Outline

1 Sample arithmetic statements
 - Diophantine equations
 - Counting solutions of a diophantine equation
 - Counting congruence solutions
 - L-functions and distribution of prime numbers
 - Zeta and L-values

2 Sample of geometric structures and symmetries
 - Elliptic curve basics
 - Modular forms, modular curves and Hecke symmetry
 - Complex multiplication
 - Frobenius symmetry
 - Monodromy
 - Fine structure in characteristic p
The general theme

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) Zeta functions = L-functions; modular forms = automorphic representations.

(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.

Fermat’s infinite descent

I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his infinite descent) that the diophantine equation

\[x^4 - y^4 = z^2 \]

does not have any non-trivial integer solution.

Remark. (i) The above equation can be “projectivized” to \(x^4 - y^4 = x^2z^2 \), which gives an elliptic curve \(E \) with complex multiplication by \(\mathbb{Z}[\sqrt{-1}] \).
Fermat’s infinite descent continued

(ii) Idea: Show that every non-trivial rational point $P \in E(\mathbb{Q})$ is the image $[2]_E$ of another “smaller” rational point.

(Construct another rational variety X and maps $f : E \rightarrow X$ and $g : X \rightarrow E$ such that $g \circ f = [2]_E$ and descent in two stages. Here X is a twist of E, and f, g corresponds to $[1 + \sqrt{-1}]$ and $[1 - \sqrt{-1}]$ respectively.)
Interlude: Euler’s addition formula

In 1751, Fagnano’s collection of papers *Produzioni Mathematiche* reached the Berlin Academy. Euler was asked to examine the book and draft a letter to thank Count Fagnano. Soon Euler discovered the addition formula

\[
\int_{0}^{r} \frac{d\rho}{\sqrt{1 - \rho^4}} = \int_{0}^{u} \frac{d\eta}{\sqrt{1 - \eta^4}} + \int_{0}^{v} \frac{d\psi}{\sqrt{1 - \psi^4}},
\]

where

\[
r = \frac{u\sqrt{1 - v^4} + v\sqrt{1 - u^4}}{1 + u^2v^2}.
\]
Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For \(n, k \in \mathbb{N} \), let

\[
r_k(n) := \# \{(x_1, \ldots, x_k) \in \mathbb{Z}^n : x_1^2 + \cdots + x_k^2 = n \}
\]

be the number of ways to represent \(n \) as a sum of \(k \) squares.

(i) \(r_2(n) = 4 \cdot \sum_{d \mid n, \ n \text{ odd}} (-1)^{(d-1)/2} = \begin{cases} 0 & \text{if } n_2 \neq \square \\ \sum_{d \mid n_1} 1 & \text{if } n_2 = \square \end{cases} \)

where \(n = 2^f \cdot n_1 \cdot n_2 \), and every prime divisor of \(n_1 \) (resp. \(n_2 \)) is \(\equiv 1 \pmod{4} \) (resp. \(\equiv 3 \pmod{4} \)).

(ii) \(r_4(n) = \begin{cases} 8 \cdot \sum_{d \mid n} d & \text{if } n \text{ is odd} \\ 24 \cdot \sum_{d \mid n, d \text{ odd}} d & \text{if } n \text{ is even} \end{cases} \)

How to count number of sum of squares

Method. Explicitly identify the theta series

\[
\theta^k(\tau) = \left(\sum_{m \in \mathbb{N}} q^{m^2} \right)^k \quad \text{where } q = e^{2\pi \sqrt{-1} \tau}
\]

with modular forms obtained in a different way, such as Eisenstein series.
Counting congruence solutions

3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p

(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.

The Riemann zeta function

4. L-functions and the distribution of prime numbers for a given diophantine problem

Examples. (i) The Riemann zeta function $\zeta(s)$ is a meromorphic function on \mathbb{C} with only a simple pole at $s = 0$,

$$\zeta(s) = \sum_{n \geq 1} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \quad \text{for } \text{Re}(s) > 1,$$

such that the function $\xi(s) = \pi^{-s/2} \cdot \Gamma(s/2) \cdot \zeta(s)$ satisfies

$$\xi(1 - s) = \xi(s).$$
Dirichlet L-functions

(ii) Similar properties hold for the Dirichlet L-function

\[L(\chi, s) = \sum_{n\in\mathbb{N}, (n,N)=1} \chi(n) \cdot n^{-s} \quad \text{Re}(s) > 1 \]

for a primitive Dirichlet character \(\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{C}^\times \).
L-functions and distribution of prime numbers

(a) Dirichlet’s theorem for primes in arithmetic progression
\[L(\chi, 1) \neq 0 \ \forall \ \text{Dirichlet character } \chi. \]

(b) The prime number theorem
\[\leftrightarrow \text{zero free region of } \zeta(s) \text{ near } \{\text{Re}(s) = 1\}. \]

(c) Riemann’s hypothesis \[\leftrightarrow \text{the first term after the main term in the asymptotic expansion of } \zeta(s). \]
Bernoulli numbers and zeta values

5. Special values of L-functions

Examples. (a) zeta and L-values for \mathbb{Q}.
Recall that the Bernoulli numbers B_n are defined by

$$\frac{x}{e^x - 1} = \sum_{n \in \mathbb{N}} \frac{B_n}{n!} \cdot x^n$$

$B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_4 = -1/30, B_6 = 1/42, B_8 = -1/30, B_{10} = 5/66, B_{12} = -691/2730.$

(i) (Euler) $\zeta(1-k) = -B_k/k \ \forall$ even integer $k > 0$.

(ii) (Leibniz’s formula, 1678; Madhava, ~ 1400)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}$$

Content of L-values

(b) L-values often contain deep arithmetic/geometric information.

(i) Leibniz’s formula: $\mathbb{Z} [\sqrt{-1}]$ is a PID.

(ii) B_k/k appears in the formula for the number of (isomorphism classes of) exotic $(4k - 1)$-spheres.
Kummer congruence

(c) (Kummer congruence)

(i) \(\zeta(m) \in \mathbb{Z}_p \) for \(m \leq 0 \) with \(m \not\equiv 1 \pmod{p-1} \)

(ii) \(\zeta(m) \equiv \zeta(m') \pmod{p} \) for all \(m, m' \leq 0 \) with \(m \equiv m' \neq 1 \pmod{p-1} \).

Examples.

- \(\zeta(-1) = -\frac{1}{2^2 \cdot 3^2} \cdot -1 \equiv 1 \pmod{p-1} \) only for \(p = 2, 3 \).

- \(\zeta(-11) = \frac{691}{2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13} \cdot -11 \equiv 1 \pmod{p-1} \) holds only for \(p = 2, 3, 5, 7, 13 \).

- \(\zeta(-5) = -\frac{1}{2^2 \cdot 3^2 \cdot 7} \equiv \zeta(-1) \pmod{5} \).
 Note that \(3 \cdot 7 \equiv 1 \pmod{5} \).

Figure: Kummer
Elliptic curves basics

II. Sample of geometric structures and symmetries

1. Review of elliptic curves

Equivalent definitions of an elliptic curve E:
- a projective curve with an algebraic group law;
- a projective curve of genus one together with a rational point (= the origin);
- over \mathbb{C}: a complex torus of the form $E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, where $\tau \in \mathfrak{H} :=$ upper-half plane;
- over a field F with $6 \in F^\times$: given by an affine equation
 \[y^2 = 4x^3 - g_2x - g_3, \quad g_2, g_3 \in F. \]

Weistrass theory

For $E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, let
\[x_\tau(z) = \wp(\tau, z) \]
\[= \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left(\frac{1}{(z - m\tau - n)^2} - \frac{1}{(m\tau + n)^2} \right) \]
\[y_\tau(z) = \frac{d}{dz} \wp(\tau, z) \]

Then E_τ satisfies the Weistrass equation
\[y_\tau^2 = 4x_\tau^3 - g_2(\tau)x_\tau - g_3(\tau) \]

with
- $g_2(\tau) = 60 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^4}$
- $g_3(\tau) = 140 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^6}$
The \(j\)-invariant

Elliptic curves are classified by their \(j\)-invariant

\[
j = 1728 \frac{g_2^3}{g_2^3 - 27g_3^2}
\]

Over \(\mathbb{C}\), \(j(E_\tau)\) depends only on the lattice \(\mathbb{Z}\tau + \mathbb{Z}\) of \(E_\tau\). So \(j(\tau)\) is a modular function for \(\text{SL}_2(\mathbb{Z})\):

\[
j \left(\frac{a\tau + b}{c\tau + d} \right) = j(\tau)
\]

for all \(a, b, c, d \in \mathbb{Z}\) with \(ad - bc = 1\).

We have a Fourier expansion

\[
j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots,
\]

where \(q = q_\tau = e^{2\pi i \tau}\).

Modular forms, modular curves and Hecke symmetry

2. Modular forms and modular curves

Let \(\Gamma \subset \text{SL}_2(\mathbb{Z})\) be a congruence subgroup of \(\text{SL}_2(\mathbb{Z})\), i.e. \(\Gamma\) contains all elements which are \(\equiv I_2 \pmod{N}\) for some \(N\).

(a) A holomorphic function \(f(\tau)\) on the upper half plane \(\mathbb{H}\) is said to be a modular form of weight \(k\) and level \(\Gamma\) if

\[
f((a\tau + b)(c\tau + d)^{-1}) = (c\tau + d)^k \cdot f(\tau) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma
\]

and has moderate growth at all cusps.

(b) The quotient \(Y_\Gamma := \Gamma \backslash \mathbb{H}\) has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.
Modular curves and Hecke symmetry

(c) Modular forms of weight k for $\Gamma = H^0(X_{\Gamma}, \omega^k)$, where X_{Γ} is the natural compactification of Y_{Γ}, and ω is the Hodge line bundle on X_{Γ}

$$\omega|_E = \text{Lie}(E)^\vee \quad \forall [E] \in X_{\Gamma}$$

(d) The action of $\text{GL}_2(\mathbb{Q})_{\det > 0}$ on \mathbb{H} “survives” on the modular curve $Y_{\Gamma} = \Gamma \backslash \mathbb{H}$ and takes a reincarnated form as a family of algebraic correspondences.

The L-function attached to a cusp form which is a common eigenvector of all Hecke correspondences admits an Euler product.
The Ramanujan τ function

Example. Weight 12 cusp forms for $SL_2(\mathbb{Z})$ are constant multiples of

$$\Delta = q \cdot \prod_{m \geq 1} (1 - q^m)^{24} = \sum_n \tau(n) q^n$$

and

$$T_p(\Delta) = \tau(p) \cdot \Delta \quad \forall p,$$

where T_p is the Hecke operator represented by $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$.

Let $L(\Delta, s) = \sum_{n \geq 1} a_n \cdot n^{-s}$. We have

$$L(\Delta, s) = \prod_p (1 - \tau(p)p^{-s} + p^{11-2s})^{-1}.$$

CM elliptic curves

3. Complex multiplication

An elliptic E over \mathbb{C} is said to have complex multiplication if its endomorphism algebra $End^0(E)$ is an imaginary quadratic field.

Example. Consequences of

- $j(\mathbb{C}/\mathcal{O}_K)$ is an algebraic integer
- $K \cdot j(\mathbb{C}/\mathcal{O}_K)$ is the Hilbert class field of K.

$$e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613 \cdots$$

$$j\left(-\frac{1+\sqrt{-67}}{2}\right) = -147197952000 = -2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3$$

$$e^{\pi \sqrt{163}} = 262537412640768743.99999999999925007259719 \cdots$$

$$j\left(-\frac{1+\sqrt{-163}}{2}\right) = -262537412640768000 = -2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$$
Mod p points for a CM curve

A typical feature of CM elliptic curves is that there are explicit formulas: Let E be the elliptic curve

$$y^2 = x^3 + x,$$

which has CM by $\mathbb{Z}[\sqrt{-1}]$. We have

$$\#E(\mathbb{F}_p) = 1 + p - a_p$$

and for odd p we have

$$a_p = \sum_{u \in \mathbb{F}_p} \left(\frac{u^3 + u}{p} \right)$$

$$= \begin{cases} 0 & \text{if } p \equiv 3 \pmod{4} \\ -2a & \text{if } p = a^2 + 4b^2 \text{ with } a \equiv 1 \pmod{4} \end{cases}$$

A CM curve and its associated modular form, continued

The L-function $L(E, s)$ attached to E with

$$\prod_{p \text{ odd}} \left(1 - a_p p^{-s} + p^{1-2s} \right)^{-1} = \sum_n a_n \cdot n^{-s}$$

is equal to a Hecke L-function $L(\psi, s)$, where the Hecke character ψ is the given by

$$\psi(a) = \begin{cases} 0 & \text{if } 2|N(a) \\ \lambda & \text{if } a = (\lambda), \lambda \in 1 + 4\mathbb{Z} + 2\mathbb{Z}\sqrt{-1} \end{cases}$$

The function $f_E(\tau) = \sum_n a_n \cdot q^n$ is a modular form of weight 2 and level 4, and

$$f_E(\tau) = \sum_{a} \psi(a) \cdot q^{N(a)} = \sum_{a \equiv 1 \pmod{4}} a \cdot q^{a^2+b^2}$$
Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_q has a map $\text{Fr}_q : X \to X$, induced by the ring endomorphism $f \mapsto f^q$ of the function field of X.

Deligne’s proof of Weil’s conjecture implies that

$$\tau(p) \leq 2p^{11/2} \quad \forall p$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $H^1_{\text{et}}(\overline{X}, \text{Sym}^10(\mathbb{H}(\mathcal{E}/X)))$, which “contains” the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_p and the Hecke correspondence T_p; invoke the Weil bound.

A hypergeometric differential equation

5. Monodromy

(a) The hypergeometric differential equation

$$4x(1-x) \frac{d^2y}{dx^2} + 4(1-2x) \frac{dy}{dx} - y = 0$$

has a classical solution

$$F(1/2, 1/2, 1, x) = \sum_{n \geq 0} (-1/2)_n^x$$

The global monodromy group of the above differential is the principal congruence subgroup $\Gamma(2)$.

Historic origin

Remark. The word “monodromy” means “run around singly”; it was (?first) used by Riemann in *Beiträge zur Theorie der durch die Gauss’sche Reihe* $F(\alpha, \beta, \gamma, x)$ *darstellbaren Functionen*, 1857.

\[\ldots; \text{für einen Werth in welchem keine Verzweigung stattfindet, heist die Function “einändrig order monodrom} \ldots \]

The Legendre family of elliptic curves

The family of equations

\[y^2 = x(x - 1)(x - \lambda) \quad 0, 1, \infty \neq \lambda \in \mathbb{P}^1 \]

defines a family $\pi : \mathcal{E} \to S = \mathbb{P}^1 - \{0, 1, \infty\}$ of elliptic curves, with

\[j(E_\lambda) = \frac{2^8 [1 - \lambda(1 - \lambda)]^3}{\lambda^2 (1 - \lambda)^2} \]

This formula exhibits the λ-line as an S_3-cover of the j-line, such that the 6 conjugates of λ are

\[\lambda, \frac{1}{\lambda}, 1 - \lambda, \frac{1}{1 - \lambda}, \frac{\lambda}{\lambda - 1}, \frac{\lambda - 1}{\lambda}. \]
The Legendre family, continued

The formula

\[
\left[4 \lambda (1 - \lambda) \frac{d}{d\lambda} + 4 (1 - 2\lambda) \frac{d}{d\lambda} - 1 \right] \left(\frac{dx}{y} \right) = -d \left(\frac{y}{(x - \lambda)^2} \right)
\]

means that the global section \([dx/y]\) of \(H^1_{dR}(E/S)\) satisfies the above hypergeometric ODE.

Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries among potential symmetries.

2. To say that the monodromy is “as large as possible” is an irreducibility statement.

3. Maximality of monodromy has important consequences. E.g. the key geometric input in Deligne-Ribet’s proof of \(p\)-adic interpolation for special values of Hecke L-functions attached to totally real fields.
6. Fine structure in char. $p > 0$

Example. There are only a finite number of j-values (called supersingular) such that every for every ordinary (i.e. not super-singular) elliptic curve E over a finite field $\mathbb{F}_q \supset \mathbb{F}_p$, we have

$$\#E(\mathbb{F}_p) \not\equiv 0 \pmod{p} \quad (\iff E[p](\mathbb{F}_p) \simeq \mathbb{Z}/p\mathbb{Z})$$

For the Legendre family, the supersingular locus (for $p > 2$) is the zero locus of

$$A(\lambda) = (-1)^{(p-1)/2} \cdot \sum_{j=0}^{(p-1)/2} \left(\frac{(1/2)_j}{j!} \right)^2 \cdot \lambda^j$$

where $(c)_m := c(c+1) \cdots (c+m-1)$.

Hasse invariants has only simple zeros

Remark. The above formula for the coefficients a_j satisfy

$$a_1, \ldots, a_{(p-1)/2} \in \mathbb{Z}(p)$$

and

$$a_{(p+1)/2} \equiv \cdots \equiv a_{p-1} \equiv 0 \pmod{p}.$$

Igusa’s proof that $A(\lambda)$ has only only simple zeroes:

From the hypergeometric equation for $F(1/2, 1/2, 1, x)$ we conclude that

$$\left[4\lambda(1-\lambda) \frac{d^2}{d\lambda^2} + 4(1-2\lambda) \frac{d}{d\lambda} - 1 \right] A(\lambda) \equiv 0 \pmod{p}$$

for all $p > 3$. Q.E.D.
p-adic monodromy for modular curves

For the ordinary locus of the Legendre family

$$\pi : \mathcal{O}^{\text{ord}} \to S^{\text{ord}}$$

the monodromy representation

$$\rho : \pi_1(S^{\text{ord}}) \to \text{Aut}(\mathcal{O}^{\text{ord}}[p^\infty](\overline{\mathbb{F}}_p)) \cong \mathbb{Z}_p^\times$$

(defined by Galois theory) is surjective.

p-adic monodromy for the modular curve

Sketch of a proof: Given any $n > 0$ and any $\bar{u} \in (\mathbb{Z}/p^n\mathbb{Z})^\times$, pick a representative $u \in \mathbb{N}$ of \bar{u} with $0 < u < p^n$ and let let

$$\iota : \mathbb{Q}[T]/(T^2 - u \cdot T + p^{4n}) \hookrightarrow \mathbb{Q}_p$$

be the embedding such that $\iota(T) \in \mathbb{Z}_p^\times$. Then

$$\iota(T) \equiv u \pmod{p^{2n}}.$$

By a result of Deuring, there exists an elliptic curve E over $\mathbb{F}_{p^{2n}}$ whose Frobenius is the Weil number $\iota(T)$. So the image of the monodromy representation contains $\iota(T)$, which is congruent to the given element $\bar{u} \in \mathbb{Z}/p^n\mathbb{Z}$. Q.E.D.