Math 626 Exercise Set 2

1. Give an example of a commutative ring and a non-trivial A-module M of finite presentation such that $\operatorname{Ass}_{A}(M)=\emptyset$.
2. Let M be a module over a commutative ring R. We define two variants of the definition of associated primes.
(a) Define $\operatorname{Ass}_{d}(M)$ to be the set consisting of all elements $\wp \in \operatorname{Spec}(R)$ such that there exists a multiplicatively closed subset $S \subseteq R$ with the following properties: (i) $S \cap \wp=\emptyset$, (ii) $\wp \cdot S^{-1} R$ is a maximal element of the family of all ideals $J \subseteq S^{-1} R$ of $S^{-1} R$ such that for each $a \in J$, there exists a non-zero element $y \in S^{-1} M$ with $a \cdot y=0$.
(When $M=R / I$ for an ideal I in $R, \operatorname{Ass}_{d}(R / I)$ is classically known as the set of prime divisors of I, as defined by Nagata.)
(b) Define $\operatorname{Ass}_{w}(M)$ to be the set consisting of all elements $\wp \in \operatorname{Spec}(R)$ such that there exists an element $x \in M$ such that \wp is a minimal element in the family of all prime ideals containing $\operatorname{Ann}_{R}(x)$.
(The definition of $\operatorname{Ass}_{w}(M)$ is due to Bourbaki.)
(1) Show that $M=(0)$ is equivalent to $\operatorname{Ass}_{w}(M)=\emptyset$ and also equivalent to $\operatorname{Ass}_{d}(M)=\emptyset$.
(2) Suppose that $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is a short exact sequence of R-modules. Do the inclusions

$$
\operatorname{Ass}_{w}\left(M^{\prime}\right) \subseteq \operatorname{Ass}_{w}(M) \subseteq \operatorname{Ass}_{w}\left(M^{\prime}\right) \cup \operatorname{Ass}_{w}\left(M^{\prime \prime}\right)
$$

hold? Do the inclusions

$$
\operatorname{Ass}_{d}\left(M^{\prime}\right) \subseteq \operatorname{Ass}_{d}(M) \subseteq \operatorname{Ass}_{d}\left(M^{\prime}\right) \cup \operatorname{Ass}_{d}\left(M^{\prime \prime}\right)
$$

hold?
(3) Show that $\operatorname{Ass}_{w}(M) \subseteq \operatorname{Ass}_{d}(M)$.
(4)* Does the equality $\operatorname{Ass}_{w}(M) \subseteq \operatorname{Ass}_{d}(M)$ hold for every module M over a commutative ring R ?
(5) Suppose that R is Noetherian. Show that

$$
\operatorname{Ass}_{w}(M)=\operatorname{Ass}(M)=\operatorname{Ass}_{d}(M)
$$

3. Let R be a commutative ring. Let $a \in R$ be an element of R which a not a zero-divisor of R. Let b be an element of R, so that we have an element $\frac{b}{a}$ in the total ring of fractions $\operatorname{frac}(R)$ of R. Suppose that $\frac{b}{a} \notin R$. Show that either there exist an embedded prime in $\operatorname{Ass}(R / a R)$, or there exists a minimal element \wp in the family of all prime ideals containing I such that $a \cdot R_{\wp} \nsubseteq b \cdot R_{\wp}$.
4. Let P be a prime ideal of a commutative ring R. Is it true that P^{2} is a P-primary ideal in R ? Either give a proof or give a counter-example.

5. (An example of a Noetherian ring with infinite Krull dimension)

Let k be a field. Let $\left(J_{i}\right)_{i \in \mathbb{N}}$ be a family of finite subsets. We assume that the cardinalities of the sets J_{i} are unbounded.

For each $i \in \mathbb{N}$, introduce a finite set of variables $\left(x_{i, j}\right)_{j \in J_{i}}$, and let $R^{\prime}:=k\left[x_{i, j}\right]_{i \in \mathbb{N}, j \in J_{i}}$ be the polynomial ring in the infinitely many variables $x_{i, j}$. For each $i \in \mathbb{N}$, let $P_{i}=\sum_{j \in J_{i}} x_{i, j} R^{\prime}$ be the ideal of R^{\prime} generated by the elements $\left(x_{i, j}\right)_{j \in J_{i}}$. Clearly P_{i} is a prime ideal for each i.

Let $S:=R^{\prime} \backslash \cup_{i \in \mathbb{N}} P_{i}$ be the complement of the union of the prime ideals P_{i}. Let $R:=S^{-1} R$ be the localization of R^{\prime} with respect to S. For each $i \in \mathbb{N}$, let $\mathfrak{m}_{i}:=P_{i} R$ be the maximal ideal of R corresponding to the prime ideal P_{i}. Clearly the height of \mathfrak{m}_{i} is equal to $\operatorname{card}\left(J_{i}\right)$ for each i, hence the Krull dimension of R is ∞.
(a) Define subrings R_{n}^{\prime} of R^{\prime} in finitely variables by

$$
R_{n}^{\prime}:=k\left[x_{i, j}\right]_{i \leq n, j \in J_{i}},
$$

so that we have $R_{0}^{\prime} \subseteq R_{1}^{\prime} \subseteq R_{2}^{\prime} \subseteq \cdots$ and $R=\cup_{n \in \mathbb{N}} R_{n}^{\prime}$. Show that $P_{i} \cap R_{n}^{\prime}=0$ if $i>n$. In particular for every non-zero element $a \in R^{\prime}$, there exists a natural number N such that $a \notin P_{i}$ for all $i \geq N$.
(b) Show that if an ideal I of R^{\prime} is contained in $\cup_{i \in \mathbb{N}} P_{i}$, then there exists $i_{0} \in \mathbb{N}$ such that $I \subseteq P_{i_{0}}$. Deduce that every maximal ideal of R is equal to \mathfrak{m}_{i} for some $i \in \mathbb{N}$.
(Hint: The finiteness statement (a) may be useful.)
(c) Show that the local ring $R_{\mathfrak{m}_{i}}$ is Noetherian for every $i \in \mathbb{N}$.
(d) Show that the Krull dimension of R is equal to $\max \left(\operatorname{card}\left(J_{i}\right) \mid i \in \mathbb{N}\right)$.
(e) Show that R is a Noetherian ring.
6. Let k be a field. In this problem we discuss how to show that the transcendance degree of $k((x))$ over k is infinite.
(a) Let κ be the prime subfield of k. Thus $\kappa \cong \mathbb{Q}$ if $\operatorname{char}(k)=0$, and $\kappa \cong \mathbb{F}_{p}$ if $\operatorname{char}(k)=p>0$.
(a1) Show that the transcendence degree of $\kappa((x))$ over κ is equal to $\operatorname{card}(\mathbb{R})$.
(Hint: What is the cardinality of $\kappa((x))$? Relate the cardinality of $\kappa((x))$ to the cardinality of the algebraic closure of $\kappa((x))$ and also to the transcendance degree of $\kappa((x))$ over κ.)
(a2) Show that the natural ring homomorphism $k \otimes_{\mathcal{K}} \kappa((x)) \rightarrow k((x))$ is injective.
(a2) Show that the transcendence degree of $k \otimes_{\kappa} \kappa((x))$ over k equal to $\operatorname{card}(\mathbb{R})$. In particular the transcendance degree of $k((x))$ over k is infinite.
(b) Let p be a prime number. Recall that we have a \mathbb{Z}-valued p-adic valuation on the fraction field of $\mathbb{Z}_{(p)}[[x]]$.
(b1) Suppose that and $f(x)$ is an element of $\mathbb{Q}[[x]]$ which is integral over $\mathbb{Z}_{(p)}[[x]]$. Show that $f(x) \in \mathbb{Z}_{(p)}[x]$.
(b2) Suppose that $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ is an element of $\mathbb{Q}((x))$ which is algebraic over the fraction field of $\mathbb{Z}_{(p)}[[x]]$. Show that there exist $c, d \in \mathbb{N}$ such that $\operatorname{ord}_{p}\left(a_{n}\right) \geq-c n-d$ for all $n \in \mathbb{N}$.
(b3) Construct an infinite sequence $f_{i}(x), i \in \mathbb{N}$ of elements of $\mathbb{Q}[[x]]$ which are algebraically independent over \mathbb{Q}.
7. Let k be a field, and let $k[[x, y, z]]$ be the ring of formal power series in three variables over k. Let \mathfrak{P} be the prime ideal $x k[[x, y, z]]+y k[[x, y, z]]$ of $k[[x, y, z]]$, let R be the localization of $k[[x, y, z]]$ at \mathfrak{P}, and let \hat{R} be the formal completion of the Noetherian local ring R. Note that R is a two-dimensional regular local ring, therefore it is a unique factorization domain. Let \mathfrak{p} be the principal ideal of \hat{R} generated by the element

$$
x-\sum_{n \geq 1} \frac{1}{z^{n}} y^{n} \in \hat{R} .
$$

(a) Show that \hat{R} is isomorphic to $k((z))[[x, y]]$.
(b) Show that \mathfrak{p} is a prime ideal of \hat{R} of height 1 .
(c) Determine whether $\mathfrak{p} \cap R$ is equal to (0) or is a non-zero prime ideal of R.
(Note that $\mathfrak{p} \cap R$ has height at most 1 , because $R \rightarrow \hat{R}$ is faithfully flat. So if $\mathfrak{p} \cap R \neq(0)$, then it is a principle ideal generated by a non-zero irreducible element of R.)

