Math 626 Exercise Set 8

- 1. Let *n* is a positive integer, and let $S \subset \mathbb{N}^n$ be a subset of \mathbb{N}^n such that $S + \mathbb{N}^n = S$.
 - (i) Show that there exists a *finite* subset $V \subseteq S$ such that $S = V + \mathbb{N}^n := \bigcup_{v \in V} (v + \mathbb{N}^n)$. Such a subset S is said to be a set of generators of S
 - (ii) A subset $T \subseteq S$ is said to be a *minimal* set of generators of S if $S = T + \mathbb{N}^n$ and $(T \setminus \{t\}) + \mathbb{N}^n \neq S$ for every $t \in T$. Show that S has a unique minimal set of generators, i.e. there exist a minimal set of generators T, and every set of generators of S contains T.
- (iii) Let k be a field. Formulate two statements on \mathbb{N}^n -graded ideals in $k[x_1, \ldots, x_n]$ which correspond to statements (i) and (ii). (These statements are equivalent to (i) and (ii).)

2. Let $<_1, <_2$ be two term orders for $k[x_1, \ldots, x_n]$, where k is a field. Let (g_1, \ldots, g_t) be a Gröbner basis of an ideal $I \subset k[x_1, \ldots, x_n]$ with respect to $<_1$. Suppose that $lm_{<_1}(g_i) = lm_{<_2}(g_i)$ for $i = 1, \ldots, t$. Show that (g_1, \ldots, g_t) is a Gröbner basis of I with respect to $<_1$.

3. Explain how to compute a Gröbner basis of an ideal of $\mathbb{Q}[x_1, \ldots, x_n]$ with generators f_1, \ldots, f_s by "reduction modulo p_i " for a finite number of prime numbers p_1, p_2, \ldots, p_r and passing to $\mathbb{F}_{p_i}[x_1, \ldots, x_n]$.

4. Let $\alpha : \mathbb{Q}[u, v] \to \mathbb{Q}[x]$ be the \mathbb{Q} -algebra homomorphism such that

$$\alpha(u) = x^4 + x^2 + x$$
 and $\alpha(v) = x^3 - x$

Show that α is not surjective.

5. Let $\beta : \mathbb{Q}[u, v] \to \mathbb{Q}[x]$ be the \mathbb{Q} -algebra homomorphism such that

$$\beta(u) = x^3$$
 and $\beta(v) = x^5$.

Determine $\text{Ker}(\beta)$ by giving an explicit set of generators of the ideal $\text{Ker}(\beta)$.

6. Recall that for polynomials $f(x) = a_0 x^l + a_1 x^{l-1} + \dots + a_l$ and $g(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_m$ of degrees *l* and *m* respectively with l, m > 0, the Sylvester matrix Syl(f,g) is the $(l+m) \times (l \times m)$ matrix $(c_{i,j})_{1 \le i,j \le l+m}$ with

$$c_{ij} = \begin{cases} a_{i-j} & \text{if } 1 \le j \le m, \ j \le i \le j+l, \\ b_{m+i-j} & \text{if } m+1 \le j \le l+m, \ j-m \le i \le j \\ 0 & \text{otherwise.} \end{cases}$$

The *resultant* $\operatorname{Res}(f,g)$ of f,g is defined by

$$\operatorname{Res}(f,g) = \operatorname{det}(\operatorname{Syl}(f,g)).$$

- (a) Suppose that k is a field and f(x), g(x) are polynomials in k[x] of degrees l, m > 0. Show that there exist polynomials $s(x), t(x) \in k[x]$ such that sf + tg = Res(f, g).
- (b) More generally, let $\mathbb{Z}[y_1, \ldots, y_r]$ be a polynomial ring in r variables y_1, \ldots, y_r , and let $f, g \in \mathbb{Z}[x, y_1, \ldots, y_r]$ with $\deg_x(f) = l > 0$, $\deg_x(g) = m > 0$. Show that there exist $s, t \in \mathbb{Z}[y_1, \ldots, y_r]$ such that $sf + tg = \operatorname{Res}(f, g) \in \mathbb{Z}[y_1, \ldots, y_r]$. In particular

$$\mathbf{f}, \mathbf{g} \in (f\mathbb{Z}[x, y_1, \dots, y_r] + g\mathbb{Z}[x, y_1, \dots, y_r]) \cap \mathbb{Z}[y_1, \dots, y_r].$$