Math 626 Exercise Set 8

1. Let n is a positive integer, and let $S \subset \mathbb{N}^{n}$ be a subset of \mathbb{N}^{n} such that $S+\mathbb{N}^{n}=S$.
(i) Show that there exists a finite subset $V \subseteq S$ such that $S=V+\mathbb{N}^{n}:=\cup_{v \in V}\left(v+\mathbb{N}^{n}\right)$. Such a subset S is said to be a set of generators of S
(ii) A subset $T \subseteq S$ is said to be a minimal set of generators of S if $S=T+\mathbb{N}^{n}$ and $(T \backslash\{t\})+\mathbb{N}^{n} \neq S$ for every $t \in T$. Show that S has a unique minimal set of generators, i.e. there exist a minimal set of generators T, and every set of generators of S contains T.
(iii) Let k be a field. Formulate two statements on \mathbb{N}^{n}-graded ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ which correspond to statements (i) and (ii). (These statements are equivalent to (i) and (ii).)
2. Let $<_{1},<_{2}$ be two term orders for $k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field. Let $\left(g_{1}, \ldots, g_{t}\right)$ be a Gröbner basis of an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ with respect to $<_{1}$. Suppose that $l m_{<_{1}}\left(g_{i}\right)=l m_{<_{2}}\left(g_{i}\right)$ for $i=1, \ldots, t$. Show that $\left(g_{1}, \ldots, g_{t}\right)$ is a Gröbner basis of I with respect to $<_{1}$.
3. Explain how to compute a Gröbner basis of an ideal of $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ with generators f_{1}, \ldots, f_{s} by "reduction modulo p_{i} " for a finite number of prime numbers $p_{1}, p_{2}, \ldots, p_{r}$ and passing to $\mathbb{F}_{p_{i}}\left[x_{1}, \ldots, x_{n}\right]$.
4. Let $\alpha: \mathbb{Q}[u, v] \rightarrow \mathbb{Q}[x]$ be the \mathbb{Q}-algebra homomorphism such that

$$
\alpha(u)=x^{4}+x^{2}+x \quad \text { and } \quad \alpha(v)=x^{3}-x .
$$

Show that α is not surjective.
5. Let $\beta: \mathbb{Q}[u, v] \rightarrow \mathbb{Q}[x]$ be the \mathbb{Q}-algebra homomorphism such that

$$
\beta(u)=x^{3} \quad \text { and } \quad \beta(v)=x^{5} .
$$

Determine $\operatorname{Ker}(\beta)$ by giving an explicit set of generators of the ideal $\operatorname{Ker}(\beta)$.
6. Recall that for polynomials $f(x)=a_{0} x^{l}+a_{1} x^{l-1}+\cdots+a_{l}$ and $g(x)=b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{m}$ of degrees l and m respectively with $l, m>0$, the $\operatorname{Sylvester~matrix~} \operatorname{Syl}(f, g)$ is the $(l+m) \times(l \times m)$ matrix $\left(c_{i, j}\right)_{1 \leq i, j \leq l+m}$ with

$$
c_{i j}= \begin{cases}a_{i-j} & \text { if } 1 \leq j \leq m, j \leq i \leq j+l, \\ b_{m+i-j} & \text { if } m+1 \leq j \leq l+m, j-m \leq i \leq j, \\ 0 & \text { otherwise }\end{cases}
$$

The resultant $\operatorname{Res}(f, g)$ of f, g is defined by

$$
\operatorname{Res}(f, g)=\operatorname{det}(\operatorname{Syl}(f, g))
$$

(a) Suppose that k is a field and $f(x), g(x)$ are polynomials in $k[x]$ of degrees $l, m>0$. Show that there exist polynomials $s(x), t(x) \in k[x]$ such that $s f+t g=\operatorname{Res}(f, g)$.
(b) More generally, let $\mathbb{Z}\left[y_{1}, \ldots, y_{r}\right]$ be a polynomial ring in r variables y_{1}, \ldots, y_{r}, and let $f, g \in$ $\mathbb{Z}\left[x, y_{1}, \ldots, y_{r}\right]$ with $\operatorname{deg}_{x}(f)=l>0, \operatorname{deg}_{x}(g)=m>0$. Show that there exist $s, t \in \mathbb{Z}\left[y_{1}, \ldots, y_{r}\right]$ such that $s f+t g=\operatorname{Res}(f, g) \in \mathbb{Z}\left[y_{1}, \ldots, y_{r}\right]$. In particular

$$
\mathrm{f}, \mathrm{~g} \in\left(f \mathbb{Z}\left[x, y_{1}, \ldots, y_{r}\right]+g \mathbb{Z}\left[x, y_{1}, \ldots, y_{r}\right]\right) \cap \mathbb{Z}\left[y_{1}, \ldots, y_{r}\right] .
$$

