{N}$.
 - (b3) Construct an infinite sequence $f_i(x)$, $i \in \mathbb{N}$ of elements of $\mathbb{Q}[[x]]$ which are algebraically independent over \mathbb{Q} .

7. Let *k* be a field, and let k[[x,y,z]] be the ring of formal power series in three variables over *k*. Let \mathfrak{P} be the prime ideal xk[[x,y,z]] + yk[[x,y,z]] of k[[x,y,z]], let *R* be the localization of k[[x,y,z]] at \mathfrak{P} , and let \hat{R} be the formal completion of the Noetherian local ring *R*. Note that *R* is a two-dimensional regular local ring, therefore it is a unique factorization domain. Let \mathfrak{p} be the principal ideal of \hat{R} generated by the element

$$x - \sum_{n \ge 1} \frac{1}{z^{n!}} y^n \in \hat{R}.$$

- (a) Show that \hat{R} is isomorphic to k((z))[[x, y]].
- (b) Show that \mathfrak{p} is a prime ideal of \hat{R} of height 1.
- (c) Determine whether $\mathfrak{p} \cap R$ is equal to (0) or is a non-zero prime ideal of *R*.

(Note that $\mathfrak{p} \cap R$ has height at most 1, because $R \to \hat{R}$ is faithfully flat. So if $\mathfrak{p} \cap R \neq (0)$, then it is a principle ideal generated by a non-zero irreducible element of R.)