Math 626 Exercise Set 3

1. Let *k* be a field, and let $k(x_1, ..., x_m), k(y_1, ..., y_n)$ be polynomial algebras over *k* in *m* and *n* variables respectively. Determine the Krull dimension of $k(x_1, ..., x_m) \otimes_k k(y_1, ..., y_n)$.

2. (This is a lemme for problem 3 below.) Let *A* be a local domain with fraction field *M*. Let *L* be a subfield of *M*. Let $B := A \cap L$.

- (i) Show that *A* is a local domain.
- (ii) Show that for any non-zero element $b \in B$, we have $bA \cap B = bB$.
- (iii) Suppose that *A* is a discrete valuation ring whose maximal ideal is equal to πA for an element $\pi \in L$. Show that $B := A \cap L$ is a discrete valuation ring with maximal ideal πB .

3. (This problem gives a method to construct two-dimensional Noetherian regular local rings.)

Let *D* be a discrete valuation ring with fraction field *K*. Let *x* be a variable, and let *L* be a subfield of the fraction field $\operatorname{frac}(D[[x]])$ of D[[x]] which contains K(x). Let π be a generator of the maximal ideal of *D*. Let $B := L \cap D[[x]]$.

- (a) Show that *B* is a local ring whose maximal ideal is generated by π and *x*.
- (b) Suppose that \wp is a prime ideal of *B* such that $\pi \notin \wp$. Let *b* be an element of \wp such that $\wp + \pi B = bB + \pi B$.
 - (b1) Show that $\wp \subseteq bB + \pi^n B$ for every $n \ge \mathbb{N}$.
 - (b2) Show that $\wp \subset bD[[x]] \cap B = bB$.
- (c) Show that *B* is a Noetherian two-dimensional regular local ring whose formal completion is (isomorphic to) D[[x]].

4. Let *k* be a field, and let $t = \sum_{i \in \mathbb{N}} c_i x^i$ be an element of k[[x]] which is transcendental over k(x). For each $n \in \mathbb{N}$, define the *n*-th tail of *t* by

$$t_n = x^{-n} (t - \sum_{i \le n} c_i x_i) = \sum_{i \ge n+1} c_i x^{i-n}.$$

Note that $t_n = c_{n+1}x + xt_{n+1}$ for all $n \ge 0$. Define a *k*-subalgebra *R* of k[[x]] by $R := k[x, t_n : n \in \mathbb{N}]$.

- (a) Show that *R* is a discrete valuation ring.
- (b) Show that $k(x,t) \cap k[[x]]$ is a discrete valuation ring.
- (c) Determine whether *R* is equal to $k(x,t) \cap k[[x]]$.

5. Let (R, \mathfrak{m}) be a local ring such that the maximal idel \mathfrak{m} is finitely generated. Show that R is a Noetherian ring if and only if $\bigcap_{n \in \mathbb{N}} \mathfrak{m}^n = 0$ and every finitely generated ideal of R is closed in the \mathfrak{m} -adic topology.

6. Let *k* be a field. Let $t = \sum_{i \in \mathbb{N}} c_i x^i$ be an element of k[[x]] which is transcendental over k(x). For each $n \in \mathbb{N}$, let t_n be the *n*-th tail of *t* as defined in problem 4. Let $R := k(x, y, t) \cap k[x]_{(x)}[[y]]$, where $k[x]_{(x)}$ is the ring of all power series in *y* with coefficients in the local ring $k[x]_{xk[x]}$. Note that *R* is a two-dimensional Noetherian regular local ring according to problem 3. Define a subring *B* of *R* as follows.

• For each $n \in \mathbb{N}$, let $f_n := yt_n$. Note that $f_n = c_{n+1}xy + xf_{n+1}$ for all $n \ge 0$.

Define an increasing sequence of subrings B_n of $R \subseteq k(x, y, t)$ by

$$B_n := k[x, y, f_n]_{(x, y, f_n)},$$

the localization of $k[x, y, f_n]$ at the maximal ideal generated by x, y and all f_n 's. Note that B_n is a three-dimensional Noetherian regular local ring for each n.

• Define a *k*-subalgebra *B* of $k(x, y, f_n) = k(x, y, t_n)$ by

$$B:=\cup_{n\in\mathbb{N}}B_n.$$

- (a) Let n = xB + yB. Show that n is a maximal ideal of B and B is a local ring.
- (b) Let *P* be the ideal of *B* generated by *y* and all f_n 's, i.e.

$$P := yB + \sum_{n \ge 0} f_n B$$

Show that $P = yA \cap B = \bigcup_{n \ge 0} (P \cap B_n) = \bigcup_{n \ge 0} (yB_n + f_nB_n).$

- (c) Show that $Q \subseteq \mathfrak{n}$, and Q is a prime ideal of B.
- (d) Show that *yB* is a prime ideal of *B* and *yB* $\leq Q$.
- (e) Conclude from (b)–(d) that *B* is not Noetherian.
- (f) Determine whether the principal ideal yB is closed in the n-adic topology of B.
- $(g)^*$ Show that the Krull dimension of *B* is 3.