Geometry and Numbers

Ching-Li Chai

Institute of Mathematics
Academia Sinica
and
Department of Mathematics
University of Pennsylvania

National Chiao Tung University, July 6, 2012

Outline

1 Sample arithmetic statements
 - Diophantine equations
 - Counting solutions of a diophantine equation
 - Counting congruence solutions
 - L-functions and distribution of prime numbers
 - Zeta and L-values

2 Sample of geometric structures and symmetries
 - Elliptic curve basics
 - Modular forms, modular curves and Hecke symmetry
 - Complex multiplication
 - Frobenius symmetry
 - Monodromy
 - Fine structure in characteristic p
The general theme

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) Zeta functions = L-functions; modular forms = automorphic representations.

(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.

Fermat’s infinite descent

I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his infinite descent) that the diophantine equation

\[x^4 - y^4 = z^2 \]

does not have any non-trivial integer solution.

Remark. (i) The above equation can be “projectivized” to \(x^4 - y^4 = x^2 z^2 \), which gives an elliptic curve \(E \) with complex multiplication by \(\mathbb{Z}[-1] \).
Fermat’s infinite descent continued

(ii) Idea: Show that every non-trivial rational point $P \in E(\mathbb{Q})$ is the image $[2]_E$ of another “smaller” rational point.

(Construct another rational variety X and maps $f : E \to X$ and $g : X \to E$ such that $g \circ f = [2]_E$ and descent in two stages. Here X is a twist of E, and f, g corresponds to $[1 + \sqrt{-1}]$ and $[1 - \sqrt{-1}]$ respectively.)
Interlude: Euler’s addition formula

In 1751, Fagnano’s collection of papers *Produzioni Mathematiche* reached the Berlin Academy. Euler was asked to examine the book and draft a letter to thank Count Fagnano. Soon Euler discovered the addition formula

$$\int_0^r \frac{d\rho}{\sqrt{1-\rho^4}} = \int_0^u \frac{d\eta}{\sqrt{1-\eta^4}} + \int_0^v \frac{d\psi}{\sqrt{1-\psi^4}},$$

where

$$r = \frac{u\sqrt{1-v^4} + v\sqrt{1-u^4}}{1 + u^2v^2}.$$

Figure: Euler
Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For \(n, k \in \mathbb{N} \), let

\[
r_k(n) := \#\{(x_1, \ldots, x_k) \in \mathbb{Z}^n : x_1^2 + \cdots + x_k^2 = n\}
\]

be the number of ways to represent \(n \) as a sum of \(k \) squares.

(i) \(r_2(n) = 4 \cdot \sum_{d|n, n \text{ odd}} (-1)^{(d-1)/2} = \begin{cases} 0 & \text{if } n_2 \neq \square \\ \sum_{d|n_1} 1 & \text{if } n_2 = \square \end{cases} \)

where \(n = 2^f \cdot n_1 \cdot n_2 \), and every prime divisor of \(n_1 \) (resp. \(n_2 \)) is \(\equiv 1 \pmod{4} \) (resp. \(\equiv 3 \pmod{4} \)).

(ii) \(r_4(n) = \begin{cases} 8 \cdot \sum_{d|n} d & \text{if } n \text{ is odd} \\ 24 \cdot \sum_{d|n, d \text{ odd}} d & \text{if } n \text{ is even} \end{cases} \)

How to count number of sum of squares

Method. Explicitly identify the theta series

\[
\theta^k(\tau) = \left(\sum_{m \in \mathbb{N}} q^{m^2} \right)^k \quad \text{where } q = e^{2\pi \sqrt{-1} \tau}
\]

with modular forms obtained in a different way, such as Eisenstein series.
Counting congruence solutions

3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p

(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.

The Riemann zeta function

4. L-functions and the distribution of prime numbers for a given diophantine problem

Examples. (i) The Riemann zeta function $\zeta(s)$ is a meromorphic function on \mathbb{C} with only a simple pole at $s = 0$,

$$\zeta(s) = \sum_{n \geq 1} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \quad \text{for } \Re(s) > 1,$$

such that the function $\xi(s) = \pi^{-s/2} \cdot \Gamma(s/2) \cdot \zeta(s)$ satisfies $\xi(1 - s) = \xi(s)$.
Dirichlet L-functions

(ii) Similar properties hold for the Dirichlet L-function

\[L(\chi, s) = \sum_{n \in \mathbb{N}, (n,N)=1} \chi(n) \cdot n^{-s} \quad \text{Re}(s) > 1 \]

for a primitive Dirichlet character \(\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{C}^\times \).
L-functions and distribution of prime numbers

(a) Dirichlet’s theorem for primes in arithmetic progression
\[\L (\chi, 1) \neq 0 \ \forall \text{ Dirichlet character } \chi. \]

(b) The prime number theorem
\[\L \text{ zero free region of } \zeta(s) \text{ near } \{\Re(s) = 1\}. \]

(c) Riemann’s hypothesis \(\L \) the first term after the main term in the asymptotic expansion of \(\zeta(s) \).
Bernoulli numbers and zeta values

5. Special values of L-functions

Examples. (a) zeta and L-values for \(\mathbb{Q} \).
Recall that the Bernoulli numbers \(B_n \) are defined by
\[
\frac{x}{e^x - 1} = \sum_{n \in \mathbb{N}} \frac{B_n}{n!} \cdot x^n
\]
\(B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_4 = -1/30, B_6 = 1/42, \)
\(B_8 = -1/30, B_{10} = 5/66, B_{12} = -691/2730. \)

(i) (Euler) \(\zeta(1-k) = -B_k/k \) \(\forall \) even integer \(k > 0. \)

(ii) (Leibniz’s formula, 1678; Madhava, ~ 1400)
\[
1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}
\]

Content of L-values

(b) L-values often contain deep arithmetic/geometric information.

(i) Leibniz’s formula: \(\mathbb{Z}[\sqrt{-1}] \) is a PID (because the formula implies that the class number \(h(\mathbb{Q}(\sqrt{-1})) \) is 1).

(ii) \(B_k/k \) appears in the formula for the number of (isomorphism classes of) exotic \((4k - 1)\)-spheres.
Kummer congruence

(c) (Kummer congruence)

(i) \(\zeta(m) \in \mathbb{Z}_p \) for \(m \leq 0 \) with \(m \not\equiv 1 \pmod{p-1} \)

(ii) \(\zeta(m) \equiv \zeta(m') \pmod{p} \) for all \(m, m' \leq 0 \) with \(m \equiv m' \not\equiv 1 \pmod{p-1} \).

Examples.

- \(\zeta(-1) = -\frac{1}{2^2 \cdot 3^2} ; -1 \equiv 1 \pmod{p-1} \) only for \(p = 2, 3 \).
- \(\zeta(-11) = \frac{691}{2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13} ; -11 \equiv 1 \pmod{p-1} \) holds only for \(p = 2, 3, 5, 7, 13 \).
- \(\zeta(-5) = -\frac{1}{2^2 \cdot 3^2 \cdot 7} \equiv \zeta(-1) \pmod{5} \). Note that \(3 \cdot 7 \equiv 1 \pmod{5} \).

Figure: Kummer
Elliptic curves basics

II. Sample of geometric structures and symmetries

1. Review of elliptic curves

Equivalent definitions of an elliptic curve E:

- a projective curve with an algebraic group law;
- a projective curve of genus one together with a rational point (= the origin);
- over \mathbb{C}: a complex torus of the form $E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, where $\tau \in \mathfrak{H} := \text{upper-half plane}$;
- over a field F with $6 \in F^\times$: given by an affine equation

$$y^2 = 4x^3 - g_2x - g_3, \quad g_2, g_3 \in F.$$

Weistrass theory

For $E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, let

$$x_\tau(z) = \wp(\tau, z) = \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left(\frac{1}{(z-m\tau-n)^2} - \frac{1}{(m\tau+n)^2} \right)$$

$$y_\tau(z) = \frac{d}{dz} \wp(\tau, z)$$

Then E_τ satisfies the Weistrass equation

$$y_\tau^2 = 4x_\tau^3 - g_2(\tau)x_\tau - g_3(\tau)$$

with

- $g_2(\tau) = 60 \sum_{(m,n) \neq (0,0) \in \mathbb{Z}^2} \frac{1}{(m\tau+n)^4}$
- $g_3(\tau) = 140 \sum_{(m,n) \neq (0,0) \in \mathbb{Z}^2} \frac{1}{(m\tau+n)^6}$
The \(j \)-invariant

Elliptic curves are classified by their \(j \)-invariant

\[
j = 1728 \frac{g_3^3}{g_2^3 - 27g_3^2}
\]

Over \(\mathbb{C} \), \(j(E_\tau) \) depends only on the lattice \(\mathbb{Z} \tau + \mathbb{Z} \) of \(E_\tau \). So \(j(\tau) \) is a modular function for \(\text{SL}_2(\mathbb{Z}) \):

\[
j \left(\frac{a\tau + b}{c\tau + d} \right) = j(\tau)
\]

for all \(a, b, c, d \in \mathbb{Z} \) with \(ad - bc = 1 \).

We have a Fourier expansion

\[
j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots,
\]

where \(q = q_\tau = e^{2\pi \sqrt{-1} \tau} \).

Modular forms, modular curves and Hecke symmetry

2. Modular forms and modular curves

Let \(\Gamma \subseteq \text{SL}_2(\mathbb{Z}) \) be a congruence subgroup of \(\text{SL}_2(\mathbb{Z}) \), i.e. \(\Gamma \) contains all elements which are \(\equiv I_2 \pmod{N} \) for some \(N \).

(a) A holomorphic function \(f(\tau) \) on the upper half plane \(\mathbb{H} \) is said to be a modular form of weight \(k \) and level \(\Gamma \) if

\[
f((a\tau + b)(c\tau + d)^{-1}) = (c\tau + d)^k \cdot f(\tau) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma
\]

and has moderate growth at all cusps.

(b) The quotient \(Y_\Gamma := \Gamma/\mathbb{H} \) has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.
Modular curves and Hecke symmetry

(c) Modular forms of weight k for $\Gamma = H^0(X_\Gamma, \omega^k)$, where X_Γ is the natural compactification of Y_Γ, and ω is the Hodge line bundle on X_Γ

$$\omega|_E = \text{Lie}(E)^\vee \quad \forall [E] \in X_\Gamma$$

(d) The action of $\text{GL}_2(\mathbb{Q})_{\det > 0}$ on \mathbb{H} “survives” on the modular curve $Y_\Gamma = \Gamma \backslash \mathbb{H}$ and takes a reincarnated form as a family of algebraic correspondences.

The L-function attached to a cusp form which is a *common eigenvector* of all Hecke correspondences admits an *Euler product*.

Figure: Hecke
The Ramanujan τ function

Example. Weight 12 cusp forms for $SL_2(\mathbb{Z})$ are constant multiples of

$$\Delta = q \cdot \prod_{m \geq 1} (1 - q^m)^{24} = \sum_{n} \tau(n) q^n$$

and

$$T_p(\Delta) = \tau(p) \cdot \Delta \quad \forall p,$$

where T_p is the Hecke operator represented by $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$.

Let $L(\Delta, s) = \sum_{n \geq 1} a_n \cdot n^{-s}$. We have

$$L(\Delta, s) = \prod_p (1 - \tau(p) \cdot p^{-s} + p^{11-2s})^{-1}.$$
A typical feature of CM elliptic curves is that there are explicit formulas: Let E be the elliptic curve

$$y^2 = x^3 + x,$$

which has CM by $\mathbb{Z}[\sqrt{-1}]$. We have

$$\#E(\mathbb{F}_p) = 1 + p - a_p$$

and for odd p we have

$$a_p = \sum_{u \in \mathbb{F}_p} \left(\frac{u^3 + u}{p} \right)$$

$$= \begin{cases} 0 & \text{if } p \equiv 3 \pmod{4} \\ -2a & \text{if } p = a^2 + 4b^2 \text{ with } a \equiv 1 \pmod{4} \end{cases}$$

A CM curve and its associated modular form, continued

The L-function $L(E, s)$ attached to E with

$$\prod_{p \text{ odd}} (1 - a_p p^{-s} + p^{1-2s})^{-1} = \sum_n a_n \cdot n^{-s}$$

is equal to a Hecke L-function $L(\psi, s)$, where the Hecke character ψ is the given by

$$\psi(a) = \begin{cases} 0 & \text{if } 2|N(a) \\ \lambda & \text{if } a = (\lambda), \lambda \in 1 + 4\mathbb{Z} + 2\mathbb{Z}\sqrt{-1} \end{cases}$$

The function $f_E(\tau) = \sum_n a_n \cdot q^n$ is a modular form of weight 2 and level 4, and

$$f_E(\tau) = \sum_{a \equiv 1 \pmod{4}} \psi(a) \cdot q^{N(a)} = \sum_{a \equiv 1 \pmod{4}, b \equiv 0 \pmod{2}} a \cdot q^{a^2 + b^2}$$
Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_q has a map $\text{Fr}_q : X \rightarrow X$, induced by the ring endomorphism $f \mapsto f^q$ of the function field of X.

Deligne’s proof of Weil’s conjecture implies that

$$\tau(p) \leq 2p^{11/2} \quad \forall p$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $H^1_{\text{et}}(\overline{X}, \text{Sym}^1_2(\mathcal{H}(\mathcal{E}/X)))$, which “contains” the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_p and the Hecke correspondence T_p; invoke the Weil bound.

A hypergeometric differential equation

5. Monodromy

(a) The hypergeometric differential equation

$$4x(1-x)\frac{d^2y}{dx^2} + 4(1-2x)\frac{dy}{dx} - y = 0$$

has a classical solution

$$F(1/2, 1/2, 1, x) = \sum_{n \geq 0} \left(-\frac{1}{n}\right)x^n$$

The global monodromy group of the above differential is the principal congruence subgroup $\Gamma(2)$.

Historic origin

Remark. The word “monodromy” means “run around singly”; it was (?first) used by Riemann in *Beiträge zur Theorie der durch die Gauss’sche Reihe* $F(\alpha, \beta, \gamma, x)$ *darstellbaren Functionen*, 1857.

...; für einen Werth in welchem keine Verzweigung stattfindet, heist die Function “einändrig order monodrom ...”

The Legendre family of elliptic curves

The family of equations

$$y^2 = x(x - 1)(x - \lambda) \quad 0, 1, \infty \neq \lambda \in \mathbb{P}^1$$

defines a family $\pi : \mathcal{E} \to S = \mathbb{P}^1 - \{0, 1, \infty\}$ of elliptic curves, with

$$j(E_\lambda) = \frac{2^8 [1 - \lambda(1 - \lambda)]^3}{\lambda^2 (1 - \lambda)^2}$$

This formula exhibits the λ-line as an S_3-cover of the j-line, such that the 6 conjugates of λ are

$$\lambda, \frac{1}{\lambda}, 1 - \lambda, \frac{1}{1 - \lambda}, \frac{\lambda}{\lambda - 1}, \frac{\lambda - 1}{\lambda}.$$
The Legendre family, continued

The formula

\[4 \lambda (1 - \lambda) \frac{d}{d\lambda^2} + 4 (1 - 2\lambda) \frac{d}{d\lambda} - 1 \left(\frac{dx}{y} \right) = -d \left(\frac{y}{(x - \lambda)^2} \right) \]

means that the global section \([dx/y]\) of \(H^1_{dR}(E/S)\) satisfies the above hypergeometric ODE.

Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries among *potential symmetries*.

2. To say that the monodromy is “as large as possible” is an *irreducibility* statement.

3. Maximality of monodromy has important consequences. E.g. the key geometric input in Deligne-Ribet’s proof of \(p\)-adic interpolation for special values of Hecke L-functions attached to totally real fields.
Supersingular elliptic curves

6. Fine structure in char. $p > 0$

Example. (ordinary/supersingular dichotomy)
Elliptic curves over an algebraically closed field $k \supset \mathbb{F}_p$ come in two flavors.

- Those with $E(k) \simeq (0)$ are called **supersingular**.
 - There is only a *finite* number of supersingular j-values.
 - An elliptic curve E over a finite field \mathbb{F}_q is supersingular if and only if $E(\mathbb{F}_q) \equiv 0 \pmod{p}$.

- Those with $E[p](k) \simeq \mathbb{Z}/p\mathbb{Z}$ are said to be **ordinary**.
 An elliptic curve E over a finite field \mathbb{F}_q is supersingular if and only if $E(\mathbb{F}_q) \not\equiv 0 \pmod{p}$.

The Hasse invariant

For the Legendre family, the supersingular locus (for $p > 2$) is the zero locus of

$$A(\lambda) = (-1)^{(p-1)/2} \cdot \sum_{j=0}^{(p-1)/2} \left(\frac{1/2}{j!}\right)^2 \cdot \lambda^j$$

where $(c)_m := c(c+1)\cdots(c+m-1)$.

Remark. The above formula for the coefficients a_j satisfy

$$a_1, \ldots, a_{(p-1)/2} \in \mathbb{Z}_p$$

and

$$a_{(p+1)/2} \equiv \cdots \equiv a_{p-1} \equiv 0 \pmod{p}.$$
Counting supersingular j-values

Theorem. (Eichler 1938) The number h_p of supersingular j-values is

$$h_p = \begin{cases} \left\lfloor \frac{p}{12} \right\rfloor & \text{if } p \equiv 1 \pmod{12} \\ \left\lceil \frac{p}{12} \right\rceil & \text{if } p \equiv 5 \text{ or } 7 \pmod{12} \\ \left\lceil \frac{p}{12} \right\rceil + 1 & \text{if } p \equiv 11 \pmod{12} \end{cases}$$

Remark. (i) It is known that h_p is the class number for the quaternion division algebra over \mathbb{Q} ramified (exactly) at p and ∞.

(ii) Deuring thought that it is nicht leicht that the above class number formula can be obtained by counting supersingular j-invariants directly.

Igusa’s proof

From the hypergeometric equation for $F(1/2, 1/2, 1, x)$ we conclude that

$$\left[4\lambda (1 - \lambda) \frac{d^2}{d\lambda^2} + 4(1 - 2\lambda) \frac{d}{d\lambda} - 1 \right] A(\lambda) \equiv 0 \pmod{p}$$

for all $p > 3$. It follows immediately that $A(\lambda)$ has simple zeroes. The formula for h_p is now an easy consequence. (Hint: Use the formula 6-to-1 cover of the j-line by the λ-line.) Q.E.D.
p-adic monodromy for modular curves

For the *ordinary* locus of the Legendre family

\[\pi : E^{\text{ord}} \to S^{\text{ord}} \]

the monodromy representation

\[\rho : \pi_1(S^{\text{ord}}) \to \text{Aut}(E^{\text{ord}}[p^\infty](\overline{F}_p)) \cong \mathbb{Z}_p^\times \]

(defined by Galois theory) is surjective.

p-adic monodromy for the modular curve

Sketch of a proof: Given any \(n > 0 \) and any \(\bar{u} \in (\mathbb{Z}/p^n\mathbb{Z})^\times \), pick a representative \(u \in \mathbb{N} \) of \(\bar{u} \) with \(0 < u < p^n \) and let let

\[\iota : \mathbb{Q}[T]/(T^2 - u \cdot T + p^{4n}) \hookrightarrow \mathbb{Q}_p \]

be the embedding such that \(\iota(T) \in \mathbb{Z}_p^\times \). Then

\[\iota(T) \equiv u \pmod{p^{2n}}. \]

By a result of Deuring, there exists an elliptic curve \(E \) over \(\mathbb{F}_{p^{2n}} \) whose Frobenius is the Weil number \(\iota(T) \). So the image of the monodromy representation contains \(\iota(T) \), which is congruent to the given element \(\bar{u} \in \mathbb{Z}/p^n\mathbb{Z} \). Q.E.D.