Siegel Modular Varieties and Hecke symmetry

Ching-Li Chai

Colloquium, Lehigh University, September 21, 2016
Goal: survey Hecke symmetry on the moduli space of (principally polarized) abelian varieties of characteristic $p > 0$ and related rigidity phenomenon.
* history:
 - elliptic curves → curves of higher genera
 - abelian varieties → moduli spaces of abelian varieties

* phenomena and structures in characteristic \(p > 0 \);
 predictions (= conjectures)

* new tools/methods applicable to other problems
§ 1. From elliptic curves to abelian varieties and their moduli

1.1. What is an elliptic curve? Several approaches

(a) algebra \[E : \{ y^2 = 4x^3 - g_2x - g_3 \} , \quad \Delta := g_2^3 - 27g_3^2 , \quad j = 1728 \frac{g_2^3}{\Delta} \]

(b) geometry \[E(\mathbb{C}) \leftarrow \text{Lie}(E)/H_1(E(\mathbb{C}),\mathbb{Z}) \cong \mathbb{C}/\mathbb{Z} \tau + \mathbb{Z} \quad \tau \in \mathcal{H}_2 = \{ \tau \in \mathbb{C} \mid \Im(\tau) > 0 \} \]

\[p \rightarrow \int_p^{\infty} \frac{dx}{y} \]

(c) analysis

\[g(z; \tau) = \frac{1}{z^2} + \sum_{y \in \Lambda_{\tau}}' \left[\frac{1}{(z-y)^2} - \frac{1}{y^2} \right] \]

\[\left(\frac{d}{dz} g(z; \tau) \right)^2 = 4g(z; \tau)^3 - g_2(\Lambda_{\tau})g(z; \tau) - g_3(\Lambda_{\tau}) , \]

\[g_2(\Lambda_{\tau}) = 60 \cdot \sum_{y \in \Lambda_{\tau}}' \frac{1}{y^4} , \quad g_3(\Lambda_{\tau}) = 140 \sum_{y \in \Lambda_{\tau}}' \frac{1}{y^6} \]
1.2. The origin of elliptic curves

A. (Diophantine equation)

- Fermat: \(x^4 - y^4 = z^2 \) has no nontrivial rational solution
 (infinite descent - actually a 2-descent: w.r.t. \(2 = (1 + \sqrt{-1})(1 - \sqrt{-1}) \))
 - often treated in college-level number theory

- Gauss (last entry of Gauss's mathematical diary, 1814)

\[\begin{align*}
E_{\text{aff}} := \{ & \, 1 = x^2 + y^2 + x^2 y^2 \} \\
 & (a + \sqrt{-b}) \cdot \mathbb{Z}[\sqrt{-1}] \text{ prime ideal} \\
\text{The congruence} & \quad 1 \equiv x^2 + y^2 + x^2 y^2 \pmod{(a + \sqrt{-b})^3} \\
\text{has} & \quad (a - 1)^2 + b^2 \text{ solutions, including the 4 solutions at } \infty:
\end{align*} \]

\((x = \infty, y = \pm \sqrt{a}), (x = \pm \sqrt{a}, y = \infty)\)
B. (elliptic integral,

December 1751, paper by Fagnano reached Euler in Berlin)

- Fagnano: \(\frac{dx}{\sqrt{1-x^4}} = \frac{dy}{\sqrt{1-y^4}} \) has rational solutions

 i.e. \(\int_0^x \frac{dp}{\sqrt{1-p^4}} = \int_0^y \frac{dy}{\sqrt{1-y^4}} \) admits solution where \(y = a \) rational function of \(x \)

- Euler

 \[\int_0^r \frac{dp}{\sqrt{1-p^4}} = \sqrt{2} \int_0^t \frac{d\xi}{\sqrt{1+\xi^4}}, \quad \int_0^t \frac{d\xi}{\sqrt{1+\xi^4}} = \sqrt{2} \int_0^u \frac{d\eta}{\sqrt{1-\eta^4}} \]

 \[r^2 = \frac{2t^2}{1+t^4}, \quad t^2 = \frac{2u^2}{1-u^4} \]

 \[\int_0^r \frac{dp}{\sqrt{1-p^4}} \uparrow (1 \pm \sqrt{-1}) \int_0^v \frac{d\eta}{\sqrt{1-\eta^4}} \]

 \(r = \pm \frac{2\sqrt{1}v^2}{1-v^4} \)
inversion of abelian integrals

for \(y^2 = f(x) \) i.e. for hyperelliptic curves

Abel 1827, Jacobi 1828
Jacobi 1829, Fundamenta Nova Theoriae Functionum Ellipticarum
(defined Jacobi theta functions)
Compact Riemann surfaces and their Jacobians

\[S = C(C) \text{ cpt Riemann surface; } \gamma_1, \ldots, \gamma_2g \text{ } \mathbb{Z}-\text{basis of } H_1(S, \mathbb{Z}) \]

\[\omega_1, \ldots, \omega_g : \text{ } \mathbb{C}-\text{basis of } \Gamma(S, \Omega^1_S) \]

\[\Delta = (\gamma_i : \gamma_j) \in \text{M}_g(\mathbb{Z}) \]

\[P = P(\omega_1, \ldots, \omega_g; \gamma_1, \ldots, \gamma_2g) = (P_{ij})_{1 \leq i \neq j \leq 2g} \in \text{M}_{g \times 2g}(\mathbb{C}), \]

\[P_{ij} = \int_{\gamma_j} \omega_i \]

Riemann bilinear relations

\[P \cdot \Delta^{-1} \cdot tP = 0 \]

\[-\sqrt{f} \cdot P \cdot \Delta^{-1} \cdot tP \gg \omega_g \]

Torelli map:

\[C \longrightarrow \text{Pic}^1(C) \]

\[\text{Pic}^0(C) = \text{Jac}(C) = \Gamma(C, \Omega^1)^\vee / H_1(C(\omega), \mathbb{Z}) \]
1.4. Abelian varieties

Def (i) (over \mathbb{C}), a compact complex torus \(\mathbb{C}^g/\mathbb{Q} \cdot \mathbb{Z}^g\), \(Q \in \text{M}_{g \times g} (\mathbb{C})\) is a complex abelian variety iff \(\exists\) a skew-symmetric \(E \in \text{M}_{2g} (\mathbb{Z})\) with \(\det (E) \neq 0\) satisfying
\[
\begin{align*}
Q \cdot E^{-1} \cdot tQ &= 0 \\
\sqrt{-1} \cdot Q \cdot E^{-1} \cdot tQ &> 0
\end{align*}
\]

"principal part of Q"

(i)' (equivalent to (i)) a compact complex torus is an abelian variety iff it admits a holomorphic embedding into \(\mathbb{P}^N(\mathbb{C})\) for some N

Weil 1948

(ii) (algebraic definition) An irreducible algebraic group variety over a field is an abelian variety if it is complete (i.e., proper over the base field)
Def \(^{n}\) (polarization of abelian varieties)

(i) A **polarization** of an abelian variety \(A \) is an ample divisor on \(A \) up to algebraic equivalence.

(ii) The polarization of an abelian variety \(A \) attached to an ample divisor \(D \) on \(A \) is **principal** if \(D^3 = g! \) (self-intersection \(g \) times).

(iii) The polarization on \(A \) attached to \(D \) is uniquely determined by the algebraic homomorphism:

\[
\phi_D: A \longrightarrow A^t = \text{Pic}^0(A) = \text{dual abelian variety}, \text{classifying line bundles on } D \text{ algebraically equivalent to } 0
\]

\[x \mapsto [O_A(D-x)]\]

(iv) Over \(\mathbb{C} \), the fundamental class \(c([D]) \in H^2(A(\mathbb{C}), \mathbb{Z}(1)) \) corresponds to a non-singular skew-symmetric pairing on \(H_1(A(\mathbb{C}), \mathbb{Z}) \) satisfying the Riemann bilinear relations (i.e. a **Riemann form**).

A polarization \([D]\) is principal iff the Riemann form is a perfect pairing \(\mathbb{Z}\).
Over \mathbb{C}:

(i) Every principally polarized abelian variety of dimension g over \mathbb{C} is of the form

$$A_\Omega := \mathbb{C}^g / \Omega \cdot \mathbb{Z}^g + \mathbb{Z}^g$$

with principal part $\begin{bmatrix} 0 & I_g \\ -I_g & 0 \end{bmatrix}$

for some $\Omega \in \mathfrak{H}_g := \{ \Omega \in \mathrm{M}_g(\mathbb{C}) \mid \Omega = \Omega^+, \text{ Im} \Omega > 0 \}$, $\text{Siegel upper space}$

(ii) $(A_{\Omega_1}, \lambda_{\Omega_1}) \sim (A_{\Omega_2}, \lambda_{\Omega_2})$ if and only if $\exists \begin{pmatrix} A & B \\ CD & D \end{pmatrix} \in \mathfrak{H}_g(\mathbb{Z})$

such that

$$(A_{\Omega_1} + B) \cdot (C \Omega_1 + D)^{-1} = \Omega_2$$

i.e.

$$\begin{pmatrix} A & B \\ CD & D \end{pmatrix} \begin{pmatrix} \Omega_1 & \Omega_1 \\ \frac{\Omega_1}{C} & \frac{\Omega_1}{A} \end{pmatrix} = \begin{pmatrix} \Omega_2 & \Omega_2 \\ \frac{\Omega_2}{C} & \frac{\Omega_2}{A} \end{pmatrix}$$
1.5. Moduli space

Idea / phenomenon:

- The set of all isomorphism classes of all algebraic varieties of a given type (with fixed discrete invariants) often has a natural structure as an algebraic variety.
- A subvariety of such a moduli space corresponds to an algebraic family of algebraic varieties of the given type

Ex. The set of all isomorphism classes of elliptic curves is parametrized by \mathbb{A}^1, $E \mapsto j(E)$
Ex. \(g > 2 \), \(M_g = \) the moduli space classifying all proper smooth algebraic curves of genus \(g > 2 \)

*Ex. \(A_g = \) the moduli space of \(g \)-dimensional principally polarized abelian varieties

(Existence of \(M_g \) and \(A_g \) as schemes over \(\mathbb{Z} \): Mumford 1965)
Over \mathbb{C}:

$$M_g(\mathbb{C}) = \Gamma_g \backslash J_g$$

$$A_g(\mathbb{C}) = \mathbb{H}/\mathbb{Z} \backslash \mathbb{H}_g$$

J_g = Teichmüller space of genus g

Γ_g = mapping class group for an oriented connected smooth closed surface of genus g

Remark

$\tilde{T}_g : M_g \rightarrow A_g$

$[C] \rightarrow [\text{Jac}(C)]$

$T_g(k) : M_g(k) \rightarrow A_g(k)$

For every algebraically closed field k

\tilde{T}_g = Torelli 1914

General k: Weil 1957
Over an arbitrary algebraically closed field \(k \):

- \(M_g/k \) is irreducible
 - \(\text{char}(k) = 0 \): follows from the case \(k = \mathbb{C} \)
 - \(\text{char}(k) = p > 0 \): immediate from uniformization

- \(A_g/k \) is irreducible
 - \(\text{char}(k) = 0 \): follows from the case \(k = \mathbb{C} \)
 - \(\text{char}(k) = p > 0 \): Faltings - C. 1984

Deligne-Mumford 1969
§2 Hecke symmetry on \mathbb{A}_g

2.1 Definitions

Complex version: $\forall \gamma \in \text{Sp}_{2g}(\mathbb{Q}), \quad \text{Sp}_{2g}(\mathbb{Z}) \cdot \gamma \cdot \text{Sp}_{2g}(\mathbb{Z})$ induces an algebraic correspondence on $\mathbb{P}^g_{\mathbb{Q}}$.

(transcendental)

Double coset

Rmk: These algebraic correspondences are "remnants" of the transitive action of $\text{Sp}_{2g}(\mathbb{R})$ on $\mathbb{P}^g_{\mathbb{Q}}$, after quotient by $\Gamma(1) = \text{Sp}_{2g}(\mathbb{Z})$.
Def: \([[(A_1, \lambda_1)], [(A_2, \lambda_2)]] \in \mathcal{A}_g(k)\) are in the same (prime-to-\(p\)) Hecke orbit if \(\exists\) an isogeny \(\alpha: A_1 \to A_2\) and \(n \in \mathbb{Z}_{>0}\) (with \(\gcd(n, p) = 1\) if \(\text{char}(k) = p > 0\)) such that \(\alpha^*(\lambda_2) = n \lambda_1\).

Adelic picture: \(\mathcal{A}_g^{(p)} := \prod_{l \neq p} \mathbb{Q}_l (\text{restricted product})\) Let \(\mathcal{A}_{g,n/k} = \text{moduli space of triples}\) \((A, \lambda, A[n] \xrightarrow{\sim} (\mathbb{Z}/n\mathbb{Z})^g)\) symplectic

\[\text{Sp}_2g(\mathcal{A}_g^{(p)}) \supset \text{Sp}_2g(\mathcal{A}_g) \xrightarrow{\text{Gal of group}} \text{Sp}_2g(\mathcal{A}_g^{(p)}) \xrightarrow{\hat{\mathcal{Z}}^{(p)}} \prod_{l \neq p} \mathbb{Z}_l\]

prime-to-\(p\) Hecke orbits on \(\mathcal{A}_g \leftrightarrow \text{Sp}_2g(\mathcal{A}_g^{(p)})\)-orbits on \(\hat{\mathcal{A}}_g^{(p)}\)
2.2. p-adic invariants of abelian varieties

\[\ell_c = \overline{\ell_c} \geq 1 \overline{F_p} \]

(*) Every prime-to-p symplectic isogeny between principally polarized abelian varieties over \mathbb{F}_p preserve all p-adic invariants

Examples of p-adic invariants

(a) slopes / Newton polygon of an abelian variety A/k

- compare $F_{A}^{(p)} : A \to A^{(p)}$ and its iterates $F_{A}^{(p^n)} : A \to A^{(p^n)}$

 slopes = p-adic valuation of "eigenvalues" of $F_{A}^{(p)}$

 ("eigenvalues" do not make sense)

 \[0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{2g} \leq 1 \]

 \[\lambda_i \in \mathbb{Q} \quad \forall \ i \]

 \[\lambda_i + \lambda_{g+1-i} = 1 \quad \forall \ i \]

 denominator (λ_i) | multiplicity (λ_i) \quad \forall \ i.
Properties of slopes and Newton polygons

- They measure asymptotic divisibility properties of the action of F_{p^n} on $H^1_{	ext{crys}}(A)$ as $n \to \infty$

- A is ordinary \iff slopes are 0 and 1

 ordinary abelian varieties of genus g form an open dense subset of A_g/k

- A is supersingular \iff all slopes are $\frac{1}{2}$

 i.e. asymptotically F_{p^n} is comparable to p^n on $H^1_{	ext{crys}}(A)$

Ex. (b) Isomorphism class of $(A, \chi_{[p]})$

\uparrow

$\text{Ker } ([p]: A \to A)$
(c) isomorphism class of \((A[p^\infty], \lambda[p^\infty]) \hookrightarrow \cdots \rightarrow H_1(A)\)

\[
\lim_{\rightarrow n} A[p^n] = A[p^n] = \ker([p^n]: A \to A)
\]

This is the "ultimate p-adic invariant" of an abelian variety

\[\sim \text{ leaves in } A_g\]
Thm (CLC, 1995) \(\forall x = [(A, \lambda)] \in A_g(k) \) with \(A \) ordinary, the prime-to-\(p \) Hecke orbit of \(x \) is Zariski dense in \(A_g \).

Q. What is the general phenomenon when we zoom in to the non-ordinary locus of \(A_g \)?

Will see; new structure emerges
2.3 \(p \)-divisible groups

Tate 1967, Grothendieck 1970

Defn: A \(p \)-divisible group \(X \to S \) is an inductive system of commutative finite locally free group schemes

\[
\left((X_n \to S)_{n \in \mathbb{N}}, \ i_{n+1,n} : X_n \hookrightarrow X_{n+1}, \ \pi_{n+1,n} : X_{n+1} \longrightarrow X_n \right)_{\text{faithfully flat}}
\]

such that \(i_{n+1,n} \circ \pi_{n+1} = [p]_{X_{n+1}} \forall n \)

Fact \(\exists h : S \to \mathbb{N}, \text{ locally constant, such that } \text{rk} (X_n) = p^{nh} \forall n \)

Main example: \(A \to S \) abelian scheme \(\Rightarrow A[p^\infty] = \varinjlim A[p^n] \) is a \(p \)-divisible group

- May think of \(A[p^\infty] \) as a substitute for Lie algebra in characteristic \(p > 0 \)
2.4 Leaves in \tilde{A}_g

Def (Oort, 1999) $x \in \tilde{A}_g(k)$, $k = \overline{k} \cong H_p
$

The leaf $C(x)$ through x is the locally closed subvariety such that

$$C(x)(k) = \left\{ (B, \mu) \in \tilde{A}_g(k) \mid (B[p^\infty], \mu[p^\infty]) \cong (A[p^\infty], \lambda[p^\infty]) \right\}$$

Fact Every leaf in \tilde{A}_g is smooth, and stable under all prime-to-p Hecke correspondences.

Conj. (Oort) Let C be a leaf in \tilde{A}_g. For every $x \in C(k)$, the prime-to-p Hecke orbit of x is Zariski dense in C.
Remark (i) This conjecture can be formulated also for moduli spaces of PEL type in characteristic $p > 0$, which classify abelian varieties with a fixed type of polarization, endomorphisms and level structure.

(ii) The Hecke orbit conjecture holds for Ag_p and more generally for moduli spaces of PEL-type C such that p is unramified for the PEL-structure.

However, the proof uses a special property ("Hilbert trick"), and the conjecture is completely open for PEL-types A and D.

\[(\text{Oort} + \text{CLC}) \]
3. New tools, structures and conjectures/predictions/phenomena related to Hecke symmetry

\[\ell_c = \ell_c \geq 1 \ell_p \]

3.1. Monodromy and irreducibility results

Proposition A. Let \(Z \subseteq \mathbb{A}^g \) be a positive dimensional locally closed subvariety stable under all prime-to-\(p \) Hecke correspondences. If Hecke operates transitively on \(\pi_0(Z) \), then \(Z \) is irreducible (reducing irreducibility to Hecke transitivity).

Proposition B. Let \(C \subseteq \mathbb{A}^g \) be a positive dimensional leaf on \(\mathbb{A}^g \). Then the naive \(p \)-adic monodromy for \(C \) is maximal.
Prop. C. Every non-supersingular Newton stratum in \mathcal{A}_g is irreducible.

Prop. D. Every non-supersingular leaf in \mathcal{A}_g is irreducible.

[$A: CLE \ ; \ B,C,D: C+O_{art}$]

Note: a leaf in \mathcal{A}_g is supersingular iff it is finite.
3.2. Local structure of leaves

- Simplest case (2 slopes)

\[A_g \cong C \cong x_0 = [(A_0, x_0)] \quad \text{for } k = \mathbb{F}_p. \]
Slopes of \(A_0 = \{ \lambda, 1-\lambda \} \) \(\lambda < \frac{1}{2} \)

Proportion: \(C^{/x_0} = \text{the formal completion of } C \text{ at } x_0 \)

- Has a natural structure as an isoclinic \(p \)-divisible group with

 slope \(1-2\lambda \) and height \(g(g+1)/2 \) \(\text{dim} (A_g) \)

Remark: General case: \(C^{/x_0} \) is "built up" from \(p \)-divisible formal groups

not assuming that \(A_0 \) has only two slopes

by a sequence of fibrations (with \(p \)-divisible groups as fibers)
3.3 Local stabilizer principle \(\mathfrak{g} = \mathfrak{g} \geq 1_{F_p} \)

Proposition. Let \(Z \subseteq A_g \) be a locally closed subvariety, stable under all prime-to-\(p \) Hecke correspondences, \(\mathfrak{X}_0 = \{(A_0, \lambda_0) \in Z(k)\} \).

Then \(Z^{/\mathfrak{X}_0} \subseteq A_g^{/\mathfrak{X}_0} \) is stable under the natural action of an open subgroup of \(U(\text{End}(A_0), \mathfrak{X}_0)(\mathbb{Z}_p) \) on \(A_g^{/\mathfrak{X}_0} \).

Explanation:

\[\text{Aut}(A_0[p^\infty], \lambda_0[p^\infty]) \] acts on \(A_g^{/\mathfrak{X}_0} = \text{Def}(A_0, \lambda_0) \xrightarrow{\sim} \text{Def}(A_0[p^\infty], \lambda_0[p^\infty]) \) via functoriality of deformation theory.

\[U(\text{End}(A_0), \mathfrak{X}_0) \] via Rosati involution on \(\text{End}(A_0) \otimes \mathbb{Q} \)

Senary-Tate theorem
3.4. Rigidity

\[\overline{\kappa} = \overline{\kappa} \geq 1_p \]

Theorem (CIC, local rigidity) \(X \) : \(p \)-divisible group over \(\kappa \)

\(Z \leq X \) irreducible formal subvariety.

Suppose \(\exists \) a subgroup \(G \subset \text{Aut}(X) \) such that \(X^G = \) trivial and \(\hat{L} \), subgroup of \(X \) fixed by \(G \)

\(Z \) is stable under \(G \). Then \(Z \) is a \(p \)-divisible formal subgroup of \(X \)

"Exer" Case \(X = \hat{\Gamma}^h \)

\[\hat{\Gamma}^h = \text{Spf}(\overline{\kappa}[T_1, \ldots, T_h]) \]

\[\hat{\Gamma}^h = \mathbb{Z}_p^x \]

\(Z \) \(\nrightarrow \) a prime ideal \(\mathfrak{P} \subset \overline{\kappa}[T_1, \ldots, T_h] \)

Statement is: If \(\mathfrak{P} \) is stable under \(f(T_1, \ldots, T_h) \mapsto f((1+T_1)^{i+T_2}, \ldots, (1+T_h)^{i+T_h}) \)

then \(\psi(\mathfrak{P}) \leq (pr_1^*(\mathfrak{P}), pr_2^*(\mathfrak{P})) \)

\[pr_1^*(f(t)) = f(u), \quad pr_2^*(f(t)) = f(v) \]
Simple application: \(E_0 \) : an ordinary elliptic curve /\(k = \bar{\mathbb{F}}_p \)
\(A_0 = E_0 \times \cdots \times E_0 \quad \chi_0 = \) product polarization on \(A_0 \) \(g \)-times

Then the prime-to-\(p \) Hecke orbit of \(\chi_0 \) is dense in \(A_g \)

Pf: \(A_g^{/\chi_0} \cong \hat{\mathbb{G}}_m^{g(g+1)/2} \). \(U(\text{End}(A_0), \chi_0)(\mathbb{Z}_p) \cong \text{GL}_g(\mathbb{Z}_p) \)

character group

action of \(\text{GL}_g(\mathbb{Z}_p) \) on \(X^*(\hat{\mathbb{G}}_m^{g(g+1)/2}) \cong \mathbb{Z}_p^{g(g+1)/2} \)

\(\cong S^g \text{ (standard representation of } \text{GL}_g(\mathbb{Z}_p) \text{ on } \mathbb{Z}_p^g \)
Global rigidity Conjecture

Suppose \(Z \subset \text{Ag}^{\text{ord}} \), \(x_0 = [(A_0, \lambda_0)] \in \text{Ag}^{\text{ord}}(k) \), \(k = \overline{k} \cong \mathbb{Q}_p \)

\[Z^{x_0} \subset \text{Ag}^{x_0} = \text{Serre-Tate formal torus} \text{ is a formal subtorus}. \]

Then \(Z \) is the reduction of a Shimura subvariety of \(\text{Ag} \).

Remark: Known if \(Z \subset \) a Hilbert modular subvariety \((\Sigma \mathcal{L} \Sigma) \)

This case has application in Iwasawa theory \((\text{Hida, Ann. Math. 2012}) \)
a special case of the Local rigidity conjecture

\[G_0 : \text{1-dimensional smooth formal group over } \overline{\mathbb{F}}_p, \; \text{ht}(G_0) = h \]

\[M = \text{equi-characteristic deformation space of } G_0 \]

\[\cong \text{Spf}(\overline{\mathbb{F}}_p \llbracket x_1, \ldots, x_{h-1} \rrbracket) \]

\[x_1 = \text{Hasse invariant} \]

Lubin-Tate 1966

\[Z \subseteq M \text{ irreducible formal subscheme, } x_1 |_Z \neq 0 \] (i.e. \(Z \) is generically ordinary)

If \(Z \) is stable under the natural action of an open subgroup of \(\text{Aut}(G_0) \),

then \(Z = M \)

\[\cong \text{group of units in a central division algebra over } \mathbb{Q}_p \text{ with Brauer invariant } \frac{1}{h} \]
3.5. New notion: sustained p-divisible group

Motivation: Find a good (scheme-theoretic) definition of leaves

Remark: The original definition of leaves is "pointwise"; shortcomings include difficulty with deformation theory

Definition (Oort + C.) $\kappa = a$ field of characteristic $p > 0$.

X_0/κ: p-divisible group over κ

S/κ: scheme over κ

A p-divisible group $X \rightarrow S$ is strongly κ-sustained modeled on X_0/κ if

$\text{Isom}_S(X_0[p^n] \times S, X[p^n]) \rightarrow S$ is faithfully flat for all $n \in \mathbb{N}$.

scheme of isomorphisms