Math 626 Exercise Set 6

- 1. Let *R* be a commutative ring with 1, and let R[x] be the polynomial ring in one variable over *R*.
 - (a) Let $g(x) \in R[x]$ be a zero divisor in R[x]. Show that there exists an element $b \neq 0$ in R such that $b \cdot g(x) = 0$.

(Hint: Write $g = \sum_i a_i x^i$, and let $h = \sum_{j \le t} c_j x^j \ne 0$ be an element of R[x] such that $c_t \ne 0$ and $g \cdot h = 0$. Induction on $t = \deg(h)$, and consider the the smallest integer *s* such that $a_j \cdot c_t = 0$ for all $j \ge s + 1$.)

- (b) Extend the argument used in (a) to prove the following generalization of (a): Let g₁,...,g_m be element in the polynomial ring R[x₁,...,x_n] such that there exists an element h ≠ 0 in R[x₁,...,x_n] such that g_i · h = 0 for all i = 1,...,m. Then there exists an element b ≠ 0 in R = [x₁,...,x_n] such that b · g_i = 0 for all i = 1,...,m.
- (c) Let $S_{R[x]}$ be the set consisting of all elements $f \in R[x]$ such that the ideal of R generated by all coefficients of f is equal to R. Show that S is multiplicatively closed and does not contain any zero divisor of R[x].
- (d) Let R(x) be the localization of R[x] with respect to $S_{R[x]}$.
 - (i) Show that the natural homomorphism $R[x] \rightarrow R(x)$ is injective.
 - (ii) Show that for every prime ideal \mathfrak{p} of R, $\mathfrak{p}R(x)$ is a prime ideal of R(x). Moreover $\mathfrak{p}R(x)$ is a maximal ideal of R(x) if \mathfrak{p} is a maximal ideal of R.
 - (iii) Show that every maximal ideal of R(x) is equal to $\mathfrak{m}R(x)$ for some maximal ideal \mathfrak{m} of R.
- (e) Iterating the construction of R(x) from R, we get a ring $R(x_1)(x_2)\cdots(x_n)$ from n variables x_1,\ldots,x_n . Show that $R(x_1)(x_2)\cdots(x_n)$ is naturally isomorphic to the localization of $R[x_1,\ldots,x_n]$ with respect to the subset $S_{R[x_1,\ldots,x_n]}$ consisting of all elements $f \in R[x_1,\ldots,x_n]$ such that the ideal in R generated by all coefficients of f is R.

2. Let (A, \mathfrak{n}) be a one-dimensional Noetherian semi-local domain. Let \hat{A} be the \mathfrak{n} -adic completion of A, and let A_{nm} be the normalization of A in the fraction field of A.

- (a) Suppose that A_{nm} is a finite A-module. Show that \hat{A} is reduced.
- (b) Suppose that \hat{A} is reduced. Show that A_{nm} is a finite A-module.

(Hint: For part (b), you can use the fact that for every complete local domain *B*, the normalization of *B* in the fraction field of *B* is a finite *B*-module. This fact is usually proved using the structure theorem of separated complete local rings.)

3. Let *R* be a commutative ring of characteristic *p*, i.e. $p \cdot 1 = 0$ in *R*. Let W(R) be the ring of *p*-adic Witt vectors with entries in *R*.

- (a) Show that W(R) is an integral domain if and only if R is an integral domain.
- (b) Show that W(R) is reduced if and only if R is reduced.
- (c) Recall that a commutative ring is said to be *perfect* if and only the absolute Frobenius map $a \mapsto a^p$ induces a ring automorphism of *R*. Prove that *R* is perfect if and only if W(R)/pW(R) is reduced.
- (d) Show that the topology of W(R) defined by the filtration $(V^n W(R))_{n \in \mathbb{N}}$ coincides with the *p*-adic filtration of W(R) if and only if *R* is perfect.

4. Let *R* be a commutative ring and let $\xi \in R$ be an element of *R* satisfying $\sum_{j=0}^{p-1} \xi^i = 0$, where *p* is a prime number. Let W(R) be the ring of *p*-adic Witt vectors with entries in *R*. Show that the equality

$$V(\mathbf{1}) = \sum_{i=0}^{p-1} \tau_R(\xi^i)$$

holds in W(R). Here 1 denotes the element $(1,0,0,0,...) \in W(R)$, and $\tau_R : R \to W(R)$ is the map $a \mapsto (a,0,0,0,...)$.

5. Let k be a field of characteristic p > 0, and let W(k) be the ring of p-adic Witt vectors with entries in k. Show that W(R) is Noetherian if and only if k is perfect.

6. Let *p* be a prime number. For every commutative ring *R* we have two ring endomorphisms of W(W(R)), $W(F_R)$ and $F_{W(R)}$. The former is the result of applying the *p*-adic Witt functor to the ring endomorphism $F_R : W(R) \to W(R)$. The latter is the functorial endomorphism *F* of the Witt functor evaluated at the ring W(R). Determine whether $W(F_R) = F_{W(R)}$ for every commutative ring *R*.

7. Let *p* be a prime number.

(a) Show that for every commutative ring A there exists a unique ring homomorphism

$$\Delta_A: W(A) \to W(W(A)),$$

functorial in A, such that

$$\Delta_A \circ F_A = F_{W(A)} \circ \Delta_A$$
 and $\Phi_{0,W(A)} \circ \Delta_A = \mathrm{Id}_{W(A)}$.

Here $F_A : W(A) \to W(A)$ and $F_{W(A)} : W(W(A)) \to W(W(A))$ are the functorial ring endomorphisms of the *p*-adic Witt functor evaluated at *A* and W(A) respectively. Moreover

$$\Phi_{n,W(A)} \circ \Delta_A = F_A^n \quad \forall n \in \mathbb{N}.$$

(Hint: Define first Δ_A for $A = \mathbb{Z}[X_0, X_1, \dots, X_i, \dots]$.)

(b) Prove that the two ring homomorphisms

$$W(\Delta_A) \circ \Delta_A, \Delta_{W(A)} \circ \Delta_A : W(A) \longrightarrow W(W(W(A)))$$

are equal, for all commutative rings A.

(c) Prove that the two maps

$$\Delta_A \circ \tau_A, \, \tau_{W(A)} \circ \tau_A : A \longrightarrow W(W(A))$$

are equal.

(d) Prove that the two maps

$$\Delta_A \circ V_A, V_{W(A)} \circ \Delta_A W(A) \longrightarrow W(W(A))$$

are equal. In particular the map $\Delta_A : W(A) \to W(W(A))$ is continuous with respect to the *V*-adic topologies on W(A) and W(W(A)) respectively.