Math 626 Exercise Set 4

1. Let *B* be a commutative ring and let *A* be a subring of *B* such that *B* is integral over *A*. Let *J* be an ideal of *B* and let $I := J \cap B$.

- (a) Show that $\dim(A/I) = \dim(B/J)$.
- (b) Show that $ht(J) \leq ht(I)$ and

A note on terminology: $\dim(A/I)$ is also called *coheight* of *I*. Recall also that the height of an ideal *I* in a commutative ring *R* is defined as

$$ht(I) = \min\{ht(P) \mid P \in \operatorname{Spec}(A), P \supseteq I\}.$$

- (c) Either prove that ht(*J*) = ht(*I*) under the given assumptions, or give an explicit example in which ht(*J*) < ht(*I*).
- (d) Show that $\operatorname{alt}(J) \leq \operatorname{alt}(I)$.

Note: The *altitude* of an ideal *I* is

 $\operatorname{alt}(I) := \sup \{\operatorname{ht}(P) \mid P \text{ is a minimal element in the family of prime ideals containing } I\}.$

(e) Either prove that alt(J) = alt(I) under the given assumptions, or give an explicit example in which alt(J) < alt(I).

2. Let *k* be a field, let *A* be a finitely generated *k*-algebra, and let $I_1 \subseteq \cdots \subseteq I_r$ be a chain of ideals of *A*. Suppose that y_1, \ldots, y_d are elements of *A* which are algebraically independent over *k* with the following properties.

- *A* is integral over the polynomial ring $k[y_1, \ldots, y_d]$.
- There exist natural numbers $h_1 \le h_2 \le \dots \le h_r \le d$ such that $I_i \cap k[y_1, \dots, y_d] = y_1k[y_1, \dots, y_d] + \dots + y_{h_i}k[y_1, \dots, y_d]$ for $i = 1, \dots, r$.

Recall that the existence of elements y_1, \ldots, y_d with the above properties is guaranteed by the Noether normalization theorem.

- (a) Suppose that A is an integral domain. Show that $ht(I_i) = h_i$ for i = 1, ..., d.
- (b) Does the conclusion of (a) hold without the assumption that *A* is an integral domain? Either prove the more general statement, or produce a counter-example.

Note: Part (b) comes from a minor error in Serre's Algèbre Local Multiplicités, III-24, Cor. 1.

3. Let (A, \mathfrak{m}) be a Noetherian local ring, and let $x_1, \ldots, x_d \in \mathfrak{m}$ be a system of parameters of A, where $d = \dim(A)$. Let $I := x_1A + \cdots + x_dA$.

(a) Show that we have a natural ring isomorphism

 $\alpha: (A/\mathfrak{m})[X_1,\ldots,X_d] \xrightarrow{\sim} \left(\oplus_{n\geq 0} I^n/I^{n+1} \right) \otimes_{A/I} (A/\mathfrak{m})$

from the polynomial ring $(A/\mathfrak{m})[X_1,\ldots,X_d]$ to $\bigoplus_{n\geq 0}(I^n/\mathfrak{m}I^n)$ such that $\alpha(X_i) = x_i + \mathfrak{m}I$ for $i = 1,\ldots,d$.

(b) Suppose that A contains a subring k which is a field. Show that x_1, \ldots, x_d are algebraically independent over k.

4. Let *A* be an integral domain (not necessarily Noetherian), *A* contains a subring *k* which is a field, and the transcendental degree of the fraction field *K* of *A* over *k* is $r, r \in \mathbb{N}$. Show that dim(*A*) $\leq r$. (Hint: Use problem 2.)

5. Let $A = \bigoplus_{i \ge 0} A_i$ be a graded ring, and let $M = \bigoplus_{j \ge 0} M_j$ be a graded *A*-module. Let $a = \sum_{0 \le i \le d} a_i \in A$, $a_i \in A_i$ for all *i* be an element of *A*. $x = \sum_{0 \le j \le t} x_j$ be a *non-zero* element of *M*, $x_j \in M_j$ for all *j*. Suppose that $a \cdot x = 0$. Show that there exists a non-zero homogeneous element $y \in \sum_j Ax_j$ such that $a_j \cdot y = 0$ for all *j*.

[Hint: Induction on $h := \operatorname{card} \{ j \in \mathbb{N} \mid x_j \neq 0 \}$. Let $r := \min\{n \in \mathbb{N} \mid a_i \cdot x = 0 \ \forall i \ge n+1 \}$. Consider the element $a_r \cdot x$ of M.]

6. Let (A, \mathfrak{m}) be a local ring. Prove that A is Noetherian if and only if the following conditions hold:

- (i) The ideal m is finitely generated.
- (ii) $\cap_{n\in\mathbb{N}}\mathfrak{m}^n = (0).$
- (iii) Every finitely generated ideal I of A is closed in the m-adic topology of A.

(Hint: Show first that the m-adic completion \hat{A} of A is finitely generated. Given any ideal I of A, let $J \subseteq I$ be a finitely generated ideal of A such that $J\hat{A} = I\hat{A}$, and apply condition (iii).)

7. Let *k* be a field, and let *L* be an algebraic extension field of *k* such that $[L:k] = \infty$. Let $k[[x_1, \ldots, x_m]]$ be the formal power series ring over *k* in *n*-variables x_1, \ldots, x_m .

- (1) Show that for any subextension K of L/k with $[K:k] < \infty$, $K \otimes_k k[[x_1, \dots, x_m]]$ is isomorphic to $K[[x_1, \dots, x_m]]$.
- (2) Show that the natural ring homomorphism $L \otimes_k k[[x_1, \dots, x_m]] \to L[[x_1, \dots, x_m]]$ is injective and identifies $L \otimes_k k[[x_1, \dots, x_m]]$ with the subring consisting of all formal power series

$$f(\underline{x}) = \sum_{\underline{n} \in \mathbb{N}^m} a_{\underline{n}} \underline{x}^{\underline{n}}$$

in $L[[x_1,...,x_m]]$ such that the subfield $k(a_{\underline{n}}:\underline{n}\in\mathbb{N}^m)$ generated by all coefficients of $f(\underline{x})$ is a finite extension field of k. Here $\underline{x}^{\underline{n}}$ denotes the monomial $x_1^{n_1}\cdots x_m^{n_m}$ for each element $\underline{n} = (n_1,...,n_m) \in \mathbb{N}^m$.

- (3) Show that $L \otimes_k k[[x_1, \ldots, x_m]]$ is a local ring.
- (4) Show that $L \otimes_k k[[x_1, \dots, x_m]]$ is a Noetherian local ring. (Hint: Use problem 6.)

8. Let *k* be a field, and let *K* and *L* be finitely generated extension field of *k*.

- (a) Show that $K \otimes_k L$ is a Noetherian ring.
- (b) Show that $\dim(K \otimes_k L) = \min(\operatorname{tr.} \deg(K/k), \operatorname{tr.} \deg(L/k))$.
- (c) Show that $K \otimes_k L$ is not Noetherian if tr. deg $(K/k) = \infty$ and tr. deg $(L/k) = \infty$.

9. Let k be a field, L be an extension field of k. Consider the power series ring $k[[x_1, ..., x_m]]$ over k in *m*-variables, $m \ge 1$.

- (i) If *L* is a finitely generated extension field of *k*, then $L \otimes_k k[[x_1, \ldots, x_m]]$ is Noetherian.
- (ii) Give an example of a field extension L/k in which the ring $L \otimes_k k[[x_1, \ldots, x_m]]$ is not Noetherian.