GEOMETRY AND NUMBERS

Ching-Li Chai

Institute of Mathematics
Academia Sinica
and
Department of Mathematics
University of Pennsylvania

National Chiao Tung University, July 6, 2012
Outline

1. Sample arithmetic statements
 - Diophantine equations
 - Counting solutions of a diophantine equation
 - Counting congruence solutions
 - L-functions and distribution of prime numbers
 - Zeta and L-values

2. Sample of geometric structures and symmetries
 - Elliptic curve basics
 - Modular forms, modular curves and Hecke symmetry
 - Complex multiplication
 - Frobenius symmetry
 - Monodromy
 - Fine structure in characteristic p
The general theme

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) zeta functions = L-functions; modular forms = automorphic representations.

(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.
The general theme

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) zeta functions = L-functions; modular forms = automorphic representations.

(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.
The general theme

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) zeta functions = L-functions; modular forms = automorphic representations.

(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.
Fermat’s infinite descent

I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his infinite descent) that the diophantine equation

\[x^4 - y^4 = z^2 \]

does not have any non-trivial integer solution.

Remark. (i) The above equation can be “projectivized” to \[x^4 - y^4 = x^2 z^2 \], which gives an elliptic curve \(E \) with complex multiplication by \(\mathbb{Z}[^\sqrt{-1}] \).
I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his *infinite descent*) that the diophantine equation

\[x^4 - y^4 = z^2 \]

does not have any non-trivial integer solution.

Remark. (i) The above equation can be “projectivized” to
\[x^4 - y^4 = x^2 z^2 , \]
which gives an elliptic curve \(E \) with *complex multiplication* by \(\mathbb{Z}[\sqrt{-1}] \).
I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his *infinite descent*) that the diophantine equation

\[x^4 - y^4 = z^2 \]

does not have any non-trivial integer solution.

Remark. (i) The above equation can be “projectivized” to
\[x^4 - y^4 = x^2 z^2 \], which gives an elliptic curve \(E \) with *complex multiplication* by \(\mathbb{Z}[\sqrt{-1}] \).
Sample arithmetic statements
Diophantine equations
Counting solutions of a diophantine equation
Counting congruence solutions
L-functions and distribution of prime numbers
Zeta and L-values

Sample of geometric structures and symmetries
Elliptic curve basics
Modular forms, modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic p

**Figure: **Fermat
(ii) Idea: Show that every non-trivial rational point $P \in E(\mathbb{Q})$ is the image $[2]_E$ of another “smaller” rational point.

(Construct another rational variety X and maps $f : E \to X$ and $g : X \to E$ such that $g \circ f = [2]_E$ and descent in two stages. Here X is a twist of E, and f, g corresponds to $[1 + \sqrt{-1}]$ and $[1 - \sqrt{-1}]$ respectively.)
Interlude: Euler’s addition formula

In 1751, Fagnano’s collection of papers *Produzioni Mathematiche* reached the Berlin Academy. Euler was asked to examine the book and draft a letter to thank Count Fagnano. Soon Euler discovered the addition formula

\[
\int_0^r \frac{d\rho}{\sqrt{1 - \rho^4}} = \int_0^u \frac{d\eta}{\sqrt{1 - \eta^4}} + \int_0^v \frac{d\psi}{\sqrt{1 - \psi^4}},
\]

where

\[
r = \frac{u\sqrt{1 - v^4} + v\sqrt{1 - u^4}}{1 + u^2 v^2}.
\]
Sample arithmetic statements

Diophantine equations
Counting solutions of a diophantine equation
Counting congruence solutions
L-functions and distribution of prime numbers
Zeta and L-values

Sample of geometric structures and symmetries

Elliptic curve basics
Modular forms, modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic p

Figure: Euler
Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For \(n, k \in \mathbb{N} \), let

\[
r_k(n) := \#\{ (x_1, \ldots, x_k) \in \mathbb{Z}^n : x_1^2 + \cdots + x_k^2 = n \}
\]

be the number of ways to represent \(n \) as a sum of \(k \) squares.

(i) \(r_2(n) = 4 \cdot \sum_{d|n, n \text{ odd}} (-1)^{(d-1)/2} \) if \(n_2 \neq \square \)
\[
= \begin{cases}
0 & \text{if } n_2 \neq \square \\
\sum_{d|n_1} 1 & \text{if } n_2 = \square
\end{cases}
\]

where \(n = 2^f \cdot n_1 \cdot n_2 \), and every prime divisor of \(n_1 \) (resp. \(n_2 \)) is \(\equiv 1 \pmod{4} \) (resp. \(\equiv 3 \pmod{4} \)).

(ii) \(r_4(n) = \begin{cases}
8 \cdot \sum_{d|n} d & \text{if } n \text{ is odd} \\
24 \cdot \sum_{d|n, d \text{ odd}} d & \text{if } n \text{ is even}
\end{cases} \)
Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For $n, k \in \mathbb{N}$, let

$$r_k(n) := \#\{(x_1, \ldots, x_k) \in \mathbb{Z}^n : x_1^2 + \cdots + x_k^2 = n\}$$

be the number of ways to represent n as a sum of k squares.

(i) $r_2(n) = 4 \cdot \sum_{d|n, \ n \text{ odd}} (-1)^{(d-1)/2} = \begin{cases} 0 & \text{if } n_2 \neq \square \\ \sum_{d|n_1} 1 & \text{if } n_2 = \square \end{cases}$

where $n = 2^f \cdot n_1 \cdot n_2$, and every prime divisor of n_1 (resp. n_2) is $\equiv 1 \pmod{4}$ (resp. $\equiv 3 \pmod{4}$).

(ii) $r_4(n) = \begin{cases} 8 \cdot \sum_{d|n} d & \text{if } n \text{ is odd} \\ 24 \cdot \sum_{d|n, d \text{ odd}} d & \text{if } n \text{ is even} \end{cases}$
Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For \(n, k \in \mathbb{N} \), let

\[
r_k(n) := \#\{(x_1, \ldots, x_k) \in \mathbb{Z}^n : x_1^2 + \cdots + x_k^2 = n\}
\]

be the number of ways to represent \(n \) as a sum of \(k \) squares.

(i) \(r_2(n) = 4 \cdot \sum_{d|n, n \text{ odd}} (-1)^{(d-1)/2} = \begin{cases} 0 & \text{if } n_2 \neq \square \\ \sum_{d|n_1} 1 & \text{if } n_2 = \square \end{cases} \)

where \(n = 2^f \cdot n_1 \cdot n_2 \), and every prime divisor of \(n_1 \) (resp. \(n_2 \)) is \(\equiv 1 \pmod{4} \) (resp. \(\equiv 3 \pmod{4} \)).

(ii) \(r_4(n) = \begin{cases} 8 \cdot \sum_{d|n} d & \text{if } n \text{ is odd} \\ 24 \cdot \sum_{d|n, d \text{ odd}} d & \text{if } n \text{ is even} \end{cases} \)
How to count number of sum of squares

Method. Explicitly identify the theta series

\[\theta^k(\tau) = \left(\sum_{m \in \mathbb{N}} q^{m^2} \right)^k \quad \text{where} \quad q = e^{2\pi \sqrt{-1} \tau} \]

with modular forms obtained in a different way, such as Eisenstein series.
3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p.

(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.
3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p

(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.
3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number \(p \)

(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo \(p \) as \(p \) varies) with an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.
3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p

(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.
3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p

(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.
The Riemann zeta function

4. L-functions and the distribution of prime numbers for a given diophantine problem

Examples. (i) The Riemann zeta function $\zeta(s)$ is a meromorphic function on \mathbb{C} with only a simple pole at $s = 0$,

$$\zeta(s) = \sum_{n \geq 1} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \quad \text{for } \text{Re}(s) > 1,$$

such that the function $\xi(s) = \pi^{-s/2} \cdot \Gamma(s/2) \cdot \zeta(s)$ satisfies

$$\xi(1 - s) = \xi(s).$$
The Riemann zeta function

4. L-functions and the the distribution of prime numbers for a given diophantine problem

Examples. (i) The Riemann zeta function \(\zeta(s) \) is a meromorphic function on \(\mathbb{C} \) with only a simple pole at \(s = 0 \),

\[
\zeta(s) = \sum_{n \geq 1} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \quad \text{for } \text{Re}(s) > 1,
\]

such that the function \(\xi(s) = \pi^{-s/2} \cdot \Gamma(s/2) \cdot \zeta(s) \) satisfies

\[
\xi(1 - s) = \xi(s).
\]
GEOMETRY AND NUMBERS

Ching-Li Chai

Sample arithmetic statements
- Diophantine equations
- Counting solutions of a diophantine equation
- Counting congruence solutions
- L-functions and distribution of prime numbers
- Zeta and L-values

Sample of geometric structures and symmetries
- Elliptic curve basics
- Modular forms, modular curves and Hecke symmetry
- Complex multiplication
- Frobenius symmetry
- Monodromy
- Fine structure in characteristic \(p \)

Figure: Riemann
Dirichlet L-functions

(ii) Similar properties hold for the Dirichlet L-function

\[L(\chi, s) = \sum_{n \in \mathbb{N}, (n, N) = 1} \chi(n) \cdot n^{-s} \quad \text{Re}(s) > 1 \]

for a primitive Dirichlet character \(\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{C}^\times \).
Sample arithmetic statements
- Diophantine equations
- Counting solutions of a diophantine equation
- Counting congruence solutions
- L-functions and distribution of prime numbers
- Zeta and L-values

Sample of geometric structures and symmetries
- Elliptic curve basics
- Modular forms, modular curves and Hecke symmetry
- Complex multiplication
- Frobenius symmetry
- Monodromy
- Fine structure in characteristic p

Figure: Dirichlet
L-functions and distribution of prime numbers

(a) Dirichlet’s theorem for primes in arithmetic progression
\[L(\chi, 1) \neq 0 \ \forall \ \text{Dirichlet character} \ \chi. \]

(b) The prime number theorem
\[\leftrightarrow \ \text{zero free region of } \zeta(s) \ \text{near} \ \{\text{Re}(s) = 1\}. \]

(c) Riemann’s hypothesis \(\leftrightarrow \ \text{the first term after the main term in the asymptotic expansion of } \zeta(s). \)
L-functions and distribution of prime numbers

(a) Dirichlet’s theorem for primes in arithmetic progression
\[L(\chi, 1) \neq 0 \ \forall \ \text{Dirichlet character } \chi. \]

(b) The prime number theorem
\[\leftrightarrow \text{ zero free region of } \zeta(s) \text{ near } \{\text{Re}(s) = 1\}. \]

(c) Riemann’s hypothesis \(\leftrightarrow \) the first term after the main term in the asymptotic expansion of \(\zeta(s) \).
L-functions and distribution of prime numbers

(a) Dirichlet’s theorem for primes in arithmetic progression
 \[L(\chi, 1) \neq 0 \quad \forall \text{ Dirichlet character } \chi. \]

(b) The prime number theorem
 \[\leftrightarrow \text{ zero free region of } \zeta(s) \text{ near } \{\Re(s) = 1\}. \]

(c) Riemann’s hypothesis \[\leftrightarrow \text{ the first term after the main term in the asymptotic expansion of } \zeta(s). \]
Bernoulli numbers and zeta values

5. Special values of L-functions

Examples. (a) zeta and L-values for \mathbb{Q}.
Recall that the Bernoulli numbers B_n are defined by

$$
\frac{x}{e^x - 1} = \sum_{n \in \mathbb{N}} \frac{B_n}{n!} \cdot x^n
$$

$B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_4 = -1/30, B_6 = 1/42, B_8 = -1/30, B_{10} = 5/66, B_{12} = -691/2730.$

(i) (Euler) $\zeta(1 - k) = -B_k/k \ \forall$ even integer $k > 0$.

(ii) (Leibniz’s formula, 1678; Madhava, \sim 1400)

$$
1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}
$$
5. Special values of L-functions

Examples. (a) zeta and L-values for \mathbb{Q}.
Recall that the Bernoulli numbers B_n are defined by

$$\frac{x}{e^x - 1} = \sum_{n \in \mathbb{N}} \frac{B_n}{n!} \cdot x^n$$

$B_0 = 1$, $B_1 = -1/2$, $B_2 = 1/6$, $B_4 = -1/30$, $B_6 = 1/42$, $B_8 = -1/30$, $B_{10} = 5/66$, $B_{12} = -691/2730$.

(i) (Euler) $\zeta(1 - k) = -B_k/k \ \forall$ even integer $k > 0$.

(ii) (Leibniz’s formula, 1678; Madhava, ~ 1400)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}$$
Bernoulli numbers and zeta values

5. Special values of L-functions

Examples. (a) zeta and L-values for \(\mathbb{Q} \).

Recall that the Bernoulli numbers \(B_n \) are defined by

\[
\frac{x}{e^x - 1} = \sum_{n \in \mathbb{N}} \frac{B_n}{n!} \cdot x^n
\]

\(B_0 = 1, \ B_1 = -1/2, \ B_2 = 1/6, \ B_4 = -1/30, \ B_6 = 1/42, \)
\(B_8 = -1/30, \ B_{10} = 5/66, \ B_{12} = -691/2730. \)

(i) (Euler) \(\zeta(1 - k) = -\frac{B_k}{k} \quad \forall \ \text{even integer } k > 0. \)

(ii) (Leibniz’s formula, 1678; Madhava, \(\sim 1400 \))

\[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}\]
(b) L-values often contain deep arithmetic/geometric information.

(i) Leibniz’s formula: $\mathbb{Z}[\sqrt{-1}]$ is a PID (because the formula implies that the class number $h(\mathbb{Q}(\sqrt{-1}))$ is 1).

(ii) B_k/k appears in the formula for the number of (isomorphism classes of) exotic $(4k - 1)$-spheres.
Kummer congruence

(c) (Kummer congruence)

(i) \(\zeta(m) \in \mathbb{Z}_p \) for \(m \leq 0 \) with \(m \not\equiv 1 \pmod{p-1} \)

(ii) \(\zeta(m) \equiv \zeta(m') \pmod{p} \) for all \(m, m' \leq 0 \) with \(m \equiv m' \not\equiv 1 \pmod{p-1} \).

Examples.

- \(\zeta(-1) = -\frac{1}{2^2 \cdot 3^2}; \ -1 \equiv 1 \pmod{p-1} \) only for \(p = 2, 3 \).

- \(\zeta(-11) = \frac{691}{2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13}; \ -11 \equiv 1 \pmod{p-1} \) holds only for \(p = 2, 3, 5, 7, 13 \).

- \(\zeta(-5) = -\frac{1}{2^2 \cdot 3^2 \cdot 7} \equiv \zeta(-1) \pmod{5} \).
 Note that \(3 \cdot 7 \equiv 1 \pmod{5} \).
Kummer congruence

(c) (Kummer congruence)

(i) \(\zeta(m) \in \mathbb{Z}_p \) for \(m \leq 0 \) with \(m \not\equiv 1 \pmod{p-1} \)

(ii) \(\zeta(m) \equiv \zeta(m') \pmod{p} \) for all \(m, m' \leq 0 \) with \(m \equiv m' \not\equiv 1 \pmod{p-1} \).

Examples.

- \(\zeta(-1) = -\frac{1}{2^2 \cdot 3^2} \); \(-1 \equiv 1 \pmod{p-1}\) only for \(p = 2, 3 \).

- \(\zeta(-11) = \frac{691}{2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13} \); \(-11 \equiv 1 \pmod{p-1}\) holds only for \(p = 2, 3, 5, 7, 13 \).

- \(\zeta(-5) = -\frac{1}{2^2 \cdot 3^2 \cdot 7} \equiv \zeta(-1) \pmod{5} \). Note that \(3 \cdot 7 \equiv 1 \pmod{5} \).
Sample arithmetic statements
- Diophantine equations
- Counting solutions of a diophantine equation
- Counting congruence solutions
- L-functions and distribution of prime numbers
- Zeta and L-values

Sample of geometric structures and symmetries
- Elliptic curve basics
- Modular forms, modular curves and Hecke symmetry
- Complex multiplication
- Frobenius symmetry
- Monodromy
- Fine structure in characteristic p

Figure: Kummer
Elliptic curves basics

II. Sample of geometric structures and symmetries

1. Review of elliptic curves

Equivalent definitions of an elliptic curve E:

- a projective curve with an algebraic group law;
- a projective curve of genus one together with a rational point (= the origin);
- over \mathbb{C}: a complex torus of the form $E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, where $\tau \in \mathfrak{H} :=$ upper-half plane;
- over a field F with $6 \in F^\times$: given by an affine equation

$$y^2 = 4x^3 - g_2 x - g_3, \quad g_2, g_3 \in F.$$
Weistrass theory

For \(E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z} \), let

\[
\begin{align*}
x_\tau(z) &= \wp(\tau, z) \\
&= \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left(\frac{1}{(z - m\tau - n)^2} - \frac{1}{(m\tau + n)^2} \right)
\end{align*}
\]

\(y_\tau(z) = \frac{d}{dz} \wp(\tau, z) \)

Then \(E_\tau \) satisfies the Weistrass equation

\[
y_\tau^2 = 4x_\tau^3 - g_2(\tau)x_\tau - g_3(\tau)
\]

with

- \(g_2(\tau) = 60 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^4} \)
- \(g_3(\tau) = 140 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^6} \)
Weistrass theory

For $E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, let

$$x_\tau(z) = \wp(\tau, z)$$

$$= \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left(\frac{1}{(z - m\tau - n)^2} - \frac{1}{(m\tau + n)^2} \right)$$

$$y_\tau(z) = \frac{d}{dz} \wp(\tau, z)$$

Then E_τ satisfies the Weistrass equation

$$y_\tau^2 = 4x_\tau^3 - g_2(\tau)x_\tau - g_3(\tau)$$

with

- $g_2(\tau) = 60 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^4}$

- $g_3(\tau) = 140 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^6}$
Weistrass theory

For $E_\tau = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, let

$$x_\tau(z) = \wp(\tau, z) = \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left(\frac{1}{(z - m\tau - n)^2} - \frac{1}{(m\tau + n)^2} \right)$$

$$y_\tau(z) = \frac{d}{dz} \wp(\tau, z)$$

Then E_τ satisfies the Weistrass equation

$$y_\tau^2 = 4x_\tau^3 - g_2(\tau)x_\tau - g_3(\tau)$$

with

- $g_2(\tau) = 60 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^4}$
- $g_3(\tau) = 140 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^6}$
The j-invariant

Elliptic curves are classified by their j-invariant

$$j = 1728 \frac{g_2^3}{g_2^3 - 27g_3^2}$$

Over \mathbb{C}, $j(E_\tau)$ depends only on the lattice $\mathbb{Z}\tau + \mathbb{Z}$ of E_τ. So $j(\tau)$ is a modular function for $SL_2(\mathbb{Z})$:

$$j \left(\frac{a\tau + b}{c\tau + d} \right) = j(\tau)$$

for all $a, b, c, d \in \mathbb{Z}$ with $ad - bc = 1$.

We have a Fourier expansion

$$j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots,$$

where $q = q_\tau = e^{2\pi\sqrt{-1}\tau}$.

The j-invariant

Elliptic curves are classified by their j-invariant

$$j = 1728 \frac{g_2^3}{g_2^3 - 27g_3^2}$$

Over \mathbb{C}, $j(E_\tau)$ depends only on the lattice $\mathbb{Z}\tau + \mathbb{Z}$ of E_τ. So $j(\tau)$ is a modular function for $\text{SL}_2(\mathbb{Z})$:

$$j \left(\frac{a\tau + b}{c\tau + d} \right) = j(\tau)$$

for all $a, b, c, d \in \mathbb{Z}$ with $ad - bc = 1$.

We have a Fourier expansion

$$j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots,$$

where $q = q_\tau = e^{2\pi\sqrt{-1}\tau}$.
The *j*-invariant

Elliptic curves are classified by their *j*-invariant

\[
j = 1728 \frac{g_3^3}{g_2^3 - 27g_3^2}
\]

Over \(\mathbb{C}\), \(j(E_\tau)\) depends only on the lattice \(\mathbb{Z}\tau + \mathbb{Z}\) of \(E_\tau\). So \(j(\tau)\) is a modular function for \(\text{SL}_2(\mathbb{Z})\):

\[
j\left(\frac{a\tau + b}{c\tau + d}\right) = j(\tau)
\]

for all \(a, b, c, d \in \mathbb{Z}\) with \(ad - bc = 1\).

We have a Fourier expansion

\[
j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots,
\]

where \(q = q_\tau = e^{2\pi \sqrt{-1}\tau}\).
2. Modular forms and modular curves

Let $\Gamma \subset SL_2(\mathbb{Z})$ be a congruence subgroup of $SL_2(\mathbb{Z})$, i.e. Γ contains all elements which are $\equiv I_2 \pmod{N}$ for some N.

(a) A holomorphic function $f(\tau)$ on the upper half plane \mathbb{H} is said to be a modular form of weight k and level Γ if

$$f((a\tau + b)(c\tau + d)^{-1}) = (c\tau + d)^k \cdot f(\tau) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

and has moderate growth at all cusps.

(b) The quotient $Y_\Gamma := \Gamma \backslash \mathbb{H}$ has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.
Modular forms, modular curves and Hecke symmetry

2. Modular forms and modular curves

Let $\Gamma \subset \text{SL}_2(\mathbb{Z})$ be a congruence subgroup of $\text{SL}_2(\mathbb{Z})$, i.e. Γ contains all elements which are $\equiv I_2 \pmod{N}$ for some N.

(a) A holomorphic function $f(\tau)$ on the upper half plane \mathbb{H} is said to be a modular form of weight k and level Γ if

$$f((a\tau + b)(c\tau + d)^{-1}) = (c\tau + d)^k \cdot f(\tau) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

and has moderate growth at all cusps.

(b) The quotient $Y_{\Gamma} := \Gamma \backslash \mathbb{H}$ has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.
2. Modular forms and modular curves

Let $\Gamma \subset \text{SL}_2(\mathbb{Z})$ be a congruence subgroup of $\text{SL}_2(\mathbb{Z})$, i.e. Γ contains all elements which are $\equiv I_2 \pmod{N}$ for some N.

(a) A holomorphic function $f(\tau)$ on the upper half plane \mathbb{H} is said to be a modular form of weight k and level Γ if

$$f((a\tau + b)(c\tau + d)^{-1}) = (c\tau + d)^k \cdot f(\tau) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

and has moderate growth at all cusps.

(b) The quotient $Y_\Gamma := \Gamma \backslash \mathbb{H}$ has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.
Modular curves and Hecke symmetry

(c) Modular forms of weight k for $\Gamma = H^0(X_\Gamma, \omega^k)$, where X_Γ is the natural compactification of Y_Γ, and ω is the Hodge line bundle on X_Γ

$$\omega|_E = \text{Lie}(E)^\vee \quad \forall [E] \in X_\Gamma$$

(d) The action of $\text{GL}_2(\mathbb{Q}) \text{det}>0$ on \mathbb{H} “survives” on the modular curve $Y_\Gamma = \Gamma \backslash \mathbb{H}$ and takes a reincarnated form as a family of algebraic correspondences.

The L-function attached to a cusp form which is a common eigenvector of all Hecke correspondences admits an Euler product.
Modular curves and Hecke symmetry

(c) Modular forms of weight k for $\Gamma = H^0(X_\Gamma, \omega^k)$, where X_Γ is the natural compactification of Y_Γ, and ω is the Hodge line bundle on X_Γ

$$\omega|_E = \text{Lie}(E)^\vee \quad \forall [E] \in X_\Gamma$$

(d) The action of $\text{GL}_2(\mathbb{Q})_{\text{det}>0}$ on \mathbb{H} “survives” on the modular curve $Y_\Gamma = \Gamma \backslash \mathbb{H}$ and takes a reincarnated form as a family of algebraic correspondences.

The L-function attached to a cusp form which is a common eigenvector of all Hecke correspondences admits an Euler product.
Sample arithmetic statements
- Diophantine equations
- Counting solutions of a diophantine equation
- Counting congruence solutions
- L-functions and distribution of prime numbers
- Zeta and L-values

Sample of geometric structures and symmetries
- Elliptic curve basics
- Modular forms, modular curves and Hecke symmetry
- Complex multiplication
- Frobenius symmetry
- Monodromy
- Fine structure in characteristic p

Figure: Hecke
The Ramanujan τ function

Example. Weight 12 cusp forms for $SL_2(\mathbb{Z})$ are constant multiples of

$$\Delta = q \cdot \prod_{m \geq 1} (1 - q^m)^{24} = \sum_{n} \tau(n) q^n$$

and

$$T_p(\Delta) = \tau(p) \cdot \Delta \quad \forall \, p,$$

where T_p is the Hecke operator represented by $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$.

Let $L(\Delta, s) = \sum_{n \geq 1} a_n \cdot n^{-s}$. We have

$$L(\Delta, s) = \prod_{p} \left(1 - \tau(p) p^{-s} + p^{11-2s}\right)^{-1}.$$
The Ramanujan τ function

Example. Weight 12 cusp forms for $\text{SL}_2(\mathbb{Z})$ are constant multiples of

$$
\Delta = q \cdot \prod_{m \geq 1} (1 - q^m)^{24} = \sum_n \tau(n) q^n
$$

and

$$
T_p(\Delta) = \tau(p) \cdot \Delta \quad \forall p,
$$

where T_p is the Hecke operator represented by $\left(\begin{array}{cc} p & 0 \\ 0 & 1 \end{array} \right)$.

Let $L(\Delta, s) = \sum_{n \geq 1} a_n \cdot n^{-s}$. We have

$$
L(\Delta, s) = \prod_p \left(1 - \tau(p) p^{-s} + p^{11-2s} \right)^{-1}.
$$
CM elliptic curves

3. Complex multiplication

An elliptic \(E \) over \(\mathbb{C} \) is said to have **complex multiplication** if its endomorphism algebra \(\text{End}^0(E) \) is an imaginary quadratic field.

Example. Consequences of

- \(j(\mathbb{C}/\mathcal{O}_K) \) is an algebraic integer
- \(K \cdot j(\mathbb{C}/\mathcal{O}_K) = \) the Hilbert class field of \(K \).

\[
e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613 \ldots
\]

\[
j \left(\frac{-1 + \sqrt{-67}}{2} \right) = -147197952000 = -2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3
\]

\[
e^{\pi \sqrt{163}} = 262537412640768743.999999999999925007259719 \ldots
\]

\[
j \left(\frac{-1 + \sqrt{-163}}{2} \right) = -262537412640768000 = -2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3
\]
CM elliptic curves

3. Complex multiplication

An elliptic \(E \) over \(\mathbb{C} \) is said to have **complex multiplication** if its endomorphism algebra \(\text{End}^0(E) \) is an imaginary quadratic field.

Example. Consequences of

- \(j(\mathbb{C}/\mathcal{O}_K) \) is an algebraic integer
- \(K \cdot j(\mathbb{C}/\mathcal{O}_K) = \) the Hilbert class field of \(K \).

\[
e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613 \ldots
\]

\[
j\left(\frac{-1+\sqrt{-67}}{2}\right) = -147197952000 = -2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3
\]

\[
e^{\pi \sqrt{163}} = 262537412640768743.99999999999999925007259719 \ldots
\]

\[
j\left(\frac{-1+\sqrt{-163}}{2}\right) = -262537412640768000 = -2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3
\]
CM elliptic curves

3. Complex multiplication

An elliptic E over \mathbb{C} is said to have complex multiplication if its endomorphism algebra $\text{End}^0(E)$ is an imaginary quadratic field.

Example. Consequences of

- $j(\mathbb{C}/\mathcal{O}_K)$ is an algebraic integer
- $K \cdot j(\mathbb{C}/\mathcal{O}_K) = \text{the Hilbert class field of } K.$

\[
e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613 \ldots
\]

\[
j\left(\frac{-1+\sqrt{-67}}{2}\right) = -147197952000 = -2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3
\]

\[
e^{\pi \sqrt{163}} = 262537412640768743.99999999999925007259719 \ldots
\]

\[
j\left(\frac{-1+\sqrt{-163}}{2}\right) = -262537412640768000 = -2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3
\]
Mod p points for a CM curve

A typical feature of CM elliptic curves is that there are explicit formulas: Let E be the elliptic curve

$$y^2 = x^3 + x,$$

which has CM by $\mathbb{Z}[\sqrt{-1}]$. We have

$$#E(\mathbb{F}_p) = 1 + p - a_p$$

and for odd p we have

$$a_p = \sum_{u \in \mathbb{F}_p} \left(\frac{u^3 + u}{p} \right)$$

$$= \begin{cases} 0 & \text{if } p \equiv 3 \pmod{4} \\ -2a & \text{if } p = a^2 + 4b^2 \text{ with } a \equiv 1 \pmod{4} \end{cases}$$
Mod p points for a CM curve

A typical feature of CM elliptic curves is that there are explicit formulas: Let E be the elliptic curve

$$y^2 = x^3 + x,$$

which has CM by $\mathbb{Z}[\sqrt{-1}]$. We have

$$\#E(\mathbb{F}_p) = 1 + p - a_p$$

and for odd p we have

$$a_p = \sum_{u \in \mathbb{F}_p} \left(\frac{u^3 + u}{p} \right)$$

$$= \begin{cases}
0 & \text{if } p \equiv 3 \pmod{4} \\
-2a & \text{if } p = a^2 + 4b^2 \text{ with } a \equiv 1 \pmod{4}
\end{cases}$$
A CM curve and its associated modular form, continued

The L-function $L(E, s)$ attached to E with

$$
\prod_{p \text{ odd}} \left(1 - a_p p^{-s} + p^{1-2s}\right)^{-1} = \sum_n a_n \cdot n^{-s}
$$

is equal to a Hecke L-function $L(\psi, s)$, where the Hecke character ψ is the given by

$$
\psi(a) = \begin{cases}
0 & \text{if } 2 | N(a) \\
\lambda & \text{if } a = (\lambda), \lambda \in 1 + 4\mathbb{Z} + 2\mathbb{Z}\sqrt{-1}
\end{cases}
$$

The function $f_E(\tau) = \sum_n a_n \cdot q^n$ is a modular form of weight 2 and level 4, and

$$
f_E(\tau) = \sum_a \psi(a) \cdot q^{N(a)} = \sum_{a \equiv 1 \pmod{4}} a \cdot q^{a^2 + b^2}
$$
Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_q has a map $\text{Fr}_q : X \to X$, induced by the ring endomorphism $f \mapsto f^q$ of the function field of X.

Deligne’s proof of Weil’s conjecture implies that

$$\tau(p) \leq 2p^{11/2} \quad \forall p$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $H^1_{\text{et}} \left(\overline{X}, \text{Sym}^{10} (H(\mathcal{E}/X)) \right)$, which “contains” the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_p and the Hecke correspondence T_p; invoke the Weil bound.
Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_q has a map $\text{Fr}_q : X \to X$, induced by the ring endomorphism $f \mapsto f^q$ of the function field of X.

Deligne’s proof of Weil’s conjecture implies that

$$\tau(p) \leq 2p^{11/2} \quad \forall p$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $H^1_{\text{et}}(\overline{X}, \text{Sym}^{10}(H(E/X)))$, which “contains” the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_p and the Hecke correspondence T_p; invoke the Weil bound.
4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_q has a map $\text{Fr}_q : X \to X$, induced by the ring endomorphism $f \mapsto f^q$ of the function field of X.

Deligne’s proof of Weil’s conjecture implies that

$$\tau(p) \leq 2p^{11/2} \quad \forall p$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $H^1_{et}(\overline{X}, \text{Sym}^{10}(H(E/X)))$, which “contains” the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_p and the Hecke correspondence T_p; invoke the Weil bound.
Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_q has a map $\text{Fr}_q : X \to X$, induced by the ring endomorphism $f \mapsto f^q$ of the function field of X.

Deligne’s proof of Weil’s conjecture implies that

$$\tau(p) \leq 2p^{11/2} \quad \forall p$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $H^1_{\text{et}}(\overline{X}, \text{Sym}^{10}(\mathbb{H}((\mathcal{E}/X))))$, which “contains” the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_p and the Hecke correspondence T_p; invoke the Weil bound.
5. Monodromy

(a) The hypergeometric differential equation

\[4x (1 - x) \frac{d^2 y}{dx^2} + 4 (1 - 2x) \frac{dy}{dx} - y = 0\]

has a classical solution

\[F(1/2, 1/2, 1, x) = \sum_{n \geq 0} \left(-\frac{1}{2}\right)^n x^n\]

The global monodromy group of the above differential is the principal congruence subgroup \(\Gamma(2)\).
Historic origin

Remark. The word “monodromy” means “run around singly”; it was (first) used by Riemann in *Beiträge zur Theorie der durch die Gauss’sche Reihe F(α, β, γ, x) darstellbaren Functionen*, 1857.

…; für einen Werth in welchem keine Verzweigung stattfindet, heist die Function “einändrig order monodrom”…
The Legendre family of elliptic curves

The family of equations

\[y^2 = x(x - 1)(x - \lambda) \quad 0, 1, \infty \neq \lambda \in \mathbb{P}^1 \]

defines a family \(\pi : \mathcal{E} \to S = \mathbb{P}^1 - \{0, 1, \infty\} \) of elliptic curves, with

\[j(E_\lambda) = \frac{2^8 [1 - \lambda (1 - \lambda)]^3}{\lambda^2 (1 - \lambda)^2} \]

This formula exhibits the \(\lambda \)-line as an \(S_3 \)-cover of the \(j \)-line, such that the 6 conjugates of \(\lambda \) are

\[\lambda, \frac{1}{\lambda}, 1 - \lambda, \frac{1}{1 - \lambda}, \frac{\lambda}{\lambda - 1}, \frac{\lambda - 1}{\lambda}. \]
The formula

\[
4\lambda(1-\lambda)\frac{d}{d\lambda^2} + 4(1-2\lambda)\frac{d}{d\lambda} - 1\left(\frac{dx}{y}\right) = -d\left(\frac{y}{(x-\lambda)^2}\right)
\]

means that the global section \([dx/y]\) of \(H^1_{dR}(E/S)\) satisfies the above hypergeometric ODE.
Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries among potential symmetries.

2. To say that the monodromy is “as large as possible” is an irreducibility statement.

3. Maximality of monodromy has important consequences. E.g. the key geometric input in Deligne-Ribet’s proof of p-adic interpolation for special values of Hecke L-functions attached to totally real fields.
Monodromy and symmetry

1. Monodromy can be regarded as **attainable symmetries** among *potential symmetries*.

2. To say that the monodromy is “as large as possible” is an **irreducibility** statement.

3. Maximality of monodromy has important consequences. E.g. the key geometric input in Deligne-Ribet’s proof of p-adic interpolation for special values of Hecke L-functions attached to totally real fields.
Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries among potential symmetries.

2. To say that the monodromy is “as large as possible” is an irreducibility statement.

3. Maximality of monodromy has important consequences. E.g. the key geometric input in Deligne-Ribet’s proof of p-adic interpolation for special values of Hecke L-functions attached to totally real fields.
6. Fine structure in char. $p > 0$

Example. (ordinary/supersingular dichotomy)

Elliptic curves over an algebraically closed field $k \supset \mathbb{F}_p$ come in two flavors.

- Those with $E(k) \simeq (0)$ are called **supersingular**.
 - There is only a *finite* number of supersingular j-values.
 - An elliptic curve E over a finite field \mathbb{F}_q is supersingular if and only if $E(\mathbb{F}_q) \equiv 0 \pmod{p}$.

- Those with $E[p](k) \simeq \mathbb{Z}/p\mathbb{Z}$ are said to be **ordinary**.
 An elliptic curve E over a finite field \mathbb{F}_q is supersingular if and only if $E(\mathbb{F}_q) \not\equiv 0 \pmod{p}$.
Supersingular elliptic curves

6. Fine structure in char. $p > 0$

Example. (ordinary/supersingular dichotomy)
Elliptic curves over an algebraically closed field $k \supset \mathbb{F}_p$ come in two flavors.

- Those with $E(k) \simeq (0)$ are called supersingular.
 - There is only a finite number of supersingular j-values.
 - An elliptic curve E over a finite field \mathbb{F}_q is supersingular if and only if $E(\mathbb{F}_q) \equiv 0 \pmod{p}$.

- Those with $E[p](k) \simeq \mathbb{Z}/p\mathbb{Z}$ are said to be ordinary.
 An elliptic curve E over a finite field \mathbb{F}_q is supersingular if and only if $E(\mathbb{F}_q) \not\equiv 0 \pmod{p}$
The Hasse invariant

For the Legendre family, the supersingular locus (for \(p > 2 \)) is the zero locus of

\[
A(\lambda) = (-1)^{(p-1)/2} \sum_{j=0}^{(p-1)/2} \left(\frac{1/2}{j!} \right)^2 \cdot \lambda^j
\]

where \((c)_m := c(c + 1) \cdots (c + m - 1)\).

Remark. The above formula for the coefficients \(a_j\) satisfy

\[
a_1, \ldots, a_{(p-1)/2} \in \mathbb{Z}(p)
\]

and

\[
a_{(p+1)/2} \equiv \cdots \equiv a_{p-1} \equiv 0 \pmod{p}.
\]
The Hasse invariant

For the Legendre family, the supersingular locus (for $p > 2$) is the zero locus of

$$A(\lambda) = (-1)^{(p-1)/2} \cdot \sum_{j=0}^{(p-1)/2} \left(\frac{1}{2j} \right)^2 \cdot \lambda^j$$

where $(c)_m := c(c+1) \cdots (c+m-1)$.

Remark. The above formula for the coefficients a_j satisfy

$$a_1, \ldots, a_{(p-1)/2} \in \mathbb{Z}_p$$

and

$$a_{(p+1)/2} \equiv \cdots \equiv a_{p-1} \equiv 0 \pmod{p}.$$
The Hasse invariant

For the Legendre family, the supersingular locus (for $p > 2$) is the zero locus of

$$A(\lambda) = (-1)^{(p-1)/2} \sum_{j=0}^{(p-1)/2} \left(\frac{1/2}{j!} \right)^2 \cdot \lambda^j$$

where $(c)_m := c(c + 1) \cdots (c + m - 1)$.

Remark. The above formula for the coefficients a_j satisfy

$$a_1, \ldots, a_{(p-1)/2} \in \mathbb{Z}(p)$$

and

$$a_{(p+1)/2} \equiv \cdots \equiv a_{p-1} \equiv 0 \pmod{p}.$$
Counting supersingular j-values

Theorem. (Eichler 1938) The number h_p of supersingular j-values is

$$h_p = \begin{cases}
\lfloor p/12 \rfloor & \text{if } p \equiv 1 \pmod{12} \\
\lceil p/12 \rceil & \text{if } p \equiv 5 \text{ or } 7 \pmod{12} \\
\lceil p/12 \rceil + 1 & \text{if } p \equiv 11 \pmod{12}
\end{cases}$$

Remark. (i) It is known that h_p is the *class number* for the quaternion division algebra over \mathbb{Q} ramified (exactly) at p and ∞.

(ii) Deuring thought that it is *nicht leicht* that the above class number formula can be obtained by counting supersingular j-invariants directly.
Igusa’s proof

From the hypergeometric equation for $F(1/2, 1/2, 1, x)$ we conclude that

$$\left[4\lambda (1 - \lambda) \frac{d^2}{d\lambda^2} + 4 (1 - 2\lambda) \frac{d}{d\lambda} - 1\right] A(\lambda) \equiv 0 \pmod{p}$$

for all $p > 3$. It follows immediately that $A(\lambda)$ has simple zeroes. The formula for h_p is now an easy consequence. (Hint: Use the formula 6-to-1 cover of the j-line by the λ-line.) Q.E.D.
For the *ordinary* locus of the Legendre family

\[\pi : E^{\text{ord}} \to S^{\text{ord}} \]

the monodromy representation

\[\rho : \pi_1(S^{\text{ord}}) \to \text{Aut}(E^{\text{ord}}[p^\infty](\overline{F}_p)) \cong \mathbb{Z}_p^\times \]

(defined by Galois theory) is surjective.
Sketch of a proof: Given any \(n > 0 \) and any \(\bar{u} \in (\mathbb{Z}/p^n\mathbb{Z})^\times \), pick a representative \(u \in \mathbb{N} \) of \(\bar{u} \) with \(0 < u < p^n \) and let let

\[
\iota : \mathbb{Q}[T]/(T^2 - u \cdot T + p^{4n}) \hookrightarrow \mathbb{Q}_p
\]

be the embedding such that \(\iota(T) \in \mathbb{Z}_p^\times \). Then

\[
\iota(T) \equiv u \pmod{p^{2n}}.
\]

By a result of Deuring, there exists an elliptic curve \(E \) over \(\mathbb{F}_{p^{2n}} \) whose Frobenius is the Weil number \(\iota(T) \). So the image of the monodromy representation contains \(\iota(T) \), which is congruent to the given element \(\bar{u} \in \mathbb{Z}/p^n\mathbb{Z} \). Q.E.D.