Math 626 Exercise Set 7

The goal of this set of problems is to offer another look of Cohen p-rings from a slightly different perspective which is closer to the spirit of Witt vectors, i.e. doing arithmetic on p-rings using rings of characteristic p.

In all problems below, p denotes a prime number.

1. Let X, Y be two variables.
(a) Show that there exists a unique sequence of polynomials $R_{n}(X, Y) \in \mathbb{Z}[X, Y], n \in \mathbb{N}$ such that

$$
X^{p^{n}}+Y^{p^{n}}=\sum_{i=0}^{n} p^{i} R_{i}(X, Y)^{p^{n-i}} \quad \forall i \in \mathbb{N} .
$$

(b) If $p>2$, show that

$$
R_{n}(X,-X)=0 \quad \forall n \in \mathbb{N}
$$

If $p=2$, show that

$$
R_{1}(X, Y)=-X Y
$$

and

$$
R_{n}(X, Y) \equiv 0(\bmod 2) \quad \forall n \geq 2 .
$$

2. Let A be a commutative ring and let $\left(J_{n}\right)_{\mathbb{N}}$ be a decreasing sequence of ideals in A such that $J_{0}=A$ and $p J_{n}+J_{n}^{p} \subseteq J_{n+1}$ for all $n \in \mathbb{N}$. Let $m, n \in \mathbb{N}, m \geq 1$, and $a_{0}, a_{1}, \ldots, a_{n}, b_{0}, b_{1}, \ldots, b_{n} \in A$.
(a) Suppose that $a_{i} \equiv b_{i}\left(\bmod J_{m}\right)$ for all $i=0,1, \ldots, n$. Show that

$$
\Phi_{i}\left(a_{0}, \ldots, a_{i}\right) \equiv \Phi\left(b_{0}, \ldots, b_{i}\right)\left(\bmod J_{m+i}\right) \quad \forall 0 \leq i \leq n
$$

(b) Suppose that multiplication by p induces an injective additive endomorphism of $\oplus_{n} J_{n} / J_{n+1}$. Suppose that $\Phi_{i}\left(a_{0}, \ldots, a_{i}\right) \equiv \Phi\left(b_{0}, \ldots, b_{i}\right)\left(\bmod J_{m+i}\right)$ for $i=0,1, \ldots, n$. Show that

$$
a_{i} \equiv b_{i}\left(\bmod J_{m}\right) \quad \text { for } i=0,1, \ldots, n
$$

REmARKS.

(i) The statements (a) and (b) above have been shown in class in the case when $J_{n}=p^{n} A$ for all $n \in \mathbb{N}$.
(ii) Note that $p \cdot 1_{A} \in J_{1}$, but we are not assuming that $J_{n} \cdot J_{m} \subseteq J_{n+m}$ for all $m, n \in \mathbb{N}$.
(iii) In the literature sometimes the normalization $J_{-1}=A$ is used.
3. Let A be a commutative ring and let $\left(J_{n}\right)_{\mathbb{N}}$ be a decreasing sequence of ideals in A such that $J_{0}=A$ and $p J_{n}+J_{n}^{p} \subseteq J_{n+1}$ for all $n \in \mathbb{N}$ as in problem 2 above.
(a) Let $i, n \in \mathbb{N}$. Show that the map $x \mapsto p^{i} x^{p^{n-i}}$ from A to A induces a map

$$
\rho_{n, i}^{A}: A / J_{1} \rightarrow A / J_{n+1}
$$

if $i \leq n$. Define $\rho_{n, i}^{A}$ to be the zero map from A / J_{1} to A_{n+1} if $i \geq n+1$.
(b) Let $i, j \in \mathbb{N}$. Show that

$$
\rho_{n, i}^{A}(\bar{x} a)=x^{p-i} \rho_{n, i}^{A}(a) \quad \forall x \in A / J_{n+1}, \forall a \in A / J_{1}
$$

and

$$
\rho_{n, i}^{A}(a) \cdot \rho_{n, j}^{A}(b)=\rho_{n, i+j}^{A}\left(a^{p^{j}} b^{p^{i}}\right) \quad \forall a, b \in A / J_{1}
$$

(c) Let $\left(R_{n}(X, Y)\right)_{n \in \mathbb{N}}$ be as in problem 1 . Show that

$$
\rho_{n, i}^{A}(a)+\rho_{n, i}^{A}(b)=\sum_{m=0}^{n-i} \rho_{n, i+m}^{A}\left(R_{m}(a, b)\right) \quad \forall a, b \in A / J_{1}
$$

4. Let C be a Cohen p-ring with residue field k and length $n+1$. Let $\pi: C \rightarrow k$ be the canonical surjection. Let $J_{m}=p^{m} C$ for each $m \in \mathbb{N}$. Let $\left(s_{\lambda}\right)_{\lambda \in \Lambda}$ be a family of elements of A such that $\left(\pi\left(s_{\lambda}\right)\right)_{\lambda \in \Lambda}$ form a p-basis of k. Let M_{n} be the set of all multi-indices $\mathbf{m}=\left(m_{\lambda}\right)_{\lambda \in \Lambda}$ with finite support such that $0 \leq m_{\lambda}<p^{n}$ for each $\lambda \in \Lambda$.
(a) Show that for every element $x \in C$, there exists a uniqe family $\left(a_{i, \mathbf{m}}\right)_{0 \leq i \leq n, \mathbf{m} \in M_{n}}$ of elements in $k=C / J_{1}$ such that

$$
x=\sum_{i=0}^{n} \sum_{\mathbf{m} \in M_{n}} \rho_{n, i}^{C}\left(a_{i, \mathbf{m}}\right) \mathbf{s}^{\mathbf{m}}
$$

where $\mathbf{s}^{\mathbf{m}}:=\prod_{\lambda \in \Lambda} s_{\lambda} m_{\lambda}$.
(b) Use (a) to give a presentation of the ring C in terms of the residue field k and a family of variables $\left(X_{\lambda}\right)_{\lambda \in \Lambda}$.

