Sustained p-divisible groups and a foliation of moduli spaces of abelian varieties

with Frans Oort

§ 1 Introduction

1.1. central leaves in $\mathbb{A}^d, d, n/\mathbb{F}_p$ (Oort, Texel 1999)

(a) gfc polarized p-divisible group
(b) $C(x_0) \subseteq \mathbb{A}^d, d, n/\mathbb{F}_p$

$x_0 \in \mathbb{A}^d, d, n(\mathbb{F}_p)$

properties of $C(x_0)$: (i) smooth, locally closed

(ii) stable under all prime-to-\(p\) Hecke correspondences

(iii) characteristic-\(p\) analogue of Shimura varieties

example

1) \mathbb{A}^d, d, n is a central leaf

2) $\mathbb{A}^d, d, n(\mathbb{F}_p) \ni x_0 = [(A_0, \mu_n)] \ni A_0[p^n] \cong Y \times Y^t$

$C(x_0) \text{ dim } = 2$

$C(x_0)_{x_0}$ has a natural structure as a p-divisible

formal group, isoclinic of slope $1/3$

$ht = 6 \text{ (dim } A_3, 4), \text{ dim } = 2$

Question:

functional/scheme-theoretic definition of $C(x_0)$

1.2. New insight:

(a) Let (x, μ) = restriction to $C(x_0)$ of the polarized p-divisible group

(b) x admits a slope filtration attached to the universal

$C(x_0)$
(b) \(\forall n \in \mathbb{N}, \exists T_n \to C(x_0) \) faithfully flat + of finite presentation
and a \(T_n \)-isomorphism
\[
(A_n, \mu_n) [p^n] \times T_n \stackrel{\sim}{\rightarrow} (A, \mu) [p^n] \times T_n / C(x_0)
\]

\[8.2. \text{Definition and first properties of (strongly) sustained (polarized) }\]
\(p \)-divisible groups

Def. 2.1. Strongly \(\kappa \)-sustained \(p \)-divisible group \((X, \mu) \to S\) modeled on \((X_0, \mu_0) / \kappa\)
\(S = \kappa \)-scheme
\(\kappa = \mathbb{F}_p \) : a field

Prop. 2.2. \(X \to S \) strongly \(\kappa \)-sustained modeled on \(X_0 / \kappa \) \(\Rightarrow X \to S \) admits a canonical slope filtration \(\text{F}^S(X) \) is strongly \(\kappa \)-sustained over \(S \) \(\forall S \)

Thm. 2.3. (Backward compatibility)
\(S / \kappa \text{ reduced } \kappa = \mathbb{F}_p \neq \emptyset \)
\((X, \mu) \to S\) polarized \(p \)-divisible group
\((X, \mu)\) is strongly \(\kappa \)-sustained \(\iff \) it is \(gfc \)

\[8.3. \text{Stabilized } \text{Hom}-, \text{End}-, \text{Aut}-\text{schemes} \]
\(Y, Z : p \)-divisible groups over \(\kappa = \mathbb{F}_p \) \(\kappa = \text{a field} \)

Def. 3.1(a). \(\text{Hom}^{st}(Y, Z) : = \text{Im} \left(\text{Hom} \left(Y[p^{n+1}], Z[p^n] \right) \to \text{Hom} \left(Y[p^n], Z[p^n] \right) \right) \)

\(N >> 0 \)

Def. 3.1(b). \(\text{Hom}' (Y, Z) = \text{inductive system} \left(\text{Hom} \left(Y[p^n], Z[p^n] \right)_{n \in \mathbb{N}} \right) \)

\(Y[p^n] \xrightarrow{h} Z[p^n] \)

\(\sigma_p \uparrow \quad \downarrow \)

\(Y[p^{n+1}] \xrightarrow{\nu_{n+1, h}(h)} Z[p^{n+1}] \)

Def. 3.1(c). \(\text{Hom}' (Y, Z)_{p\text{-div}} = \text{inductive system of} \left(\text{Hom}^{st} \left(Y[p^n], Z[p^n] \right)_{h \in \mathbb{N}} \right) \)
Prop 3.2 (a) \(\text{Hom}'(Y, Z) \) is a smooth formal group over \(\kappa \) (not necessarily connected)

(b) \(\text{Hom}'(Y, Z)_{p\text{-div}} \) is a \(p \)-divisible formal group over \(\kappa \)

= the maximal \(p \)-divisible subgroup of \(\text{Hom}'(Y, Z) \)

Def 3.3 \(\text{End}^\ast(Y) = \) the projective system \((\text{End}^\ast(Y)_n)_{n \in \mathbb{N}} \)

\(\text{Aut}^\ast(Y) = \) the projective system \((\text{Aut}^\ast(Y)_n)_{n \in \mathbb{N}} \)

3.4. Key property:
\(\text{Aut}^\ast(Y) \) has a natural (finite decreasing) slope filtration

s.t.
\[\text{Fil}^s \text{Aut}^\ast(Y) / \text{Fil}^{s+1} \text{Aut}^\ast(Y) = \text{the projective system given by the } p \text{-divisible group} \]
\[\text{Fil}^s \text{End}^\ast(Y) / \text{Fil}^{s+1} \text{End}^\ast(Y) \]

3.5. Relation with strongly sustained \(p \)-divisible groups

\[\left\{ \begin{array}{l}
\text{strongly } n \text{-sustained } p \text{-div group } X \to S \text{ modeled on } Y/\kappa \\
\text{compatible projective families of right } \text{Aut}^\ast(Y)_n \text{-torsors over } S
\end{array} \right\} \]

\[X/S \nrightarrow \left(T_n = \text{Isom}^\ast(Y[p^n]_S, X[p^n]) \right)_{n \in \mathbb{N}} \]

\[\left(T_n \times \text{Aut}^\ast(Y)_{nS} \right) \nrightarrow \left(T_n \right)_{n \in \mathbb{N}} \]
§4 Deformation of strongly sustained p-divisible groups

Theorem 4.1 $\text{Def}(Y)_{\text{sus}} : (R, m) \to X \to \text{Spec}(R)$, strongly κ-sustained

$$R/m \cong \kappa + X \times \text{Spec}(R/m) \leftarrow Y \times \text{Spec} R$$

The sustained deformation functor $\text{Def}(Y)$ is smooth.

Sketch of proof:

$$(R', m'') / \kappa : \text{small ext}^n \text{ of } (R, m) \quad S' = \text{Spec}(R'), \quad S = \text{Spec}(R),$$

i.e. $R = R'/J, \quad J \cdot m'' = 0 \quad R/m = (R'/m'') = \kappa$

$$X \to \text{Spec}(R) = S \quad \text{strongly } \kappa \text{-sustained} \quad \text{right compatible family of } \text{Aut}^\text{s+}(Y)_n \text{-torsors over } S$$

$$\longleftrightarrow (T_n)_{n \in \mathbb{N}}$$

Illusie 1) Have $\ell^\text{perfect complex, amplitude } \in [-1, 0]$ functorial

2) **Obstruction of lifting T_n to S'**

$$\in H^2(S_0, \ell^\text{LL}_{T_n \times S_0} / R_0, J) = 0$$

3) **All liftings of T_n to S'**

a a torsor for $H^4(S, \ell^\text{LL}_{T_n \times S_0} / R_0, J) =: \nu_{T_n \times S_0} \otimes R_0 J$

4) $\nu_{T_n \times S_0 / R_0} \otimes J \cong \nu_{T_n \times S_0 / R_0} \otimes J$

By dévissage, using the slope filtration on $(T_n)_{n \in \mathbb{N}}$ and similar maps for a p-divisible group are isomorphisms. "Q.E.D."
Thm 4.3. \(\text{Def}_\text{sus} (Y, \nu) \) is smooth over \(\kappa \)

Def 4.4. (Tate-linear formal subvarieties of \(\text{Def}(Y)_{\text{sus}} \))

A smooth closed formal subsheaf \(Z \subseteq \text{Def}(Y)_{\text{sus}} \)

is strongly Tate-linear if there exists a projective family \((H_n)_{n \in \mathbb{N}} \) of subgroup schemes of \((\mathbb{P}_n) = (\text{Aut}^\text{st}(Y))_n \) such that

\[
Z = \text{Im} \left(\text{Def} \left(\text{the trivial right } \text{Aut}^\text{st}(Y)\text{-torsor} \right) \to \text{Def} \left(\text{the trivial right } \text{Aut}^\text{st}(Y)\text{-torsor} \right) \right)
\]

\[
\text{Def}(Y)_{\text{sus}}
\]

4.5. Remark: \(M = \mathbb{A}^g \), PEL modular subvariety

\(C_M(z) = C_{\mathbb{A}^g}(x_0) \) and \(C_M(z)/\mathbb{Z}_p \) is a Tate-linear formal subsheaf

4.6. Examples

(a) \((A, \mu)\) \(g\)-dimensional polarized abelian variety

\(\text{slope}_0 = s, 0 < s < \frac{1}{2} \)

\(\text{Al}_p \) is isoclinic of slope \(s \)

\(\text{Def}(\text{Al}_p)_{\text{sus}} \) is a \(p \)-divisible formal group, isoclinic of slope \(1 - 2s \)

\(\text{height} = g^2 \)

(\(\text{Def}(\text{Al}_p, \mu)_{\text{sus}} \) is a \(p \)-divisible formal group, isoclinic, slope \(1 - 2s \), height \(g(g+1)/2 \)

(b) \((A, \mu)\), \(A[p^\infty] = Y_1 \times Y_2 \times Y_3 \)

\(Y_i \) is isoclinic of slope \(S_i \), height \(h_i \)

\(S_1 < S_2 = \frac{1}{2} < S_3 = 1 - S_4 \)

\(h_1 = h_3 \)

\(\text{Def}(\text{Al}_p)_{\text{sus}} \) is a biextension of \(p \)-divisible formal groups

\((X_1, X_2) \) by \(X_3 \), \(X_1, X_2 \) isoclinic, slope \(\frac{1}{2} - s_1 \)

\(\text{height} = h_1, h_2 \)

\(X_3 \) is isoclinic, slope \(1 - 2s_1 \)

\(\text{height} = h_3 \)
§5. Rigidity and linearity

Thm 5.1 (local rigidity)

(a) for p-divisible formal groups

(b) for bi-extensions of p-divisible formal groups

5.2 Expectation (local rigidity for $\text{Def}(Y)_{\text{sus}}$)

5.3 Conjecture global rigidity.