
10
Orbital rigidity for biextensions

In this chapter we prove that orbital rigidity holds for biextensions of p-divisible formal
groups over a perfect field  of characteristic p. The main theorem 10.6.7 is a precise
generalization of theorem 7.1.1 on the orbital rigidity of p-divisible formal groups. For a
sustained deformation space Def (X0)sus, theorem 7.1.1 implies that orbital rigidity holds
for Def (X0)sus when the p-divisible group X0 over  has exactly two slopes, and theorem
10.6.7 implies that Def (X0)sus is orbitally rigid when X0 has three slopes.

The orbital rigidity of Def (X0)sus when X0 has three slopes is the first nontrivial case
after the two-slope case. Its proof requires a new notion, called tempered perfections of
augmented Noetherian local domains over a perfect base field  of characteristic p. This new
tool can be applied to prove the orbital rigidity of Def (X0)sus for all p-divisible groups X0

with no restriction on the number of its slopes, and also the orbital rigidity for Tate-linear
formal varieties, a class of smooth formal varieties which include sustained deformation
spaces Def (X0)sus and Def (X0, µ0)sus. In the introductory section 10.1 we will explain the
general idea of orbital rigidity, and the notion of Tate-linear formal varieties. The orbital
rigidity of Tate-linear formal varieties follows from the method of tempered perfections and
induction on the nilpotency class of the nilpotent group governing the Tate-linear formal
variety.

10.1. What is an orbitally rigid equivariant formal variety?

In 10.1.1–10.1.2 we describe the general idea of “orbitally rigid equivariant formal va-
rieties with extra structures” in a categorical setting. The title of this chapter acquires
a precise meaning when one specialize to the structure of biextensions of p-divisible for-
mal groups. In 10.1.3–10.1.6.3 we explain the motivation of the orbital rigidity question
for biextensions of p-divisible formal groups, and outline how a new class of complete
augmented rings in characteristic p enters the proof of orbital rigidity for biextensions of
p-divisible formal groups.

10.1.1. Orbitally rigid equivariant formal varieties.

First we illustrate the idea of orbital rigidity in the category of equivariant local formal
varieties over an algebraically closed base field k of characteristic p. The objects in this
category are triples (D, G̃, µ), where D = Spf(R) for a complete augmented Noetherian
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536 10. ORBITAL RIGIDITY FOR BIEXTENSIONS

local domain R over k, G̃ is a topological group and µ : G̃ ⇥D ! D is a left action of G̃
on D.

(a) For any subgroups G0 of G̃, a G0-equivariant subquotient of D is a triple

(D1,D2, D1
f
// D2 ),

where D1 is a closed formal subvariety of D over k, D2 is a G0-equivariant formal
subvariety over k, and f is a G0-equivariant formal morphism.

(b) We say that a subgroup G of G̃ operates strongly nontrivial on D if for every open

subgroup G0 of G and every G0-equivariant subquotient (D1,D2, D1
f
// D2 ) of

D with dim(D2) > 0, the G0-action on D2 is nontrivial.
(c) We say that (D, G̃) is orbitally rigid if for every subgroup G of G̃ operating

strongly nontrivially on D, every irreducible closed formal subvariety of D over k
stable under the action of G is of a certain special form, with a nice structure.

An assertion that an equivariant formal variety (D, G̃) is strongly rigid must be accompa-
nied by a family of special formal subvarieties of D, defined directly in a structural way,
such that

• every formal subvariety W of D which is stable under some unspecified subgroup
G of G̃ such that (D, G) is strongly nontrivial, is a special formal subvariety, and

• “most”, if not all, special subvarieties are stable under the action of some subgroup
G of G̃ acting strongly nontrivially on D.

We emphasize that the definition of special formal subvarieties must not make the orbital
rigidity of (D, G̃) an obvious tautology.

10.1.2. Orbitally rigid equivariant formal varieties with extra structures.

An G̃-equivariant formal variety D over k considered for possible strong rigidity phe-
nomenon usually has a nice structure S which is respected by G̃-action. Suppose that this
is the case.

(a) It is natural to use a more restricted class of G0-equivariant S-subquotients, by
requiring in addition that the G0-equivariant maps D1 ,! D and f : D1 ! D2

respect the structure S.
(b) We say that a subgroup G of G̃ operates strongly S-nontrivially on D if for every

open subgroup G0 of G, G0 operates nontrivially on every positive-dimensional
S-subquotient of (D, G0).

(c) Replacing “strongly nontrivially” by “strongly S-nontrivially” in 10.1.1 (c) results
in a corresponding notion of orbitally S-rigid equivariant formal varieties with S-
structure.

Clearly (D, G0) is strongly S-nontrivial if it is strongly nontrivial. So orbital S-rigidity
implies orbital rigidity in the sense of 10.1.1 (c). For certain structures S, for instance
when S = p-Div, the converse, with “if” replaced by “only if” in the preceding sentence,
is also true. If this is the case, then orbital S-rigidity is equivalent to orbital rigidity in
the sense of 10.1.1 (c).
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When S is p-Div (respectively when S is the structure Biext-rigid of biextensions of p-
divisible formal groups), the explicit definition of strongly S-nontrivial equivariant formal
varieties is given in 7.3.1 (respectively 10.2.7.4). In the main body 7.2–10.6 of this chapter,
strong nontriviality refers to either 7.3.1 or 10.2.7.4.

The statement “(D,Aut(D,S)) is orbitally S-rigid” is often shortened to “D is or-
bitally S-rigid”, or “the S-structure D is orbitally rigid”. For instance every p-divisible
formal group over a perfect field is strongly rigid, meaning that it is orbitally p-Div-rigid.
The main result of this chapter is that every biextension of p-divisible formal groups is
orbitally Biext-rigid.

Remark. (i) In algebraic geometry, “rigid” usually means “does not deform”, i.e. all
deformations are trivial. For instance tori and formal tori are rigid. As another example,
an abelian subvariety A of an abelian variety B has no nontrivial deformation inside B,
hence is rigid as abelian subvarieties; similarly p-divisible subgroups are rigid.

The notion of orbital rigidity discussed here is not based on deformation. It spirit
is closer to the rigidity theorems of Margulis, Mostow, Prasad and Ratner’s theorems on
unipotent flows.

(ii) In known examples, a special formal subvarietyW in a orbitally rigid equivariant formal
variety D does not deform algebraically. More precisely, if W ✓ D⇥Spf(k[[t]]) is a reduced
irreducible closed formal subscheme of D⇥Spf(k[[t]]) flat over Spf(k[[t]]), the closed fiber of
W is W , and the generic fiber of W is a special formal subvariety of D⇥Spec(k)Spec

�
k((t))

�
,

then W = W⇥Spf(k[[t]]) ✓ D⇥Spf(k[[t]]).
On the other hand, special formal subvarieties are often organized into families param-

eterized by suitable “p-adic varieties”. As an examples special subvariety of a formal torus
T over Fp are formal subtori of T . All d-dimensional formal subtori of a formal torus T are
parametrized by the set of all d-dimensional Qp-vector subspaces of X⇤(T )⌦Zp

Qp, where
X⇤(T ) is the co-character group of T .

10.1.3. First examples of orbitally rigid formal varieties.
The simplest example of the orbital rigidity phenomenon is the case when D is a formal

torus over an algebraically closed field k of characteristic p and G̃ = Zp
⇥.

Let T be a formal torus over k. If W is a reduced irreducible closed
formal subscheme of T which is stable under [1 + pn]

T
for some integer

n � 2, then W is a formal subtorus of T .

It turns out that orbital rigidity also holds for p-divisible formal groups:

Let X be a p-divisible formal group over k. If W is a reduced irreducible
closed formal subscheme of X which is stable under a strongly non-trivial
action of a subgroup G of Aut(X), where Aut(X) consists of all group
automorphisms of X. Then W is a p-divisible subgroup of X.

See theorem 7.1.1. The assumption that G operates strongly nontrivially means that for
every non-trivial p-divisible subquotient Y ofX stable under the action of an open subgroup
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G0 of G, the action of G0 on Y is nontrivial. Equivalently, no Jordan–Hölder component of
the Lie(G)-module D(X)Q is the trivial Lie(G)-module.

The discovery of the orbital rigidity phenomenon for p-divisible formal groups was
motivated by the Hecke orbit problem, for central leaves in modular varieties of PEL type
such that the corresponding families of abelian varieties have only exactly two slopes. For
an Fp-point z0 of such a central leaf C, the formal completion C/z0 of C at z0 has a natural
structure as (a trivial torsor for) an isoclinic p-divisible formal group over Fp . Moreover
there is a compact p-adic Lie group Tz0

, an open subgroup of the group of Qp-points of the
“Frobenius torus” attached to z0, which operates strongly nontrivially on C/z0 .

Suppose we are given an irreducible closed subvariety Z of C stable under all prime-to-p
Hecke correspondences of the ambient modular variety, and we want to prove that Z is
equal to C as predicted by the Hecke orbit conjecture. The assumption that Z is stable
under all prime-to-p Hecke correspondences implies that the formal completion Z/z0 ✓ C/z0

of Z/z0 is stable under the action of Tz0
. So we obtain from orbital rigidity for p-divisible

formal groups that for every Fp-point z0 of the normal locus of Z, the formal completion
Z/z0 corresponds to a p-divisible subgroup of the p-divisible formal group C/z0 . This does
not prove the prediction, but it’s a good start. Here is a catchphrase of this initial result.

Every Hecke-invariant subvariety inside a central leaf with two slopes is
Tate-liner at every point.

10.1.4. In search of a good definition of Tate-linear formal varieties.
Naturally one tries to extend the orbital rigidity result for leaves with two slopes to a

general leaf C in a modular variety of PEL type, so that the above catchphrase holds. The
question below sums up the challenges.

Question Q1. How to define a good notion of “Tate-linear formal varieties”, and the
related notion of “special formal subvarieties” of a Tate-linear formal variety”, so that
every Tate-linear formal variety is orbitally rigid?

(In other words, the definitions of Tate-linear formal varieties and special formal subva-
rieties should ensure that every formal subvariety which is stable under a strongly nontrivial
action of a p-adic Lie group G on the ambient Tate-linear formal variety is a special formal
subvariety. We stress again that definitions which make the orbital rigidity assertion an
obvious tautology, being worse than useless, do not qualify.)

Given an Fp-point z0 of C, the formal completion C/z0 is “assembled from” a family of
fibrations ⇡i : Ti ! Ti+1, i = 0, . . . , a� 1, such that ⇡i is the projection map of a torsor for
a p-divisible group Zi over Fp , T0 = C/z0 , and Ta = Spec(Fp). We regard such a family of
fibrations as a weak form of a “Tate-linear structure on C/z0”, take a leap of faith, and set
forth the working hypothesis T1 and its variant T2 below.

Working hypothesis T1. The formal completion C/z0 at a closed point z0 of a central
leaf C in a Siegel modular variety A

g,1,n,Fp , n � 3, gcd(n, p) = 1, is a Tate-linear formal
variety.
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Working hypothesis T2. The sustained deformation space Def (X0)sus of a p-divisible
group X0 over Fp is a Tate-linear formal variety.

10.1.5. Testing the first nontrivial case: biextensions of formal groups.
With a “Tate-linear formal variety” T being of the form C/z0 or Def (X0)sus as in T1

or T2, the general question Q1 on orbital rigidity becomes more specific. In order to make
progress, it is a good idea to focus on the first nontrivial case, spelled out below.

Let X1, X2, X3 be isoclinic p-divisible groups over Fp with slopes µ1 < µ2 < µ3. The
sustained deformation space Def (X1 ⇥X2 ⇥X3)sus has a natural structure as a biexten-
sion of Hom0

div(X1, X2)⇥Hom0

div(X2, X3) by Hom0

div(X1, X3).

Recall that given three commutative group schemes X,Y, Z over a base field k, a
biextension of X ⇥ Y by Z is a morphism E ! X ⇥ Y plus two compatible relative group
laws. The first group law, for relative to Y , makes E ! Y an extension of XY := X⇥Y by
ZY := Z⇥Y over Y , while the second group law, relative to X, makes E ! X an extension
of YX by ZX over X. The best-known example is the Poincare bundle for an abelian variety
A; it is a biextension of A⇥At by Gm, where At is the dual abelian variety of A. Mumford
invented the concept of bi-extension in [76] to treat deformation and lifting problems for
polarized abelian varieties. See §10.2 for a review of the notion of biextensions.

Buoyed by optimism, we make a further working hypothesis that all biextensions of
p-divisible formal groups are Tate-linear, and arrive at the orbital rigidity question for
biextensions Q2 below.

Working hypothesis T3. Every biextension of p-divisible formal groups over Fp is Tate-
linear.

We emphasize that the “working hypotheses” T1–T3 will acquire mathematical mean-
ing only after precise definitions of “special formal subvarieties” are given.

Challenge Q2 (Orbital rigidity question for biextensions in loose form). Let
X,Y, Z be p-divisible formal groups over Fp , and let E ! X⇥Y be a biextension of X⇥Y
by Z. Let G be a closed subgroup of Autbiext(E) acting strongly nontrivially on E.

(a) Define a good notion of “special formal subvarieties” of a biextension E as above.
(b) Show that every reduced irreducible formal subscheme W of E closed under the

action of G is a special formal subvariety of E.

By definition, the group of automorphisms of a biextension of X ⇥ Y by Z as above
is a subgroup of Aut(X) ⇥ Aut(Y ) ⇥ Aut(Z). The assumption that G operates strongly
nontrivially on E means that the induced actions of G onX, Y , Z are all strongly nontrivial
as explained in 10.1.3. See 10.2.3.1 and 10.2.7.3 for more information about automorphisms
of a biextension.

For the question Q2, a reasonable expectation is that a special formal subvariety T of a
biextension ⇡ : E ! X ⇥Y should be “almost” a torsor for a p-divisible subgroup Z 0 ✓ Z,
over a p-divisible subgroup U of X ⇥ Y . To be more specific, we expect that every special
formal subvariety T of a biextension E as in Q2 satisfies the following expectations.
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(E1) The intersection of T with the closed fiber ⇡�1(0, 0) ⇠= Z, with reduced structure,
is a p-divisible subgroup Z 0 of Z.

(E2) The formal subvariety T ✓ E is stable under the translation action by Z 0 for the
Z-torsor structure attached to the biextension E ! X ⇥ Y .

(E3) The map T/Z 0 �! X ⇥ Y induced by ⇡, from the reduced irreducible formal
subscheme T/Z 0 of E/Z 0 to X ⇥ Y , factors as a composition

T/Z 0
q
T
// U �
�

// X ⇥ Y ,

where U is a p-divisible subgroup of X ⇥Y , and the formal morphism q
T
is finite,

dominant and purely inseparable.

The expectations (E1)–(E3) enables us to formulate a more precise version Q20 of the
question Q2.

Challenge Q20 (Orbital rigidity question for biextensions). Let X,Y, Z be p-
divisible formal groups over Fp , let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z,
and let G be a closed subgroup of Autbiext(E) operating strongly nontrivially on E.

(a0) Let U be a p-divisible subgroup of X ⇥ Y stable under the action of G. Find a
necessary and su�cient condition on U , for the existence of a G-invariant reduced
irreducible formal subscheme W of E above U such that the morphism W ! U
is finite, dominant and purely inseparable.

(b0) Suppose that W is a reduced irreducible closed formal subscheme of E stable
under the action of G. Prove the following statements.
(i) The formal scheme (W\Z)red, the intersection W\Z with reduced structure,

is a p-divisible subgroup of Z.
(ii) The formal morphism q

W,(W\Z)
red

: W/(W \ Z)red �! X ⇥ Y is finite and

purely inseparable.
Note that in the situation of (ii), orbital rigidity for p-divisible formal groups tells
us that the schematic image of q

W,(W\Z)
red

is a p-divisible subgroup of X ⇥ Y .

It turns out that the question (a0) can be answered using orbital rigidity for p-divisible
formal groups. The necessary and su�cient condition asked in (a0) is

✓En (prX(u1), prY (u2)) = ✓En (prX(u2), prY (u1))

for all n � 1 and all functorial points (u1, u2) of U ⇥ U ; see 10.3.2 and 10.3.4.1. Here
prX : E ! X and prY : E ! Y are the composition of ⇡ : E ! X⇥Y with the projections
pr1 : X ⇥ Y ! X and pr2 : X ⇥ Y ! Y respectively, and

�
✓En : X[pn]⇥ Y [pn]! Z[pn]

�
n�1

is the family of Weil pairings attached to the biextension E, whose construction is reviewed
in 10.2.5.1.

10.1.6. The method of hypocotyle elongation through tempered perfections.
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10.1.6.1. The question (b0) is harder and requires a new idea. We will first describe the
main tool in proving orbital rigidity for p-divisible formal groups, theorem 7.2.1 and its
important special case 7.2.2. It works like this. Suppose you have a reduced irreducible
Noetherian local formal scheme Y over a perfect field  of characteristic p and a sequence
of congruence relations on Y = Spf(R,m), which can be interpolated by “a single formula”
consisting of

• a formal power series f(u1, . . . , ua, v1, . . . , vb), and
• formal functions g1, . . . , ga, h1, . . . hb 2 m on Y,

so that the infinite sequence of congruence relations can be written in the form

(⇤) f(g1, . . . , ga, h
p
r
n

1 , . . . , hp
r
n

b
) ⌘ 0 (mod m

dn), n � n0,

where r is a fixed positive integer and dn is a sequence of positive integers such that
limn!1

dn

prn
= 0. This method, which we call hypocotyl elongation, says that the congru-

ences (⇤) imply the equality

f(g1 ⌦ 1, . . . , ga ⌦ 1, 1⌦ h1, . . . , 1⌦ hb) = 0

on Y ⇥ Y . Thus the congruences (⇤) modulo m
p
dn , of formal functions on Y belonging to

m
p
rn

, “grows” to an equality of formal functions on Y ⇥ Y. See 7.1.2 for a more detailed
introduction to hypocotyl elongation.

The key step in proving orbital rigidity for p-divisible formal groups is as follows. We
are given a p-divisible group X = X1⇥X2 over an algebraically closed base field  of
characteristic p, such that X1 is isoclinic of slope µ1, X1[F r] = X1[pc] for suitable positive
integers r, c with c

r
= µ1, while all slopes of X2 are strictly smaller than µ1. There is a p-

adic Lie group G acting strongly non-trivially on X, and we are given a reduced irreducible
formal subscheme W of X stable under G. For any element C 2 Lie(X) \ End(X), let
�C : X ⇥X �! X be the morphism which sends every functorial point (x, x0) of X⇥X
to x+

X
C(pr

X1

(x0)). We need to show that �C(W ⇥W ) ✓ W , or equivalently, the formal

function �⇤

C
(f)|W⇥W on W ⇥W is equal to 0 for every formal function f 2 IW , where IW

consists of all formal functions on X which vanishes on W .
Consider the one-parameter subgroup exp(p2Zp · C) in G. The G-invariance of W

tells us that
�
exp(pnC)⇤f

���
W

= 0 for every f 2 IW . For n � 0, we have a “first order
approximation” exp(pncC) ⌘ idX + pncC (mod p2nc) from the Taylor series expansion of
the automorphism exp(pncC)) of X. Using such first order approximations, the equalities�
exp(pncC)⇤f

���
W

= 0 gives us an infinite sequence of congruence relations. With a suitable
choices of regular parameters for the coordinate rings of X1 and X, one sees that these
congruence relations has precisely the form (⇤), for the formal function �⇤

C
f on X⇥X.

Applying the method of hypocotyl elongation to the function �⇤

C
(W ), we obtain the desired

conclusion that �C(W⇥W ) ✓W for every element C 2 Lie(X) \ End(X).

10.1.6.2. It is natural to try to generalize the above method to prove (b0) in question
Q20, but one encounters several di�culties.



542 10. ORBITAL RIGIDITY FOR BIEXTENSIONS

• Unless the biextension E of X ⇥ Y by Z is split, there is no natural “projection
map” from E to Z with good properties.

• Any “explicit formula” of the action of G ✓ Autbiext(E) through an exponential
map from an subgroup of the Lie algebra Lie(G) must involve the Weil pairings
for E, which complicates things.

• But the most serious obstacle has to do with the method of hypocotyl elongation.
For a given one parameter subgroup exp(p2Zp · v) in G, the infinitely many con-
gruence relations resulting from the assumption that W is stable under G cannot
be interpolated by a “single formula” as in 10.1.6 (⇤), which consists of a suitable
formal power series in several variables and a finite number of elements of the
a�ne coordinate ring of W .

Because of these di�culties, especially the last one, for a very long time it was completely
unclear whether orbital rigidity actually holds for biextensions, or it is a pipe dream stem-
ming from excessive optimism.

10.1.6.3. The way to solve this conundrum is to introduce a suitable class of rings of
“generalized formal functions”. They provide extension rings of any given complete aug-
mented Noetherian local domain (R,m) over a perfect base field  of characteristic p, and
lie between R and the completion of the perfection of R. They are not Noetherian, unless
R = , but they satisfy certain weak version of finiteness properties enjoyed by Noether-
ian local domains. We call them completed tempered perfections of the input complete
Noetherian local domain (R,m), or tempered perfections for short. Elements of tempered
perfections of R are called tempered virtual functions on the formal scheme Spf(R).

The usefulness of tempered virtual functions for the orbital rigidity question Q20 is
threefold. First, there are many “tempered virtual morphism” from a biextension E to the
fiber group Z with good properties. Secondly for each one parameter subgroup exp(p2Zp ·v)
in G, the infinite sequence of congruence relation resulting from the first order approxi-
mation of the Taylor expansion of exp(pna · v), for a suitable positive integer a, can be
interpolated by single formula which involves only a finite number of tempered virtual
functions. Thirdly the method of hypocotyl prolongation extends to tempered virtual
functions; see 10.5.6 and 10.5.3. Armed with the tempered virtual functions, the previous
strategy for proving orbital rigidity for p-divisible groups also works for biextensions. The
final result is stated in theorem 10.6.7.

Readers are advised to go to 10.7.1 for an introduction to tempered perfections. The
definitions of several families of tempered perfections and their basic properties are collected
in the appendix 10.7 of this chapter. Most of the basic algebraic properties of this new class
of rings are still unexplored. We have resisted the temptation of developing a theory of
tempered perfections of formal schemes and formal group. Instead proofs are given directly
in terms of these rings and related co-algebras and co-actions.

10.1.7. The notion of Tate-linear formal varieties revealed. The desired properties
of Tate-linear formal varieties have been discussed in 10.1.4. It is time to reveal what we
believe is a good notion of Tate-linear formal varieties.
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10.1.7.1. Definition. Let  be a field of characteristic p. A Tate-linear unipotent group
N over  is a projective system (Ni)i�1 of finite group schemes Ni over  with epimor-
phic transition homomorphisms ⇡i,i+1 : Ni+1 ⇣ Ni together with a compatible system of
decreasing filtrations Fil•slNi indexed by (0, 1], satisfying the following properties.

(i) ⇡i,i+1(Fil
s

slNi+1) = FilsslNi for all i � 1 and all s 2 (0, 1].
(ii) There exists a finite subset slope(N) of (0, 1] \ Q, such that for every s 2 (0, 1]

and every i � 1, the quotient group scheme grsNi := FilsslNi/Fil
>s

sl Ni is trivial if
and only if s 2 slope(N).

(iii) For every i � 1, the distinct elements in the filtration Fil•slNi form a finite central
series of subgroup schemes of Ni.

(iv) For each s 2 (0, 1], there exists an p-divisible group Ys over  which is either 0 or
isoclinic with slope s, such that the projective system

grsN :=
�
grsNi := FilsslNi/Fil

>s

sl Ni

�
i�1

is isomorphic to the projective system
�
Ys[pi], Ys[pi+1]

[p]�! Ys[pi]
�
i�1

attached to
Ys.

Elements of the finite subset slope(N) ✓ (0, 1]\Q are said to be the slopes of N . Note that
N is a projective system of nilpotent groups of class at most card(slope(N)). Moreover N
is uniquely `-divisible for every prime number ` 6= p.

10.1.7.2. Definition. Let N =
�
Ni

�
i�1

be a Tate-linear unipotent group over a field 
of characteristic p.

(a) The Tate module Tp(N) of N is the limit

Tp(N) := lim �
i

Ni

of the projective system N , as a sheaf of groups on the category of -schemes with the
fpqc topology. Clearly Tp(N) is a sheaf of torsion free nilpotent group of class at most
card(slope(N)). Moreover it is uniquely `-divisible for every prime number ` 6= p.

(b) Define Vp(N) = Tp(N)Q to be the Mal’cev completion of Tp(N). It is a sheaf of
torsion free divisible nilpotent group of class at most card(slope(N)) for the fpqc topolgy
on the category of -schemes.

Just as the stabilized Aut groups discussed in 5.4, we have a Lie theory for Tate-linear
unipotent groups.

• Let N =
�
Ni

�
i�1

be a Tate-linear unipotent group over a field  of characteristic

p. Define Lie(Vp(N)) to be the sheaf of Lie Qp-algebras on the big fpqc site of
Spec(), with the addition law and the Lie bracket on Lie(Vp(N)) given by the
inverse Baker-Campbell-Hausdor↵ formula.

• The construction of Lie(Vp(N)) comes with isomorphisms of sheaves

exp : Lie(Vp(N))
⇠�! Vp(N) and log : Vp(N)

⇠�! Lie(Vp(N)),
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inverse to each other, such that Qp-Lie subalgebras of Lie(Vp(N)) correspond to
torsion free divisible subgroups of Vp(N). This is the Mal’cev correspondence in
the theory of nilpotent groups.

• There exists a p-divisible group L over , such that the additive group underlying
Lie(Vp(N)) is isomorphic to

�
lim �i

L[pi]
�
⌦ZQ, where the projective limit is taken

in the category of fpqc sheaves on the category of -schemes.
• Let c  card(slope(N)) be the smallest positive integer such that N is nilpotent of
class at most c. If p > c, there is an integral version of the Lie theory of N , known
as the Lazard correspondence in the theory of nilpotent groups. In this case we
have a sheaf Lie(Tp(N)) of Lie Zp-algebras, and mutually inverse isomorphisms

exp : Lie(Tp(N))
⇠�! Tp(N) and log : Tp(N)

⇠�! Lie(Tp(N)).

Moreover there is a p-divisible group L over , such that the additive group
underlying Lie(Tp(N)) is isomorphic to lim �i

L[pi].

10.1.7.3. Definition. Let N =
�
Ni

�
i�1

be a Tate-linear unipotent group over a field 

of characteristic p. Define the Tate-linear formal variety TL(N) attached to N to be the
smooth formal scheme over  which represents the sheaf Vp(N)/Tp(N), i.e.

TL(N) := Vp(N)/Tp(N).

Alternatively, TL(N) can be defined as the deformation space of compatible systems of right
N -torsors. In other words there exists a canonical isomorphism between Vp(N)/Tp(N)
and the deformation space of right N -torsors. The argument in the case when N is either
Autst(X) for some p-divisible group X over  or Autst(Y,�) for some polarized p-divisible
group (Y,�) over  shows that these two definitions are equivalent.

Clearly every homomorphism h : N1 ! N2 between Tate-linear unipotent groups
induces a morphism h⇤ : TL(N1)! TL(N2) between Tate-linear formal varieties.

This group theoretic definition of Tate-linear formal varieties also allows us to define
isogenies and Hecke correspondences in the context of Tate-linear formal varieties.

10.1.7.4. Definition. Let N be a Tate-linear unipotent group over a field  of character-
istic p. A closed formal subscheme Z of the Tate-linear formal variety TL(N) over  is a
Tate-linear formal subvariety if there exist a Tate-linear unipotent subgroup N 0 of N such
that Tp(N 0) is co-torsion free in Tp(N) and the morphism TL(N 0) ⇢ TL(N) associated
to N 0 ,! N is the closed embedding Z ,! TL(N).

Note that the map TL(N 0) ! TL(N) attached to the embedding N 0 ,! N is a mono
because Tp(N 0) is co-torsion free in Tp(N).

10.1.7.5. With the notion of Tate-linear formal varieties specified, the general orbital
rigidity property below acquires a precise meaning. We set up the notations first.

Let N be a Tate-linear unipotent group over a perfect field  of characteristic p, and let
TL(N) be the Tate-linear formal variety attached to N . For each slope s of N , let Ys
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be the p-divisible group over  such that grs(N) is isomorphic to the projective system
�
Ys[pi], Ys[pi+1]

[p]Ys���! Ys[pi]
�
i�1

attached to Ys.

(Orbital rigidity for Tate-linear formal varieties) We use the notation in the pre-
ceding paragraph. Let G be a p-adic Lie group acting on N , such that the induced action
of G on Ys is strongly nontrivial for every slope s of N . If W is a reduced irreducible
subvariety of TL(N) stable under the action of G, then W is a Tate-linear formal variety.

As mentioned already, the orbital rigidity for Tate-linear formal varieties as stated above
can be proved by the argument used for the case of biextension. The key is the method of
hypocotyle elongation via tempered perfections, combined with induction on the number
of slopes of the Tate-linear unipotent group N governing the Tate-linear formal variety
TL(N). A detailed proof, together with general properties of Tate-linear formal varieties,
will be published elsewhere.

We decided to present the proof of the special case of biextension, instead of gen-
eral Tate-linear formal varieties, for several reasons. The biextension case corresponds to
Tate-linear formal varieties TL(N) where N is nilpotent of class at most 2. All essen-
tial di�culties after the case of p-divisible formal groups show up in the biextension case.
Its proof has the advantage of simplicity, with the main ideas clearly exhibited, and not
shrouded by induction or the theory of Tate-linear formal varieties. In addition, the easier
part of the proof of orbital rigidity for all Tate-linear formal varieties, which generalizes
10.3.4.1 and does not involve tempered perfections, can be reduced to the biextension case.
This book is too long already, and we hope the readers would not mind not seeing a proof
of the most general here.

10.2. Biextension basics

The notion of biextensions of commutative groups was first introduced by Mumford in
[76] and further developed by Grothendieck in expositions VI, VII of [18].

10.2.1. Definition. Let R be a Noetherian complete local ring whose residue R/m is a
field of characteristic p, and S := Spf(R). Let X,Y, Z be p-divisible groups over R (resp.
commutative formal groups) over R. A biextension of X ⇥S Y by Z is a 5-tuple

(⇡ : E ! X ⇥S Y, +1 : E ⇥Y E ! E, +2 : E ⇥X E ! E, ✏1 : Y ! E, ✏2 : X ! E)

where E is the formal spectrum of a Noetherian complete local ring formally smooth over
R, ⇡ is an S-morphism, +1 and ✏1 are Y -morphisms, +2 and ✏2 are X-morphisms. In
addition the following properties are satisfied.

(0) The morphism ⇡ is formally smooth and faithfully flat.
(1a) The pair (+1, ✏1) makes E a p-divisible group (resp. commutative smooth formal

group) over Y with 0-section ✏1.
(1b) The projection map ⇡ : E ! X ⇥S Y is a group homomorphism for the group

law +1 and the base change to Y of the group law +X : X ⇥S X ! X of the
p-divisible group X.
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(2a) The pair (+2, ✏2) makes E a p-divisible group (resp. commutative smooth formal
group) over X with 0-section ✏2.

(2b) The projection map ⇡ : E ! X⇥S Y is a group homomorphism for the group law
+2 and the base change to X of the group law +Y : Y ⇥S Y ! Y of the p-divisible
group Y .

(3a) The S-morphism

Z ⇥S Y ! E, (z, y) 7! z +2 ✏1(y)

defines an S-isomorphism from Z ⇥S Y to E ⇥(X⇥SY ) (0X ⇥S Y ).
(3b) The S-morphism

Z ⇥S X ! E, (z, x) 7! z +1 ✏2(x)

defines an S-isomorphism from Z ⇥S X to E ⇥(X⇥SY ) (X ⇥S 0Y ).
(4) (compatibility of the two relative group laws) For any formal scheme T over S

and any four T -valued points w11, w12, w21, w22 of E such that

⇡1(w11) = ⇡1(w12), ⇡1(w21) = ⇡1(w22), ⇡2(w11) = ⇡2(w21), ⇡2(w12) = ⇡1(w22)

where ⇡1 := pr1 � ⇡ and ⇡2 := pr2 � ⇡ are the two projections from E to X and Y
respectively, the equality

(w11 +2 w12) +1 (w21 +2 w22) = (w11 +1 w21) +2 (w12 +1 w22)

holds.

Remark. (i) Conditions (1a) and (1b) assert that the relative group law +1 on E over Y
is an extension of (the base change to Y of) X by (the base change to Y of) Z. Similarly
(2a) and (2b) say that the relative group law +2 on E over X is an extension of (the base
change to X of) Y by (the base change to X of) Z.

(ii) In 10.2.1 the group law +1 (respectively +2) denotes “addition along the first (respec-
tively the second) of the two variables (X,Y )”. This is consistent with the usage in [76,
p. 320] but di↵erent from the convention in [76, p. 310].

(iii) Of course the definition 10.2.1 of biextension works in other contexts, for instance
sheaves of commutative groups for the fppf site for a general scheme S. For our purpose
the case when X, Y and Z are all p-divisible groups will be su�cient. For the main result
on orbital rigidity for p-divisible groups, S will be the spectrum of a field k of characteristic
p > 0 and X, Y , Z are p-divisible formal groups over k.

10.2.1.1. The following properties are easily verified.

(i) For any formal scheme T over S, any T -valued points y1, y2 of Y and any T -valued
points x1, x2 of X, we have

✏1(y1) +2 ✏1(y2) = ✏1(y1 + y2), ✏2(x1) +1 ✏2(x2) = ✏2(x1 + x2).
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(ii) For any formal scheme T over S, any T -valued points z of Z and any T -valued
point w of E, we have

(z +1 ✏2(⇡1(w))) +2 w = (z +2 ✏1(⇡2(w))) +1 w.

This equality means that the Z-actions on E induced by the relative group laws
+1 and +2 are equal, given ⇡ : E ! X ⇥S Y a natural structure as a Z-torsor.
Let

⇤ : Z ⇥S E = (Z ⇥S (X ⇥S Y ))⇥(X⇥Y ) E ! E

be the morphism defining this Z-torsor structure on E.
(iii) The restriction of +1 to Z⇥SZ ✓ E⇥Y E is equal to the group law of Z. Similarly

for the restriction of +2 to Z ⇥S Z ✓ E ⇥X E.
(iv) The S-isomorphism (z, y) 7! z +2 ✏1(y) in (3a) is a group isomorphism from the

product group Z⇥S Y to the group law on E⇥(X⇥Y ) (0X ⇥Y ) induced by +2. In
other words the restriction to {0X} ✓ X of the extension of Y by Z over X, given
by the relative group law +2, splits canonically. Similarly for the S-isomorphism
(z, x) 7! z+1 ✏2(x) in (3b) is a group isomorphism from the product group Z⇥SX
to the group law on E ⇥(X⇥Y ) (X ⇥ 0Y ) induced by +1.

(v) The restriction of ✏1 to 0Y is equal to the restriction of ✏2 to 0X . Over the scheme-
theoretic union � of the images of X ⇥S 0Y and 0X ⇥S Y , i.e. the smallest closed
subscheme of X ⇥S Y containing both, we have an S-morphism ✏ : � ! E such
that ⇡ �� = id� which is equal to ✏2 on X ⇥S 0Y and equal to ✏1 on 0X ⇥S Y .
Because ⇡ : E ! X⇥SY is formally smooth, there exists a section s : X⇥SY ! E
of ⇡ which extends ✏.

10.2.1.2. The trivial biextension of X⇥S Y by Z is by definition the natural biextension
structure on X ⇥S Y ⇥ Z, where the two relative group laws are given by

(x1, y, z1)+1 (x2, y, z2) = (x1+x2, y, z1+z2), (x, y1, z1)+2 (x, y2, z2) = (x, y1+y2, z1+z2).

A biextension E ! X ⇥S Y by Z is trivial if there is an biextension isomorphism  
from the trivial biextension to E which induces idX , idY , idZ on X,Y, Z respectively;  to
X ⇥S Y ⇥S 0Z is called the a splitting of a trivial biextension of X ⇥S Y by Z. We will
see in 10.2.3.6 that when X and Y are both p-divisible, such an isomorphism  is unique
if one exists.

10.2.2. Cocycle description of biextensions.

10.2.2.1. Definition. Let X,Y, Z be smooth formal groups over S, let ⇡ : E ! X ⇥S Y
be a biextension of X ⇥S Y by Z as in 10.2.1, and let s : X ⇥S Y ! E be a section of ⇡
which extends both ✏1 and ✏2 as in 10.2.1.1 (v). Define S-morphisms

⌧ : (X ⇥S X)⇥S Y ! Z and � : X ⇥S (Y ⇥S Y )! Z
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associated to the section s by the following formulas expressed in terms of T -valued points
x, x1, x2, y, y1, y2 in X and Y for formal schemes T over S:

s(x1, y) +1 s(x2, y) = ⌧(x1, x2; y) ⇤ s(x1 + x2, y)(a)

s(x, y1) +2 s(x, y2) = �(x; y1, y2) ⇤ s(x, y1 + y2)(b)

10.2.2.2. Cocycle identities. The S-morphisms ⌧ and � satisfy properties (1)–(5) be-
low, for all formal schemes T over S, all T -valued points x, x1, x2, x3 of X and all points
y, y1, y2, y3 of Y . Identities (1) and (2) are consequences of the fact that the section s of
⇡ extends ✏1 and ✏2. Identities (3) and (4) hold because the two relative group laws +1

and +2 are commutative and associative. The identity (5) follows from the compatibility
of the two relative group laws.

(1) �(x; 0, y2) = 0 = �(x; y1, 0), ⌧(0, x2; y) = 0 = ⌧(x1, 0; y).
(2) �(0; y1, y2) = 0, ⌧(x1, x2; 0) = 0.
(3) (symmetry)

�(x; y1, y2) = �(x; y2, y1), ⌧(x1, x2; y) = ⌧(x2, x1; y)

(4) (associativity)

�(x; y1, y2) + �(x; y1 + y2, y3) = �(x; y1, y2 + y3) + �(x; y2, y3)

⌧(x1, x2; y) + ⌧(x1 + x2, x3; y) = ⌧(x1, x2 + x3; y) + ⌧(x2, x3; y)

(5) (compatibility)

�(x1 + x2; y1, y2)� �(x1; y1, y2)� �(x2; y1, y2)
= ⌧(x1, x2; y1 + y2)� ⌧(x1, x2; y1)� ⌧(x1, x2; y2)

10.2.2.3. Coboundary. Suppose that we replace s(x, y) by a another section

(10.2.2.3.1) s0(x, y) = f(x, y) ⇤ s(x, y),
where f(x, y) : X ⇥S Y ! Z is an S-morphism such that f(x, 0) = 0 = f(0, y). Then the
maps ⌧ 0 : (X ⇥S X)⇥Y ! Z and �0 : X ⇥S (Y ⇥S Y )! Z associated to the section s0 are
related to the maps � and ⌧ by

⌧ 0(x1, x2; y)� ⌧(x1, x2; y) = f(x1, y) + f(x2, y)� f(x1 + x2, y),(10.2.2.3.2)

�0(x; y1, y2)� �(x; y1, y2) = f(x, y1) + f(x, y2)� f(x, y1 + y2).(10.2.2.3.3)

10.2.2.4. Conversely given a pair (↵,�) of S-morphisms satisfying equations (1)–(5)
in 10.2.2.2, there exists a biextension of X ⇥S Y by Z naturally attached to the cocycle
(↵,�). Moreover the biextensions attached to two cocycles (↵,�), (↵0,�0) are isomorphic as
biextensions of X⇥S Y by Z in the sense of 10.2.3.1 (c) below if and only if the two cocycles
di↵er by a coboundary in the sense that there exists an S-morphism f : X ⇥S Y ! Z such
that 10.2.2.3.2 and 10.2.2.3.3 hold.
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10.2.3. Homomorphisms between biextensions.

10.2.3.1. Definition. Let X,Y, Z,X 0, Y 0, Z 0 be commutative smooth formal groups (re-
spectively p-divisible groups) over S = Spf(R) as in 10.2.1. Let ⇡ : E ! X ⇥S Y be a
biextension of X ⇥S Y by Z, and ⇡0 : E0 ! X 0 ⇥S Y 0 be a biextension of X 0 ⇥S Y 0 by Z 0.

(a) An S-homomorphism of biextensions, or an S-bihomomorphism for short, from
the biextension E to the biextension E0 is a quadruple of S-morphisms

( : E ! E0,↵ : X ! X 0,� : Y ! Y 0, � : Z ! Z 0)

where ↵,�, � are S-homomorphisms of commutative formal groups (respectively
p-divisible groups), and  is compatible with the biextension structure of E and
E0, in the sense that the following properties are satisfied.
(i) ⇡0 �  = (↵⇥ �) � ⇡,
(ii)  �+1 = +0

1 � ( ⇥Y  ),  �+2 = +0
2 � ( ⇥X  ),

(iii)  � ✏1 = ✏01 � �,  � ✏1 = ✏02 � ↵.
If X = X 0, Y = Y 0, Z = Z 0, E = E0 and ⇡ = ⇡0, such an S-bihomomorphism
from E to E0 is said to be an S-endomorphism of the biextension E.

(b) An S-bihomomorphism ( ,↵,�, �) is an isomorphism of biextensions, if  ,↵,�
and � are all isomorphism of formal schemes (respectively p-divisible groups), in
which case the quadruple ( �1,↵�1,��1, ��1) “is” an S-bihomomorphism from
E0 to E.

(c) Suppose that X 0 = X, Y 0 = Y and Z 0 = Z. We say that the E and E0

are isomorphic as biextensions of X ⇥S Y by Z if there exists an isomorphism
( , idX , idY , idZ) from E to E0.

(d) An S-bihomomorphism ( ,↵,�, �) between biextensions of p-divisible groups (re-
spectively commutative smooth formal groups) is an isogeny if the homomor-
phisms ↵, � and � between formal groups (respectively p-divisible groups) are all
isogenies.

Note that an isomorphism ( ,↵,�, �) from E to E0 as in 10.2.3.1 (b) above induces an
isomorphism ( 0, idX , idY , idZ) from �⇤E to (↵⇥�)⇤E0, so that the two biextensions �⇤E
and (↵⇥ �)⇤E0 of X ⇥ Y by Z 0 are isomorphic in the sense of 10.2.3.1 (c).

When the biextensions E and E0 are specified by cocycles (⌧,�) and (⌧ 0,�0) respectively,
an S-homomorphism of biextensions from E to E0 is given by a map µ : X ⇥S Y ! Z 0

satifying (10.2.3.3.2) and (10.2.3.3.3) below.

10.2.3.2. Remark. (i) Let E,E0 be biextensions as in 10.2.3.1. The set Hombiext(E,E0)
of all biextension homomorphisms from E to E0 does not have a natural group structure.
Instead there are two relative group laws

Hombiext(E,E0)⇥Hom(Y,Y 0) Hombiext(E,E0) �! Hombiext(E,E0)

Hombiext(E,E0)⇥Hom(X,X0) Hombiext(E,E0) �! Hombiext(E,E0)
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However the natural map

Hombiext(E,E0)! Hom(X,X 0)⇥Hom(Y, Y 0)

may not be surjective. So in general the set Hombiextn(E,E0) does not have a natural
structure as a biextension of Hom(X,X 0)⇥Hom(Y, Y 0) by Hom(Z,Z 0).

(ii) In 10.2.3.1 we did not consider quadruples

 ̃ : E ! E0, ↵̃ : Y ! X 0, �̃ : X ! Y 0, � : Z ! Z 0

of S-morphisms such that the diagram

E
 ̃

//

⇡

✏✏

E0

⇡
0

✏✏

X ⇥ Y
(↵̃�pr

2
)⇥(�̃�pr

1
)
// X ⇥ Y

commutes,

 ̃ �+1 = +0

2 � ( ̃ ⇥X  ̃),  ̃ �+2 = +0

1 � ( ̃ ⇥Y  ̃),

 ̃ � ✏1 = ✏02 � ↵̃, and  ̃ � ✏2 = ✏01 � �̃.
Had we done so, we would have introduced a “parity” in the definition of homomorphisms,
endomorphisms and automorphisms of biextensions, so that the composition of two ho-
momorphisms with the same parity is even, while the composition of two homomorphisms
with di↵erent parities is odd.

10.2.3.3. Cocycle description of homorphisms of biextensions.
Let X,Y, Z,X 0, Y 0, Z 0 be smooth formal groups over S. Let E,E0 be biextensions over

S as in 10.2.3.1. Let  : E ! E0 be a homomorphism of bi-extensions over S as in 10.2.3.1,
which induces S-homomorphisms ↵ : X ! X 0, � : Y ! Y 0 and � : Z ! Z 0. Let s(x, y)
be a section of ⇡ : E ! X ⇥S Y extending ✏1 and ✏2, and let ⌧ : (X ⇥S X) ⇥S Y ! Z,
� : X ⇥S (Y ⇥S Y )! Z be the maps associated to the section s(x, y) as defined in 10.2.2.
Similarly let s0(x0, y0) be a section of ⇡ : E0 ! X 0 ⇥S Y 0 extending ✏01 and ✏02, and define
⌧ 0 : (X 0 ⇥S X 0) ⇥S Y 0 ! Z 0 and �0 : X 0 ⇥S (Y 0 ⇥S Y 0) ! Z 0 in the same way. Define an
S-morphism

µ = µ : X ⇥S Y ! Z 0

by

(10.2.3.3.1)  (s(x, y)) = µ(x, y) ⇤ s0(↵(x),�(y))
for all points x of X and all points y of Y with values in the same formal scheme over S.
It is easy to verify that

�(⌧(x1, x2; y))� ⌧ 0(↵(x1),↵(x2);�(y)) = µ(x1, y) + µ(x2, y)� µ(x1 + x2, y)(10.2.3.3.2)

�(�(x; y1, y2))� �0(↵(x);�(y1),�(y2)) = µ(x, y1) + µ(x, y2)� µ(x, y1 + y2)(10.2.3.3.3)

for all formal schemes T over S, all T -points x, x1, x2 of X and all T -points y, y1, y2 of Y .
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Conversely it is easy to verify that every S-morphism µ : X ⇥S Y ! Z 0 which the two
displayed equations (10.2.3.3.2) (10.2.3.3.3) indeed defines a homomorphism of biextensions
from E to E0.

10.2.3.4. Let E ! X ⇥S Y be a biextension of formal groups X ⇥S Y by Z.

(a) For any formal group Z 0 over S and any S-homomorphism ⇠ : Z ! Z 0, the standard
push-forward construction yields a biextension ⇠⇤(E ! X ⇥S Y ) of X ⇥S Y by Z 0, plus
a homomorphism  1 from E ! X ⇥S Y to ⇠⇤(E ! X ⇥S Y ), which induces idX , idY , ⇠
on X,Y, Z respectively. In addition ⇠⇤(E ! X ⇥S Y ) satisfies the universal property that
every biextension homomorphisms ( ,↵,�, ⇠) from E to a biextension E0 of X 0⇥Y 0 by Z 0

factors through  1.

(b) Similarly for any formal groups X1, Y1 over S and any homomorphisms ⇣ : X1 !
X, ⌘ : Y1 ! Y , the standard pull-back construction yields a biextension (⇣, ⌘)⇤(E !
X⇥S Y ) of X1⇥S Y1 by Z, which satisfies an obvious universal property among biextension
homomorphisms ( 1,↵1,�1, �1) from biextensions E1 ! X1 ⇥S Y1 to E with ↵1 = ↵ and
�1 = �.

10.2.3.5. Lemma. Let X and Y be p-divisible groups over S. Every bi-additive morphism
g : X ⇥S Y ! Z from X ⇥S Y to a sheaf of groups Z over S is identically zero.

Proof. The proof is completely formal.

(a) The bi-additivity of g implies that g([pn]X(x1), [pn]Y (y1)) = [p2n]Z(g(x1, y1)) = 0
for all S-scheme T1, all x1 2 X[p2n](T1) and all y1 2 Y [p2n(T1).

(b) Recall that the morphisms

[pn]X[p2n]!X[pn] : X[p2n]! X[pn] and [pn]Y [p2n]!X[pn] : Y [p2n]! Y [pn]

induced by “multiplication by pn” are both faithfully flat. So for every S-scheme
T , every x 2 X[pn](T ), and every y 2 Y [pn](T ), there exists a faithfully flat
morphism f : T1 ! T , an element x1 2 X[p2n](T1) and an element y1 2 Y [p2n](T1)
such that

x � f = [pn]X[p2n]!X[pn] � x1 and y � f = [pn]Y [p2n]!Y [pn] � y1.
The desired conclusion that g : X ⇥S Y ! Z is equal to the zero map follows immediately
from (a) and (b).

10.2.3.6. Corollary. Let X,Y, Z,X 0, Y 0, Z 0 be smooth formal groups over S. Let ⇡ : E !
X ⇥S Y be a biextension of X ⇥S Y by Z and let ⇡0 : E0 ! X 0 ⇥S Y 0 be a biextension of
X 0 ⇥S Y 0 by Z 0. Let ( ,↵,�, �) be an S-homomorphism of biextensions.

(a) The maps ↵,� and � are uniquely determined by the morphism  .
(b) Suppose that X and Y are both p-divisible. The morphism  : E ! E0 is uniquely

determined by the homomorphisms ↵ : X ! X 0, � : Y ! Y 0 and � : Z ! Z 0.

Proof. The statement (a) is obvious. It remains to prove (b). Suppose that ( 1,↵,�, �)
and ( 2,↵,�, �) are two S-homomorphisms of biextensions from E to E0. We need to show
that  1 =  2.
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Let g : X ⇥S Y ! Z 0 be the S-morphsm such that

 2 = (g � ⇡0) ⇤  1.

It is easy to see that the map g : X ⇥S Y ! Z 0 is a bi-additive in the sense that

g(x1 + x2, y) = g(x1, y) + g(x2, y), g(x, y1 + y2) = g(x, y1) + g(x, y2)

for all formal scheme T over S, all T -valued points x, x1, x2 of X and all T -valued points
y, y1, y2 of Y . Such a bi-additive map g : X ⇥S Y ! Z 0 is necessarily equal to the zero
map by lemma 10.2.3.5. Therefore the natural map

Hombiext(E,E0) �! Hom(X,X 0)⇥Hom(Y, Y 0)⇥Hom(Z,Z 0)

( ,↵,�, �) 7! (↵,�, �)

is injective when X and Y are both p-divisible groups over S.

10.2.3.7. Corollary. Let X,Y, Z be p-divisible groups over a scheme S, and let ⇡ : E !
X ⇥S Y be a biextension. Let T ! S be a faithfully flat morphism. If the base change
⇡T : ET ! XT ⇥T YT to T of the biextension E is split, then E is a split biextension.

Proof. Let ⇣T : XT ⇥T YT ! ET be a splitting of ET . By 10.2.3.5 and 10.2.3.6 the
pull-backs of ⇣T via the two projections pr1, pr2 : T ⇥S T ! T are canonically isomorphic,
and the canonical isomorphism satisfies the cocycle condition. So ⇣T descends to a splitting
⇣ : X ⇥S Y ! E of E.

10.2.4. The Weil pairings of a biextension of p-divisible groups.

Let R be a Noetherian complete local ring whose residue field R/m has characteristic
p. Let X,Y, Z be p-divisible groups over S = Spf(R) as in 10.2.1.

10.2.4.1. For every biextension E of X ⇥S Y by Z, there is an associated family

✓E =
�
✓En
�
n2N�1

of bilinear pairings

✓n = ✓En : X[pn]⇥S Y [pn]! Z[pn], n 2 N
called the Weil pairing, attached to this biextension E ! X⇥S Y . A definition of the Weil
pairing and its basic properties will be reviewed in 10.2.5.

A biextension E of p-divisible groups is determined by its Weil pairing up to unique
isomorphism; this is a consequence of 10.2.5.8. In particular a biextension E is trivial if
and only if ✓n = 0 for every n � 1.

Remark. As we will see in 10.2.5.2, there are actually two families of Weil pairings associ-
ated to a given biextensions of p-divisible groups. The first family (✓n)n, denoted by (�n)n
in [76], is normalized by the relative group law +1. The other family (!n)n is normalized
by the relative group law +2. The two Weil parings di↵er by a sign: ✓n +Z !n = 0 for all
n.
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10.2.4.2. These bilinear pairings ✓n are compatible in the sense that

(10.2.4.2.1) ✓n([p]X(xn+1), [p]Y (yn+1)) = [p]Z (✓n+1(xn+1, yn+1))

for all xn+1 2 X[pn+1], all yn+1 2 Y [pn+1] and all n 2 N; or equivalently,
✓n+1(xn, yn+1) = ✓n(xn, [p]Y (yn+1))(10.2.4.2.2)

✓n+1(xn+1, yn) = ✓n([p]X(xn+1), yn)(10.2.4.2.3)

for all xn 2 X[pn], xn+1 2 X[pn+1], yn 2 Y [pn], yn+1 2 Y [pn+1] and all n 2 N. See [76,
Prop. 4] and also Exp.VIII of [18] more information.

Exercise. Suppose that a, r are natural numbers with a < r such that

pam · ✓rm(xrm, yrm) = 0.

for all m � 1 and all functorial points (xrm, yrm) of X[prm] ⇥ Y [prm]. Show that ✓n = 0
for all n � 1.

10.2.4.3. Functoriality of Weil pairings. Let X,Y, Z,X 0, Y 0, Z 0 be p-divisible groups
over S, let E be a biextension of X ⇥S Y by Z, and let E0 be a biextension of X 0 ⇥S Y 0

by Z 0. Let (✓En )n2N and (✓E
0

n )n2N be the Weil pairings attached to E and E0 respectively.
Suppose that ( ,↵,�, �) is a homomorphism of biextensions from E to E0. Then

�(✓En (xn, yn)) = ✓E
0

n (↵(xn),�(yn))

for all xn 2 X[pn] and all yn 2 Y [pn].

The following statements follow easily from the functoriality of Weil pairings.

(a) For any isogeny ⇠ : Z ! Z 0, the push-forward biextension ⇠⇤(E ! X ⇥S Y ) is
trivial if and only if E ! X ⇥S Y is.

(b) For any pair of isogenies ⇣ : X1 ! X, ⌘ : Y1 ! Y , the pull-back biextension
(⇣ ⇥ ⌘)⇤(E ! X ⇥S Y ) is trivial if and only if E ! X ⇥S Y is.

10.2.4.4. Lemma. Let X,Y, Z be p-divisible groups over a field  of characteristic p. Let
⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z, and let

�
✓n
�
n�1

be the associated Weil
pairings. Suppose that for every slope � of X and every slope ⌫ of Y , �+ ⌫ is not a slope
of Z. Then ✓n = 0 for all n. In other words, the biextension E ! X ⇥ Y is trivial.

Proof. One can use the Dieudonné theory for biextensions stated in 10.2.7.2 to prove
10.2.4.4. Here is a direct proof.

It su�ces to prove the statement after extending the base field to an algebraic closure
of  and modifying X,Y, Z by isogenies. Using the bilinearity of the Weil pairings, we are
reduced to the following special case.

The p-divisible groups X, Y , Z are isoclinic, and there exist natural
numbers a, b, c, r, r > 0, a, b, c  r, a + b 6= c, and isomorphisms ↵ :
X

⇠�! X(pr), � : Y
⇠�! Y (pr), � : Z

⇠�! Z(pr), such that

Frr
X/

= ↵ � [pa]X , Frr
Y/

= ↵ � [pb]Y , Frr
Z/

= ↵ � [pc]Z .
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Functoriality with respect to the -bihomomorphism
�
Frr

E/
,Frr

X/
,Frr

Y/
,Frr

Z/

�
from E

to E(pr) tells us that

✓E
(p

r
)

n (Frr
X/

xn,Fr
r

Y/
yn) = Frr

Z/
✓En (xn, yn)

for all functorial points (xn, yn) of X[pn]⇥ Y [pn] and all n � 1, i.e.

(⇤) [pa+b]Z
�
✓E

(p
r
)

n (↵(xn),�(yn))
�
= [pc]Z

�
�(✓En (xn, yn))) 8n � 1.

Suppose that a+ b > c. We claim that

(⇤⇤) [pa+b�c]
Z(pr)

�
✓E

(p
r
)

n (↵(xn),�(yn))
�
= �(✓En (xn, yn))

for every commutative -algebra R, every R-valued points (xn, yn) 2 X[pn](R)⇥Y [pn](R),
and every n � 1. There exists a finite locally free commutative R-algebra R0 and an
R0-point (xn+c, yn+c) 2 (X[pn+c]⇥ Y [pn+c])(R0), such that

[pc]X(xn+c) = xn and [pc]Y (yn+c) = yn.

Since

[pa+b�c]
Z(pr)

�
✓E

(p
r
)

n (↵(xn),�(yn))
�
= [pa+b�c]

Z(pr)

�
✓E

(p
r
)

n+c (pc↵(xn+c),�(yn))
�

= [pa+b]
Z(pr)

�
✓n+c(↵(xn+c),�(yn+c))

�

and similarly

✓En (xn, yn) = [pc]Z
�
✓En+c(xn+c, yn+c)

�
,

the claim follows from (⇤). Iterating (⇤⇤), we get

�N
�
✓En (xn, yn)

�
= [pN(a+b�c)]

Z(pNr)

�
✓E

(p
Nr

)

n (↵N (xn),�
N (yn))

�

for all N 2 N, where ↵N = ↵(pN�1) � · · · �↵(p) �↵ is the N -th iterate of ↵, and similarly for
�N and �N . With N > n

a+b�c
, we see that ✓En = 0 for all n � 1 when a+ b > c. The case

when a+ b� c < 0 is proved by a similar argument.

10.2.5. The Weil pairing as descent data over torsion subgroup schemes.

Let X,Y, Z be p-divisible groups over a base scheme S. Let ⇡ : E ! X ⇥S Y be a
biextension of X ⇥S Y by Z over S. We review in 10.2.5.1

(a) the definition of the Weil pairing attached to a biextension E ! X ⇥S Y , and
(b) how to construct a biextension En of X[pn]⇥S Y [pn] by Z by descending the split

biextension

Z ⇥X[pn]⇥S Y [p2n]! X[pn]⇥S Y [p2n]

along the faithfully flat morphism

1X[pn] ⇥S [pn]Y [p2n] : X[pn]⇥S Y [p2n]! X[pn]⇥S Y [pn]

using the descent datum given by a bihomomorphism ✓n : X[pn]⇥SY [pn]! Z[pn].
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The descent construction reviewed in 10.2.5.1 (iii), (iv) has many applications. For
instance it implies that if the Weil pairings ✓n1,E

, ✓n1,E
0 attached biextensions E, E0 of

p-divisible groups X⇥S Y by Z at a fixed level [pn1 ] coincide, then there exists a canonical
isomorphism between the restrictions of the biextensions E and E0 to X[pn1 ]⇥S Y [pn1 ]; see
10.2.5.8 and its Dieudonné theory version 10.2.7.2, 10.2.7.3. More importantly it allows
us to compute the leading term of the Taylor expansion of actions of p-adic Lie groups on
biextensions; see 10.4.1.2.

10.2.5.1. We recall the explicit construction of Weil pairings

✓n = ✓En : X[pn]⇥S Y [pn]! Z[pn], n � 1

in [76, pp. 320–321].

(i) The first ingredient is a canonical trivialization ⇠n of the biextension

(1X[pn] ⇥ [pn]Y [p2n])
⇤En = En⇥(X[pn]⇥SY [pn],1X[pn]⇥S [pn]Y [p2n]

) (X[pn]⇥SY [p2n]),

the pull-back of En = ⇡�1(X[pn] ⇥S Y [pn]) via the finite locally free bi-additive
homomorphism 1X[pn] ⇥ [pn]Y [p2n] : X[pn] ⇥S Y [p2n] ! X[pn] ⇥S Y [pn]. In other
words we will construct a natural bi-additive map

⇠n = ⇠En : X[pn]⇥S Y [p2n]! En

such that the diagram

X[pn]⇥S Y [p2n]
⇠n

//

=
✏✏

En

⇡n

✏✏

X[pn]⇥S Y [p2n]
1⇥[pn]Y

// X[pn]⇥S Y [pn]

commutes.

Given any S-scheme T , any xn 2 X[pn](T ), any y2n 2 Y [p2n](T ), there exist
(a) a scheme T1 faithfully flat and locally of finite presentation over T , and (b)
an element e1 2 E(T1) which lies above (xn, y2n), such that when one multiplies
e1 by pn with respect to the first relative group law +1, we have

[pn]+1
(e1) = ✏1(y2n).

Such an element e1 is not unique, but any two choices di↵er by an element of
Z[pn]. Define ⇠n(xn, y2n) as pn times e1 with respect to the second group law +2:

⇠n(xn, y2n) := [pn]+2
(e1).

Clearly the right hand side of the above equality is independent of the choice of the
element e1, where we have used the first group law +1 to produce a Z[pn]-torsor
lying above the T -point (xn, y2n) of X[pn]⇥S Y [p2n]. By descent we conclude that
⇠n(xn, y2n) 2 En(T ).
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We have defined a morphism ⇠n : X[pn] ⇥S Y [p2n] ! En. This morphism
corresponds to a section of the biextension

(1X[pn] ⇥ [pn]Y [p2n])
⇤En ! X[pn]⇥S Y [p2n],

denoted again by ⇠n, abusing the notation. It is easy to see that ⇠n is a bihomo-
morphism which splits the biextension (1X[pn] ⇥ [pn]Y [p2n])

⇤En.
(ii) Define a morphism ↵n : Z ⇥S X[pn]⇥S Y [p2n] �! En = ⇡�1(X[pn]⇥S Y [pn]) by

↵n(z, xn, y2n) := z ⇤ ⇠n(xn, y2n)

for all S-scheme T , all z 2 Z(T ), all xn 2 X[pn](T ) and all y2n 2 Y [p2n](T ). It is
easy to see that the following commutative diagram

Z⇥SX[pn]⇥SY [p2n]
↵n

//

pr
23

✏✏

En

⇡|En

✏✏

X[pn]⇥SY [p2n]
1⇥p

n

//

1⇥p
n

// X[pn]⇥SY [pn]

is cartesian. So the biextension ⇡n : En ! X[pn]⇥S Y [pn] is descended from the
trivial biextension pr23 : Z ⇥S X[pn] ⇥S Y [p2n] �! X[pn] ⇥S Y [p2n] along the
faithfully flat morphism 1X[pn] ⇥ [pn]Y [p2n] : X[pn]⇥S Y [p2n] �! X[pn]⇥S Y [pn].

(iii) Construct a bihomomorphism

✓n = ✓En : X[pn]⇥S Y [pn] �! Z[pn]

using the descent datum for ↵n.

The e↵ect of translation by elements of Y [pn] on the isomorphism ↵n is
recorded by a map ✓0n : X[pn]⇥S Y [p2n]⇥S Y [pn]! Z, defined by

↵n(�, xn, y2n) = ↵n(�+ ✓0n(xn, y2n, bn), x, y2n + bn)

for all S-scheme T , all � 2 Z(T ), all xn 2 X[pn](T ), all y2n 2 Y [p2n](T ) and all
bn 2 Y [pn](T ). An easy calculation shows that ✓0n(xn, y2n, bn) is independent of
y2n. In other words there exists an S-morphism ✓n : X[pn] ⇥S Y [pn] ! Z such
that the last displayed equation simplifies to

↵n(�, xn, y2n) = ↵n(�+ ✓n(xn, bn), xn, y2n + bn).

An easy calculation shows that ✓n is a bihomomorphism, hence it factors through
the closed subgroup scheme Z[pn] ,! Z.

Reversing the construction, it is easy to see that ✓n encodes the descent datum from
the trivial biextension Z⇥SX[pn]⇥S Y [p2n] down to En: the bihomomorphism ✓n gives an
X[pn]-action of the base change to X[pn] of the group scheme Y [pn], on the X[pn]-scheme
Z ⇥S X[pn] ⇥S Y [p2n]. So En ! X[pn] ⇥S Y [pn] can be reconstructed from ✓n, and the
biextension ⇡ : E ! X⇥S Y can be reconstructed from the family (✓n)n�1 of Weil pairings.
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10.2.5.2. The two relative group laws play di↵erent roles in the definition the morphisms
⇠n and ✓n. We will say that ⇠n and ✓n are normalized by the first group law +1 (or by the
first factor X in the product X ⇥S Y ), referring to the condition [pn]+1

(z1) = ✏1(y) above
on the element z1 above (x, y).

If the roles played by the two relative laws are interchanged, then we get a canonical
splitting

 n =  E

n : X[p2n]⇥S Y [pn]! En

of ([pn]X[p2n] ⇥ 1Y [pn])
⇤En normalized by the relative group law +2, and a bi-additive map

!n = !E

n : X[pn]⇥S Y [pn]! Z[pn]

such that
!n(an, yn) ⇤  n(x2n + an, yn) =  n(x2n, yn)

8 an 2 X[pn], 8x2n 2 X[p2n], 8 yn 2 Y [pn]. Note that

 E

n = ⇠◆
⇤
E

n � (◆|X[p2n]⇥Y [pn]) and !E

n = ✓◆
⇤
E

n � (◆|X[pn]⇥Y [pn])

for each n � 1, where ◆ : X ⇥S Y ! Y ⇥S X is isomorphism (x, y) 7! (y, x) on functorial
points of X⇥S Y , and ◆⇤E ! Y ⇥SX is the pull-back by ◆ of the biextension E ! X⇥S Y .

Claim. The bi-additive map !n : X[pn]⇥S Y [pn]! Z[pn] is equal to �✓n.
Before proving the claim, it is convenient to rephrase the definition of ✓n as follows.

(a) The fiber product

Tn := ⇡�1(X[pn]⇥S Y [pn])⇥([pn]+1
,E,✏1) Y

has a natural structure as a biextension of X[pn]⇥S Y [pn] by Z[pn], contained in
the biextension ⇡�1(X[pn]⇥S Y [pn]), of (X[pn]⇥S Y [pn]) by Z.

(b) The bi-additive map ✓n : X[pn]⇥S Y [pn]! Z[pn] is characterised by the property
that

[pn]+2
|Tn

= (✓n � ⇡|Tn
) ⇤ (✏2 � pr1)|Tn

Interchanging the two relative group laws +1 and +2 gives us a rephrased definition of
!n. We will prove the above claim using this rephrased definition of !n and descent.

Proof of claim. Suppose that Spec(R)! S is an a�ne scheme over the base scheme S,
and we are given elements xn 2 X[pn](R), yn 2 Y [pn](R), and an element e 2 E(R) with
⇡(e) = (xn, yn) which satisfy the normalization condition [pn]+1

(e) = ✏1(yn) with respect
to the group law +1. By definition ✓n(xn, yn) is the unique element in Z[pn](R) such that
[pn]+2

(e) = ✓n(xn, yn) ⇤ ✏2(xn).
Pick a finite faithfully flat R-algebra S such that there exists an element z 2 Z[p2n](S)

with [pn]Z(z) = �✓n(xn, yn). Then we have [pn]+2
(z ⇤ e) = ✏2(xn), so the element ⇠ ⇤ e in

E(S), which lies above (xn, yn), satisfies the normalization condition with respect to the
group law +2. Moreover we have

[pn]+1
(z ⇤ e) = [pn]Z(z) ⇤ ✏1(xn).

So !n(xn, yn) = [pn]Z(z) = �✓n(xn, yn) according to the rephrased definition of !n.
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Remark. See also 10.2.6.1, in the same setup as the above argument.

10.2.5.3. It is instructive to compare the splitting ⇠n of (1X[pn] ⇥ [pn]Y [p2n])
⇤En and the

splitting  n of ([pn]X[p2n]⇥1Y [pn])
⇤En, by pulling back both splittings to X[p2n]⇥S Y [p2n].

Define a splitting ⌅n of (1X[pn] ⇥ [pn]Y [p2n])
⇤En by

⌅n := ⇠n � ([pn]X[p2n] ⇥ 1Y [p2n]) : X[p2n]⇥S Y [p2n]! En.

Similarly let  n =  E
n : X[p2n]⇥S Y [pn]! Z be the canonical splitting of the biextension

([pn]X[p2n] ⇥ 1Y [pn])
⇤En of X[p2n]⇥S Y [pn] by Z, by switching the role of the two relative

group laws: For any S-scheme T and T -points x2n 2 X[p2n](T ) and yn⇥S Y [pn](T ), pick a
finite locally free cover T1 : T1 ! T and an element e1 2 E(T1) lying above (x2n, yn) such
that [pn]+2

(e1) = ✏2(x2n), and  n(x2n, yn) is defined to be the element [pn]+1
(e1) of E(T )

which lies above (pnx2n, yn). Define

 n :=  n � (1X[p2n] ⇥ [pn]Y [p2n]) : X[p2n]⇥S Y [p2n]! En.

Both ⌅n and  n are splittings of the biextension

([pn]X[p2n] ⇥ [pn]Y [p2n])
⇤En ! X[p2n]⇥S Y [p2n].

Define a bi-additive map �2n : X[p2n]⇥S Y [p2n]! Z by the requirement that

�2n(x2n, y2n) ⇤ ⌅n(x2n, y2n) =  n(x2n, y2n) 8x2n 2 X[p2n], 8 y 2 Y [p2n].

We see from the defining properties of ⌅n, ⇠n,  n and  n that

�2n(an, y2n) ⇤ ✏1(pny2n) =  n(an, y2n) = �!n(an, p
ny2n) ⇤ ✏1(pny2n)

and

(�2n(x2n, bn)�Z ✓n(p
nx2n, bn)) ⇤ ✏2(pnx2n) = �2n(x2n, bn) ⇤ ⌅n(x2n, bn) = ✏2(p

nx2n)

for all an 2 X[pn], all bn 2 Y [pn], all x2n 2 X[p2n], and all y2n 2 Y [p2n]. It follows that

✓n(p
nx2n, p

ny2n) = pn�2n(x2n, y2n) = �!n(p
nx2n, p

ny2n)

for all x2n 2 X[p2n] and all y2n 2 Y [p2n]. Note that we have shown again that ✓n+Z!n = 0.

10.2.5.4. Exercise. Prove the following the compatibility properties of the trivializations
(⇠n)n�1 and ( n)n�1:

⇠n(pxn+1, p
2y2n+2) = [p]+1

[p]+2
⇠n+1(xn+1, y2n+2) 8xn+1 2 X[pn+1], 8y2n+2 2 Y [p2n+2]

 n(p
2x2n+2, pyn+1) = [p]+1

[p]+2
 n+1(x2n+1, yn+1) 8x2n+2 2 X[p2n+2], 8yn+1 2 Y [pn+1].

Equivalently,

⌅n(p
2x2n+2, p

2y2n+2) = [p]+1
[p]+2

⌅n+1(x2n+2, y2n+2)

 n(p
2x2n+2, p

2y2n+2) = [p]+1
[p]+2

 n+1(x2n+2, y2n+2)

for all x2n+2 2 X[p2n+2] and all y2n+2 2 Y [p2n+2].

10.2.5.5. Exercise. Prove the following properties of the bi-additive map �2n.
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(a) The bi-additive map �2n : X[p2n]⇥S Y [p2n]! Z factors through Z[p2n] ,! Z.
(b) For all x2n+2 2 X[p2n+2] and all y2n+2 2 Y [p2n+2], we have

p2�2n+2(x2n+2, y2n+2) = �2n(p
2x2n+2, p

2y2n+2).

(c) �2n = ✓2n = �!2n for all n � 1.

10.2.5.6. Remark. We saw in 10.2.5.2 that the two Weil pairings normalized by the two
group laws di↵er by a sign. In the case of the Poincaré biextension

P[p1]! A[p1]⇥S At[p1]

associated to an abelian scheme A over a base scheme S, it is natural to ask which one of
the two Weil pairings is equal to the standard Weil pairing eAn : A[pn]⇥S At[pn]! lµ.. pn .

A careful comparison with the definition of en in the first three pages of §20 of Mum-
ford’s book [77] reveals that eAn is equal to the pairing !n normalized by the “second”
relative group law +2 of the biextension P[p1]! A[p1]⇥S At[p1]. Recall that +2 makes
P[p1] a p-divisible group over the base scheme A[p1], which is an extension of At[p1]
(base changed to A[p1]) by lµ.. p1 (also base changed to A[p1]).

10.2.5.7. Lemma. Let ⇡ : E ! X ⇥ Y be a biextension of p-divisible groups X ⇥S Y
by a p-divisible group Z over a base scheme Y . For each positive integer n , let ✓n :
X[pn]⇥S Y [pn]! Z[pn] be the Weil pairing as described in 10.2.5.1.

(1) Suppose that n1 is a positive integer and ✓n1
is equal to the trivial bi-additive map

from X[pn1 ]⇥S Y [pn1 ] to Z[pn1 ]. Then the biextension ⇡�1(X[pn1 ]⇥S Y [pn1 ]) of
X[pn1 ]⇥S Y [pn1 ] by Z splits canonically. In other words there exists a canonical
isomorphism

⇣n1
: ⇡�1(X[pn1 ]⇥S Y [pn1 ])

⇠�! Z ⇥S X[pn1 ]⇥S Y [pn1 ].

(2) Suppose that n2 is a positive integer, n2 > n1 and ✓n2
is equal to the trivial bi-

additive map. Then ✓n1
is also equal to the trivial bi-additive map. Moreover

the canonical trivializations ⇣cann1
and ⇣cann2

are compatible, i.e. ⇣cann1
is equal to the

restriction to ⇡�1(X[pn1 ]⇥S Y [pn1 ]) of ⇣cann2
.

Proof. We saw in 10.2.5.1 that the pull-back of ⇡�1(X[pn1 ]⇥SY [pn1 ]) toX[pn1 ]⇥SY [p2n1 ]
by the faithfully flat morphism 1X[pn1 ⇥ [pn1 ]

Y [p2n1 ] : X[pn1 ]⇥S Y [p2n1 ]! X[pn1 ]⇥S Y [pn1 ]
is canonically trivial, and the bihomomorphism ✓n1

corresponds to the descent data from
the trivial biextension Z ⇥ X[pn1 ] ⇥S Y [p2n1 ] down to ⇡n1

along the morphism 1 ⇥ pn1 :
X[pn1 ] ⇥S Y [p2n1 ] ! X[pn1 ] ⇥S Y [pn1 ]. So if ✓n1

is the trivial homomorphism, then this
descent datum defines a canonical isomorphism between the ⇡�1(X[pn1 ] ⇥S Y [pn1 ]) and
the trivial biextension Z ⇥X[pn1 ]⇥ Y [pn1 ]). We have proved statement (1).

The first part of (2) follows from the compatibility of Weil pairings (10.2.4.1.2) and
(10.2.4.1.3). The compatibility statement (2) follows from the same descent argument used
in the proof of (1).
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Proposition 10.2.5.8 and Corollary 10.2.5.9 below are applications of 10.2.5.1. It enables
us to determine the restriction of a homomorphism between two biextensions to torsion
subgroups schemes X[pn]⇥ Y [pn].

10.2.5.8. Lemma. Let ⇡ : E ! X ⇥S Y and ⇡0 : E0 ! X ⇥S Y be two biextensions of
p-divisible groups X ⇥S Y by a p-divisible group Z over S. Let

�
✓n, ✓

0

n : X[pn]⇥S Y [pn]! Z[pn]
�
n2N

be the Weil parings attached normalized by the first relative group laws +1,E ,+1,E0 associ-
ated to the biextensions E,E0 respectively.

(1) If n1 is a positive integer and ✓n1
= ✓0n1

, then there exists a canonical isomorphism

⇣n : ⇡�1(X[pn1 ]⇥S Y [pn1 ])
⇠�! (⇡0)�1(X[pn1 ]⇥S Y [pn1 ])

determined by ✓n and ✓0n.
(2) Suppose that n2 > n1 and ✓n2

= ✓0n2
. Then ✓n1

= ✓0n1
and the canonical isomor-

phism

⇣n1
: ⇡�1(X[pn1 ]⇥S Y [pn1 ])

⇠�! (⇡0)�1(X[pn1 ]⇥S Y [pn1 ])

is compatible with the canonical isomorphism

⇣n2
: ⇡�1(X[pn2 ]⇥S Y [pn2 ])

⇠�! (⇡0)�1(X[pn2 ]⇥S Y [pn2 ]).

(3) Suppose that ✓n = ✓0n for all n 2 N. Then the collection of canonical isomorphisms

⇣n : ⇡�n(X[pn]⇥S Y [pn])
⇠�! (⇡0)�n(X[pn]⇥S Y [pn]), n 2 N

defines an isomorphism from the biextension E to the biextension E0 which induces
idX , idY and idZ on the p-divisible groups X, Y and Z.

(4) Suppose that ⇣ : E ! E0 is an isomorphism of biextensions which induces idX , idY
and idZ on the p-divisible groups X, Y and Z. Then ✓n = ✓0n for all n 2 N, and
the restriction of ⇣ to ⇡�1(X[pn]⇥S Y [pn]) is equal to the canonical isomorphism

⇣n : ⇡�1(X[pn1 ]⇥S Y [pn1 ])
⇠�! (⇡0)�1(X[pn1 ]⇥S Y [pn1 ])

attached to ✓n and ✓0n, for all n 2 N.
Proof. The biextension structures on E and E0 endow the Z-torsor E ^Z ([�1]Z)⇤E0

over X ⇥ Y a structure of a biextension of X ⇥S Y by Z. The statements (1), (2) follow
from 10.2.5.7 applied to E ^Z ([�1]Z)⇤E0. The statement (3) follows from (2).

To prove the statement (4), we observe first that the functoriality of the Weil pairings
tell us that ✓n = ✓0n for all n. By (3), the canonical isomorphisms ⇣n are compatible and
defines an isomorphism of biextensions ⇣ 0 : E ! E0 over X ⇥S Y . There exists a unique
morphism

b : X ⇥S Y ! Z

such that

⇣ 0(e) = b(⇡(e)) ⇤ ⇣(e)
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for all S-scheme T and all e 2 E(T ). Clearly b : X ⇥S Y ! Z is bi-additive in the sense
that

b(x1 + x2, y) = b(x1, y) and b(x, y1 + y2) = b(x, y1) + b(x, y2)

for all S-schemes T , all x, x1, x2 2 X(T ) and all y, y1, y2 2 Y (T ). We know from 10.2.3.5
that such a bi-additive map is necessarily zero. We have shown that ⇣ 0 = ⇣.

10.2.5.9. Corollary. Let X,Y, Z,X 0, Y 0, Z 0 be p-divisible groups over S. Let E be a
biextension of X ⇥S Y by Z, and let E0 be a biextension of X 0 ⇥S Y 0 by Z 0. There is a
natural bijection from the set Hombiext(E,E0) of all S-bihomomorphisms from E to E0, to
the set of all triples (↵,�, �) 2 HomS(X,X 0)⇥HomS(Y, Y 0)⇥HomS(Z,Z 0) such that

�(✓n,E(xn, yn)) = ✓n,E0(↵(xn),�(yn))

for all n 2 N, all schemes T over S, all xn 2 X[pn](T ), and all yn 2 Y [pn](T ).

Remark. (i) Denote by Biext1(X,Y ;Z) the set of all biextensions of X ⇥S Y by Z up
to isomorphisms which induce idX , idY , idZ on X,Y and Z; c.f. 10.2.3.1 (c). By 10.2.5.8
and 10.2.5.9, the map E 7! ✓E establishes a functorial bijection from Biext1(X,Y ;Z) to
the set of all compatible families of bilinear pairings (✓n : X[pn]⇥ Y [pn]! Z[pn])

n2N. See
also [76, Prop. 4, p. 319], Exp.VIII of [18] and 10.2.7.2.

(ii) One knows from [18, VII 3.6.5] that for sheaves of abelian groups P,Q,G over a topos,
the set Biext1(P,Q;G) of isomorphism classes of biextensions of P ⇥Q by G is naturally
isomorphic to Ext1(P ⌦L Q,G). On the other hand, for p-divisible groups X, Y we have
isomorphisms Tor1Zp

(X[pn], Y [pn]) ⇠= X[pn] ⌦Zp
Y [pn] of fppf-sheaves. The construction of

the Weil pairing attached to a biextension reflects these two facts.

10.2.5.10. Lemma. Let X,Y, Z be p-divisible formal groups over a field  of characteristic
p , let E ! X ⇥ Y be a biextension of X ⇥ Y by Z. Suppose that X,Y factor as products
X = X1 ⇥X2, Y = Y1 ⇥ Y2, where X1, X2, Y1, Y2 are p-divisible groups over , such that
all slopes of X1 ⇥ Y1 are � µ1. Suppose moreover that the Weil pairings

�
✓E,⇡

n : X[pn]⇥ Y [pn]! Z[pn]
�
n�1

attached to the biextension (E,⇡) vanish on X1[pn]⇥ Y [pn] and also on X[pn]⇥ Y [pn], for
every n � 1. Then E has a natural structure

(⇡0 : E ! X2 ⇥ Y2,+
0

1 : E ⇥Y2
E ! E,+0

1 : E ⇥X2
E ! E, ✏01 : Y2 ! E, ✏02 : X2 ! E)

as a biextension of X2 ⇥ Y2 by Z 0 = X1 ⇥ Y1 ⇥ Z, such that the following properties hold.

(1) e+1 e
0 = (�prY1

(e)) ⇤0 (e+0

1 e
0) = (�prY1

(e0)) ⇤0 (e+0

1 e
0)

for all functorial points e, e0 of E such that prY (e) = prY (e
0),

(2) e+2 e0 = (�prX1
(e)) ⇤0 (e+0

2 e
0) = (�prX1

(e0)) ⇤0 (e+0
2 e

0)
for all functorial points e, e0 of E such that prX(e) = prX(e0),

(3) e+0
1 e

0 =
�
prY1

(e) +1 prY1
(e0)

�
⇤0
�
(�prY1

(e) ⇤0 e) +1 (�prY1
(e0) ⇤0 e0)

�

for all functorial points e, e0 of E such that prY2
(e) = prY2

(e0),
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(4) e+0
2 e

0 =
�
prX1

(e) +1 prX1
(e0)

�
⇤0
�
(�prX1

(e) ⇤0 e) +1 (�prX1
(e0) ⇤0 e0)

�

for all functorial points e, e0 of E such that prX2
(e) = prX2

(e0),
(5) ✏1(y1, y2) = y1 ⇤0 ✏01(y2) for all functorial points (y1, y2) of Y = Y1 ⇥ Y2, and
(6) ✏2(x1, x2) = x1 ⇤0 ✏02(x2) for all functorial points (x1, x2) of X = X1 ⇥X2.
(7) z ⇤ e=z ⇤0 e for all functorial points (z, e) 2 Z ⇥ E.
(8) Every automorphism of the biextension (E,⇡) is an automorphism of the biexten-

sion (E,⇡0), and vice versa.

Here

• ⇤0 : Z 0⇥E ! E is the Z 0-torsor structure associated with the structure on E as a
biextension of X2 ⇥ Y2 by Z 0.

• ⇡0 : E ! X2 ⇥ Y2 is the composition of ⇡ : E ! X ⇥ Y with the projection
X ⇥ Y = (X1 ⇥ Y1)⇥ (X2 ⇥ Y2) �! X2 ⇥ Y2.

• prX : E ! X is the composition of ⇡ : E ! X⇥Y with the projection X⇥Y ! X.
• prY : E ! Y is the composition of ⇡ : E ! X⇥Y with the projection X⇥Y ! Y .
• prXi

: E ! Xi is the composition of prX with the projection X = X1 ⇥X2 ! Xi,
i = 1, 2.

• prYi
: E ! Yi is the composition of prY with the projection Y = Y1 ⇥ Y2 ! Yi,

i = 1, 2.

Proof. The assumption on the Weil pairings means that ✓E,⇡
n factors through the projec-

tion X[pn]⇥Y [pn] �! X2[pn]⇥Y2[pn] and induces a compatible family of bilinear pairings�
✓0n : X2[pn]⇥ Y2[pn]! Z[pn]

�
n�1

. Define

✓E
0
,⇡

0

n : X2[p
n]⇥ Y2[p

n]! Z 0[pn] = (X1 ⇥ Y1 ⇥ Z)[pn]

to be the composition

X2[pn]⇥ Y2[pn]
✓
0
n
// Z[pn] �

�
// X1[pn]⇥ Y1[pn]⇥ Z[pn] = Z 0[pn] .

The bilinear pairings
�
✓E

0
,⇡

0�
n�1

define a biextension ⇡0 : E0 ! X2 ⇥ Y2 of X2 ⇥ Y2 by Z 0.

Moreover we have a natural isomorphism of formal schemes E
⇠�! E0, which sends

zn ⇤ ⇠En
�
(x1,n, x2,n), (y1,2n, y2,2n)

�

to
�
x1,n, [p

n](y1,2n), zn
�
⇤0 ⇠E0

(x2,n, y2,2n)

for all functorial points x1,n 2 X1[pn], x2,n 2 X2[pn], y1,2n 2 Y1[p2n], y2,2n 2 Y2[p2n], zn 2 Z
with values in the same -scheme S, in the notation of 10.2.5.1. We identify E0 with E via
this isomorphism. Properties (1)–(8) follow immediately.

10.2.6. Let ⇡ : E ! X⇥S Y be a biextension of p-divisible groups X,Y, Z. We will
construct a family (⌘n)n�1 of morphisms ⌘n : En ! Z and a similar family of morphisms



10.2. BIEXTENSION BASICS 563

⇢n : En ! Z, such that

⌘n
��
Z
= [pn]Z = ⇢n

��
Z

[p]Z � ⌘n = ⌘n+1 � (En ,! En+1)

[p]Z � ⇢n = ⇢n+1 � (En ,! En+1)

for all n � 1, where En := ⇡�1(X[pn] ⇥S Y [pn]). See 10.2.6.1 for their definitions, and
10.2.6.3 for a basic congruence estimate of ⌘n and ⇢n.

10.2.6.1. Definition. Let ⇡ : E ! X⇥SY be a biextension of p-divisible groups X,Y, Z
over a scheme S.

For any positive integer n, we have a canonical map ⇠n : X[pn] ⇥S Y [p2n] ! En such
that ⇡ � ⇠n = 1X[pn] ⇥S [pn]

Y p2n and ⇠n(xn, y2n) = ✓n(xn, bn) ⇤ ⇠n(xn, y2n + bn) for all
xn 2 X[pn], all y2n 2 Y [p2n] and all bn 2 Y [pn]. The map ↵n : X[pn]⇥SY [p2n]⇥SZ ! En

which sends functorial points (xn, y2n, z) to z⇤⇠n(xn, y2n) is a faithfully flat homomorphisms
of biextensions.

(1) Definition of ⌘n. Let ⌘̃n : X[pn]⇥S Y [p2n]⇥S Z ! Z be the map given by

⌘̃n(xn, y2n, z) = pnz

for all functorial points (xn, y2n, z) of ⌘̃n : X[pn]⇥S Y [p2n]⇥S Z.
Define the map ⌘n : En ! Z by descending ⌘̃n along ↵n, i.e. ⌘n is the unique morphism

from En to Z such that

⌘n � ↵n = ⌘̃n.

The map ⌘n is induced by the relative group law +1 on En in the sense that

[pn]+1
(en) = ⌘(en) ⇤ ✏1(yn)

for every en 2 En above (xn, yn) 2 X[pn] ⇥S Y [pn]. This relation can be regarded as an
alternative definition of ⌘n.

(2) Definition of ⇢n. Consider the map

↵n � [pn]+2
:= ↵n � (1X[pn] ⇥ [pn]Y [p2n] ⇥ [pn]Z) : X[pn]⇥S Y [p2n]⇥S Z �! Z,

which sends every functorial point (xn, y2n, z) of X[pn]⇥S Y [p2n]⇥S Z to

(↵n � [pn]+2
)(xn, y2n, z) = ↵n(xn, p

ny2n, p
nz) = �✓n(xn, pny2n) ⇤ ↵n(xn, 0, p

nz)

= (�✓n(xn, pny2n) +Z pnz) ⇤ ✏2(xn).

Let ⇢̃n : X[pn] ⇥S Y [p2n] ⇥S Z ! Z be the map which sends functorial points (xn, y2n, z)
of X[pn]⇥S Y [p2n]⇥S Z to

⇢̃n(xn, y2n, z) = �✓n(xn, pny2n) +Z pnz.

Clearly ⇢̃n(xn, y2n + bn, z) = ⇢̃n(xn, y2n + bn, z) for every functorial point bn of Y [pn].
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Define ⇢n : En ! Z to be the morphism such that

⇢̃n = ⇢n � ↵n.

In other words, ⇢̃n descends from the finite locally free cover ↵n : X[pn]⇥SY [p2n]⇥SZ ! En

to the morphism ⇢n : En ! Z.

The map ⇢n is related to the relative group law +2 through the equality

[pn]+2
(en) = ⇢n(en) ⇤ ✏2(xn)

for every functorial point en 2 En above (xn, yn) 2 X[pn] ⇥S Y [pn], which provides an
alternative definition of ⇢n.

10.2.6.2. Exercise. (i) Show that

[p]Z � ⌘n = ⌘n+1 � (En ,! En+1)

[p]Z � ⇢n = ⇢n+1 � (En ,! En+1)

⌘n = (✓n � ⇡|En
) +Z ⇢n

for all n � 1.

(ii) Show that both ⌘n and ⇢n are bi-additive maps from En to Z.

10.2.6.3. Proposition. Let ⇡ : E ! X ⇥ Y be a biextension of p-divisible formal groups
over a field  of characteristic p. Let

�
⌘n : ⇡�1(X[pn]⇥ Y [pn])! Z

�
n2N ,

�
⇢n : ⇡�1(X[pn]⇥ Y [pn])! Z

�
n2N

be the two compatible families of morphisms defined in 10.2.6.1. Let µ = µZ,max be the
maximum among the slopes of Z. There exist positive integers n2, c2 such that

⌘n|En\E[F bn/µc�c2 ] = 0 and ⇢n|En\E[F bn/µc�c2 ] = 0

for all n � n2. Here E[F bn/µc�c2 ] denotes the inverse image of the base point of E(pbn/µc�c2 )

under the iterated relative Frobenius morphism Frbn/µc�c2

E/
: E ! E(pbn/µc�c2 ).

Proof. We only need to show the existence of n2, c2 such that ⌘n|En\E[F bn/µc�c2 ] = 0.

The other half, i.e. ⇢n|En\E[F bn/µc�c2 ] = 0, follows by symmetry.

For every positive integer n, we have a finite locally free cover

↵n : X[pn]⇥ Y [p2n]⇥ Z �! En, ↵n(xn, y2n, z) = z ⇤ ⇠En (xn, y2n)

defined in 10.2.5.1. Write µ = a

r
, where a, r are positive integers.

Suppose we are given an element e 2 En(R) \ E[F i](R), where R is a commuta-
tive -algebra and i 2 N. Let T be a finite locally free R-algebra such that there exist
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xn 2 X[pn](T ), y2n 2 Y [p2n](T ), and z 2 Z[T ] such that z ⇤ ⇠n(xn, y2n) = e. The as-
sumption that Fri

E/
(e) is the base point of E(pi) implies that Fri

X/
(xn) = 0, therefore

⇠E
(p

i
)

n

�
Fri

X/
(xn),Fr

i

Y/
(y2n)

�
is equal to the base point of E(pi). From

Fri
Z/

(e) = Fri
Z/

(z) ⇤ ⇠E(p
i
)

n

�
Fri

X/
(xn),Fr

i

Y/
(y2n)

�
,

we see that Fri
E/

(e) 2 E[F i] if and only if z 2 Z[F i]. Recall also that ⌘n(z ⇤ ⇠En (xn, y2n) =
[pn]Z(z).

The assumption that a

r
is the largest slope of Z implies the existence of positive integers

n3, c3 such that Z[F i] ✓ Z[pdia/re+c3 ] for all i � n3. For a point

e = z ⇤ ⇠n(xn, y2n) 2 En \ E[F i]

as in the previous paragraph, if i � n3 and dia/re + c3  n, then z 2 Z[F i] ✓ Z[pn] and
⌘n(z) = pnz = 0. Let c2 := dc3r/ae and n2 := da

r
(n3 + c2)e. A simple calculation shows

that the restriction of ⌘n to En \ E[F bn/µc] is identically 0.

The following proposition 10.2.6.4 is a more precise version of 10.2.6.3 in two special
situations.

10.2.6.4. Proposition. Let X,Y, Z be isoclinic p-divisible groups over a field  of char-
acteristic p, and let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z.

(1) If for every slope � of X and ever slope ⌫ of Y , �+ ⌫ is not a slope of Z, then

⌘n = 0 and ⇢n = 0

for every n 2 N.
(2) Let a, a1, a2, r > 0 be positive integers such that a1 + a2 = a, a  r. Suppose that

X[pa1 ] = X[F r], Y [pa2 ] = Y [F r], Z[pr] = Z[F r].

Then E[Fmr] ✓ Ema, ⌘Ema|E[Fmr] = 0, ⇢Ema|E[Fmr] = 0, and ✓En |E[Fmr] = 0 for
every positive integer m.

Proof. The assumption in (1) implies that the Weil pairings ✓En attached to E vanish
identically, and the biextension E splits canonically; see 10.2.4.4. So the maps ⌘n and ⇢n
are equal to 0 for all n.

Under the assumptions of (2), we have

X[Fmr] = X[pma1 ] = Im
⇣
X[pma]

[pma2 ]X[pma]
// X[pma]

⌘
,

Y [Fmr] = Y [pma2 ] = Im
⇣
Y [pma]

[pma1 ]Y [pma]
// Y [pma]

⌘
.

The assertion that ✓En |E[Fmr] = 0 follows, because ✓En is bi-additive. The assertion that

⌘Ema|E[Fmr] = 0 = ⇢Ema|E[Fmr] follows from the relation of the two relative group laws with
⌘n and ⇢n, and the above displayed formulas. Alternatively, the argument in the proof of
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10.2.6.3 using the descent data of En also shows that ⌘Ema|E[Fmr] and ⇢
E
ma|E[Fmr] are both

equal to 0.

Remark. One can also deduce 10.2.6.3 from 10.2.6.4, using lemma 10.2.6.5 below to
reduce to the case when the base field  is algebraically closed and X,Y, Z are all product
of isoclinic p-divisible groups, then to the case when X,Y, Z are all isoclinic. Another
application of 10.2.6.5 allows us to modifyX,Y, Z by isogenies so that 10.2.6.4 is applicable.
Details are left as an exercise.

10.2.6.5. Lemma. Let R1, R2, S1, S2 be Noetherian local rings, and let m1,m2, n1, n2 be
their maximal ideals. Let h1 : R1 ! S1 and h2 : R2 ! S2 be injective local homomorphisms
such that Si is a finitely generated Ri-module via hi for i = 1, 2. There exist positive integers
C, d with the following property:

Let f, g : R1 ! R2 and f 0, g0 : S1 ! S2 be local homomorphisms such
that h2 � f = f 0 � h1 and h2 � g = g0 � h1. If n 2 N and f 0(y)� g0(y) ⌘ 0
(mod n

Cn+d

2 ) for all y 2 S1, then f(x) � g(x) ⌘ 0 (mod n
n

1 ) for all
x 2 R1.

Proof. There exists a positive integer a > 0 such that n
C

2 ✓ n1S2. By the Artin–Rees
lemma, there exists a natural number e such that

S1 \ n
m+e

1 S2 ✓ nm

1 8n 2 N.
Lemma 10.2.6.5 holds for C = a and d = ae.

10.2.7. Dieudonné theory for biextensions. Suppose that  is a perfect field of char-
acteristic p > 0. We recall the covariant Dieudonné theory for biextensions of p-divisible
groups over  the associated Weil pairings.

We use the same notation scheme for covariant Dieudonné theory as in previous chap-
ters.

• Let ⇤ = ⇤() be the ring of all p-adic Witt vectors with entries in .
• Let � = �|⇤() : ⇤()! ⇤() be the ring endomorphism

x = (x0, x1, x2, . . .) 7! �x = (xp0, x
p

1, x
p, . . .),

and let V = V⇤() : ⇤()! ⇤() be the additive endomorphism

x = (x0, x1, x2, . . .) 7! Vx = (0, x0, x1, x2, . . .)

of ⇤(). Recall that V⇤() � �⇤() = �⇤() � V⇤() = [p]⇤().
• The classical covariant Dieudonné theory attaches to every p-divisible formal
group X over  a free ⇤()-module D⇤(X) whose rank is equal to height(X),
together with additive endomorphisms

F, V : D⇤(X) �! D⇤(X)

of D⇤(X) such that

F(a x) = �aF(x), V(�a x) = aV(x) and F(V(x)) = p x = V(F(x))
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for all a 2 ⇤() and all x 2 D⇤(X).

• The main theorem of the classical covariant Dieudonné theory asserts that the
assignment

X 7! D⇤(X)

establishes an equivalence of categories from the additive category of p-divisible
groups over  to the additive category of Dieudonné modules for the perfect base
field .

10.2.7.1. Let X,Y, Z,X 0, Y 0, Z 0 be p-divisible groups over . We have seen in 10.2.5.8
and 10.2.5.9 that the map which to every biextension E of X⇥Y associates the compatible
family of Weil pairing (✓n,E)n2N establishes an equivalence of categories, from the category
of biextensions of X ⇥ Y by Z, to the category of compatible families of bilinear pairings

�
bn : X[pn]⇥ Y [pn]! Z[pn]

�
n2N.

Moreover the set of all bihomomorphisms  : E ! E0 from a biextension E of X ⇥ Y by
Z to a biextension E0 of X 0 ⇥ Y 0 by Z 0 is in natural bijection with the set of all triples

(↵,�, �) 2 Homk(X,X 0)⇥Homk(Y, Y
0)⇥Homk(Z,Z

0)

such that
�(✓n,E(xn, yn)) = ✓n,E0(↵(xn),�(yn))

for all k-schemes T , all xn 2 X[pn](T ) and all yn 2 Y [pn](T ). We will explain how to
express these statements in terms of Dieudonné modules.

Proposition 10.2.7.2 below is a longer version of 5.3.5.4.

10.2.7.2. Proposition. Notation as above.

(i) To every biextension E of X ⇥ Y by Z, there is an associated ⇤(k)-bilinear map

⇥E : D⇤(X)⇥ D⇤(Y ) �! D⇤(Z)

such that

⇥E(FD⇤(X)(x), y) = FD⇤(Z)

�
⇥E(x,VD⇤(Y )y)

�

⇥E(x,FD⇤(Y )(y)) = FD⇤(Z)

�
⇥E(VD⇤(X)x, y)

�

⇥E

�
VD⇤(X)x,VD⇤(Y )y

�
= VD⇤(Z) (⇥E(x, y))

for all x 2 D⇤(X) and all y 2 D⇤(Y ).
(ii) For every ⇤(k)-bilinear map

⇥ : D⇤(X)⇥ D⇤(Y ) �! D⇤(Z)

which satisfies the conditions that

⇥(FD⇤(X)(x), y) = FD⇤
(Z)

�
⇥(x,VD⇤(Y )(y))

�
,

⇥(x,FD⇤(Y )(y)) = FD⇤(Z)

�
⇥(VD⇤(X)x, y)

�

⇥
�
VD⇤(X)x,VD⇤(Y )y

�
= VD⇤(Z) (⇥(x, y))
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for all x 2 D⇤(X) and all y 2 D⇤(Y ), there exists a biextension E of X ⇥ Y
by Z, unique up to unique isomorphism, such that ⇥ = ⇥E. In particular the
biextension E is split if and only if ⇥E = 0.

(iii) Given a biextension E of X ⇥ Y by Z and a biextension E0 of X 0 ⇥ Y 0 by Z 0, the
natural map from the set of all homomorphisms of biextensions

( : E ! E0,↵ : X ! X 0,� : Y ! Y 0, � : Z ! Z 0) 2 Hombiext(E,E0)

to the set of all triples (f, g, h) satisfying the conditions
– f 2 Hom⇤(),F,V(D⇤(X),D⇤(X 0)),
– g 2 Hom⇤(),F,V(D⇤(Y ),D⇤(Y 0)),
– h 2 Hom⇤(),F,V(D⇤(Z),D⇤(Z 0)),
– h(⇥E(x, y)) = ⇥E0(f(x), g(y)) 8x 2 D⇤(X), 8 y 2 D⇤(y)

is a bijection.

Remark. A bilinear pairing ⇥ : D⇤(X) ⇥ D⇤(Y ) ! D⇤(Z) satisfying the properties in
10.2.7.2 (i) corresponds to a family of bi-additive maps

✓n : X[pn]⇥ Y [pn]! Z[pn], n � 1

according to general Dieudonné theory. Our choice of the sign of the correspondence E
between ⇥E in 10.2.7.2 is that ⇥E corresponds to the Weil pairing ✓E =

�
✓E,n)n�1.

10.2.7.3. Corollary. Notation as in 10.2.7.2. In particular E ! X ⇥ Y is a biextension
of X ⇥ Y by Z and ⇥E is the ⇤()-bilinear map from D⇤(X) ⇥ D⇤(Y ) to D⇤(Z) attached
to the biextension Z.

(1) The group Autbiext(E) of all automorphisms of the biextension E has a natural
structure as a compact p-adic Lie group. It is naturally isomorphic to the closed
subgroup of

Aut⇤,F,V(D⇤(X))⇥Aut⇤,F,V(D⇤(Y ))⇥Aut⇤(D⇤(Z))

consisting of all triples

(↵,�, �) 2 Aut⇤,F,V(D⇤(X))⇥Aut⇤,F,V(D⇤(Y ))⇥Aut⇤,F,V(D⇤(Z))

such that

�(⇥E(x, y)) = ⇥E(↵(x),�(y)) 8x 2 D⇤(X), 8 y 2 D⇤(Y ).

(2) The Lie algebra of the compact p-adic Lie group Autbiext(E) is naturally isomor-
phic to the Lie subalgebra of

End⇤Q,F,V(D⇤(X)Q)� End⇤Q F,V(D⇤(Y )Q)� End⇤Q,F,V(D⇤(Z)Q)

consisting of all triples (A,B,C) in the above direct sum such that

C(⇥E(x, y)) = ⇥E(Ax, y) +⇥E(x,By)

for all x 2 D⇤(X) and all y 2 D⇤(Y ). Here
– ⇤Q = ⇤()Q = ⇤()⌦ZQ,
– D⇤(X)Q := D⇤(X)⌦ZQ, and similarly for D⇤(Y )Q and D⇤(Z)Q,
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– End⇤Q,F,V(D⇤(X)Q) denotes the set of all endomorphisms of the ⇤Q-module
D⇤(X)Q which commute with F and V; it is naturally isomorphic to the Lie al-
gebra of the compact p-adic Lie group Aut⇤,F,V(D⇤(X)) ⇠= Aut(X). Similarly
for End⇤Q,F,V(D⇤(Y )Q) and End⇤Q,F,V(D⇤(Z)Q).

10.2.7.4. Definition. Let G be a compact p-adic Lie group, which is a closed subgroup
of the group of all Qp-points of a linear algebraic group over Qp. Let X,Y, Z be p-divisible
groups over a field  of characteristic p. Let E ! X ⇥Spec() Y be a biextension of
X ⇥Spec() Y by Z. Let ⇢ : G ! Autbiext(E) be a continuous action of G on E which
respects the biextension structure of E.

We say that the action of G on E is strongly non-trivial if the actions of G on X, Y ,
Z induced by the action of G on E are all strongly nontrivial in the sense of 7.3.1.

10.3. Equivariant sections and special formal subvarieties

Given a biextension of p-divisible formal groups ⇡ : E ! X ⇥ Y over a field  of
characteristic p and an strongly nontrivial action of a p-adic Lie group G on E, we will
first show that the existence of a G-equivariant section of ⇡ implies that the biextension
E splits; see 10.3.1. Then we will consider the case X = Y and show that the existence of
a G-equivariant section of the restriction of ⇡ the diagonal �X ✓ X ⇥X implies that the
Weil pairings ✓E,n of E are symmetric; see 10.3.2. This train of thought lead to the notion
of special formal subvarieties in a biextension; see 10.3.4.3.

10.3.1. Proposition. Let  be a field of characteristic p. Let X,Y, Z be p-divisible formal
groups over . Let ⇡ : E ! X⇥Spec() Y be a biextension of X⇥Spec() Y by Z. Let G be a
compact p-adic Lie group, and let ⇢ : G! Autbiext(E) be an action of G on the biextension
E ! X ⇥ Y . Let ⇢X : G ! Aut(X), ⇢Y : G ! Aut(Y ), ⇢Z : G ! Aut(Z) be the induced
actions of G on X,Y, Z respectively. Let s : X ⇥Spec(k) Y ! E be a G-equivariant section
of ⇡, i.e. ⇡ � s = id

X⇥
Spec(k)

Y
and ⇢(g) · s = s � (⇢X(g), ⇢Y (g)). Suppose that the action of G

on E is strongly nontrivial. Then the biextension ⇡ : E ! X ⇥Spec(k) Y is trivial, and the
section s is its canonical splitting.

Proof. Following the notation in 10.2.2.1, let

⌧ : X ⇥X ⇥ Y ! Z and � : X ⇥ Y ⇥ Y ! Z

be the maps associated to the section s defined by the formulas

s(x1, y) +1 s(x2, y) = ⌧(x1, x2; y) ⇤ s(x1 + x2, y)

s(x, y1) +2 s(x, y2) = �(x; y1, y2) ⇤ s(x, y1 + y2)

for functorial points x, x1, x2, y, y1, y2 of X and Y respectively. We will show that orbital
rigidity for p-divisible formal groups 7.1.1 implies that the maps ⌧ and � are both 0.

By theorem 7.1.1, the graph of ⌧ is a p-divisible subgroup of X ⇥X ⇥ Y ⇥Z. In other
words ⌧ is a group homomorphism from the product group X ⇥X ⇥ Y to Z. So

⌧(x1, x2; y) = ⌧(x1, x2; 0) + ⌧(0, 0; y)
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for all x1, x2 2 X and all y 2 Y .
Clearly ⌧(0, 0; y) = 0 for all y 2 Y . Since

�
⇡�1(X ⇥ {0}), +1|⇡�1(X⇥{0})

�
is a p-

divisible group, theorem 7.1.1 implies that the graph of s|X⇥{0} is a p-divisible subgroup
of
�
⇡�1(X ⇥ {0}),+1|⇡�1(X⇥{0})

�
. So

⌧(x1, x2; 0) = 0 for all x1, x2 2 X.

Therefore ⌧(x1, x2; y) = 0 for all x1, x2 2 X and all y 2 Y . Similarly �(x; y1, y2) = 0 for
all x 2 X and all y1, y2 2 Y . We have shown that s is a splitting of the biextension E.

10.3.1.1. Lemma. Let X,Z be p-divisible groups over a scheme S. Let ⇡ : E ! X ⇥X
be a biextension of X ⇥S X by Z. Let (✓En )n�1 be the family of Weil pairings of E.

(i) For all n � 1 and all xn, x0n 2 X[pn], we have

✓◆
⇤
E

n (xn, x
0

n) = �✓En (xn, x0n).
(ii) The biextensions ◆⇤E and E are isomorphic if and only if

✓En (xn, x
0

n) = �✓En (x0n, xn)
for all n � 1 and all xn, x0n 2 X[pn].

(iii) The biextension ◆⇤E is isomorphic to ([�1]Z)⇤E if and only if

✓En (xn, x
0

n) = ✓En (x
0

n, xn)

for all n � 1 and all xn, x0n 2 X[pn].

Proof. We know from 10.2.5.2 that ✓◆
⇤
E

n � (◆|X[pn]⇥X[pn]) = !E
n = �✓En for all n � 1,

where ◆ : X ⇥S X ! X ⇥S X be the isomorphism (x, x0) 7! (x0, x) on functorial points of
X ⇥S X. The statement (i) follows. The statements (ii), (iii) are corollaries of (i).

10.3.1.2. Definition. Let X,Z be p-divisible formal groups over a field  of characteristic
p. Let ⇡ : E ! X ⇥ X be a biextension. Let ◆ : X ⇥ X ! X⇥ be isomorphism
(x, x0) 7! (x0, x) on functorial points of X ⇥X.

Suppose that the Weil pairings ✓En are symmetric in the sense that

✓En (xn, x
0

n) = ✓En (x
0

n, xn)

for all n � 1 and all xn, x0n 2 X[pn]. Let � be the unique isomorphism of biextensions from
([�1]Z)⇤E to ◆⇤E, whose existence is guaranteed by 10.3.1.1 (iii).

Define the involution ⌧ of such a biextension E with symmetric Weil pairings to be
the composition

⌧ := c � � � ⇣
of the top horizontal arrows in the following commutative diagram

E //

⇡

✏✏

⇣
// ([�1]Z)⇤E //

⇡
00

✏✏

�
// ◆⇤E

c
//

⇡
0

✏✏

E

⇡

✏✏

X ⇥X
=
// X ⇥X

=
// X ⇥X

◆
// X ⇥X,
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where the commutative square at the left is the push-out diagram for the biextension
([�1]Z)⇤E, and the commutative square at the right is the pull-back diagram for the
biextension ◆⇤E. Clearly ⌧ � ⌧ = idE and ⌧Z = [�1]Z .

10.3.1.3. Remark. Suppose that the Weil pairings ✓En are skew symmetric in the sense
that

✓En (xn, x
0

n) = �✓En (xn, x0n)
for all n � 1. There is an involution & on E in this situation as well, defined below. We
won’t use it in the rest of this chapter.

Let �0 be the unique isomorphism of biextensions from E to ◆⇤E, whose existence is
guaranteed by 10.3.1.1 (ii). Define the involution & of such a biextension E with skew
symmetric Weil pairings to be the composition

& := c � �0

of the top horizontal maps of the following commutative diagram

E
�
0

//

⇡

✏✏

◆⇤E
c

//

⇡
0

✏✏

E

⇡

✏✏

X ⇥X
=
// X ⇥X

◆
// X ⇥X,

where the commutative square at the right is the pull-back diagram for ◆⇤E as before.

10.3.1.4. Corollary. Let ⇡ : E ! X ⇥ X be a biextension of p-divisible formal groups
X ⇥ X by Z with symmetric Weil pairings as in 10.3.1.2. Let E⌧=1 be the fixed-point
subscheme of the involution ⌧ of E with ⌧ |Z = [�1]Z . Let �X ✓ X ⇥ X be the diagonal
subscheme of X ⇥X.

(i) If p 6= 2, then ⇡ induces an isomorphism from E⌧=1 to �X .
(ii) Suppose that p = 2. Then E⌧=1 has a natural structure as a Z[2]-torsor over �X ,

and ⇡ induces an isomorphism from the reduced formal scheme (E⌧=1)red to �X .

10.3.2. Proposition. Let X,Z be p-divisible formal groups over a field  of characteristic
p. Let ⇡ : E ! X ⇥X be a biextension of X ⇥X by Z. Let G be a p-adic Lie group, and
let ⇢ : G ! Autbiext(E) be a strongly non-trivial action of G on E such that the actions
of G on the two factors of X ⇥X are the same. Suppose that there exists a G-equivariant
section ⇣ of ⇡�1�X ! �X over the diagonal �X ✓ X ⇥X. Then the Weil pairings ✓En of
E are symmetric for all n � 1.

10.3.3. Corollary. We keep the notation and assumptions in 10.3.2. In particular ⇡ :
E ! X ⇥ X is a biextension of p-divisible formal group X ⇥ X by Z over  ◆ Fp, G
is a p-adic Lie group acting strongly nontrivially on E and induces the same action on
both factors of X ⇥ X, and ⇣ is a G-equivariant section ⇣ of ⇡ over the diagonal formal
subscheme �X of X ⇥X. If the Weil pairings ✓En of E are skew-symmetric, then ✓En = 0
for all n � 1. In other words the biextension E splits.
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10.3.3.1. Remark. The statements 10.3.2 and 10.3.3 are equivalent. Clearly 10.3.2 =)
10.3.3. Assume that 10.3.3 holds. By 10.2.5.2, we know that ✓◆

⇤
E

n (xn, x0n) = �✓En (xn, x0n)
for all functorial points xn, x0n of X[pn].

Consider the biextension Ed := E ⇥(X⇥X) ◆
⇤E of X ⇥X by the product group Z ⇥ Z,

and the biextension E0 = h⇤Ed of X ⇥ X by Z otained from Ed by the push-forward
construction via the homomorphism h = +Z from Z ⇥ Z to Z, h(z1, z2) = z1 + z2 for all
z1, z2 2 Z. The construction of E0 tells us that

✓E
0

n (xn, x
0

n) = ✓En (xn, x
0

n)� ✓En (x0n, xn),

for all xn, x0n 2 X[pn], so ✓E
0

n is skew-symmetric. The section ⇣ of E over �X induces a
section ◆⇤⇣ of ◆⇤E over �X , and the section ⇣d = (⇣, ◆⇤⇣) of Ed⇥(X⇥X)�X gives section ⇣ 0

of E0⇥(X⇥X)�X . It is clear that the sections ◆⇤⇣, ⇣d and ⇣ 0 are all G-equivariant. Corollary

10.3.3 applied to the biextension E0 tells us that ✓E
0

n = 0 for all n � 1. Therefore ✓n is
symmetric. We have shown that 10.3.3 =) 10.3.2.

10.3.3.2. Proof of 10.3.3.

Step 1. Reduction to the case when the slopes of X and Z are disjoint.
Clearly we may assume that  is algebraically closed. Let ↵ : Z ! Z 0 be an isogeny

such that there exist isoclinic p-divisible groups Z1, . . . , Zm over  and an isomorphism
Z 0 ⇠= Z1 ⇥ · · ·⇥ Zm. It su�ces to prove the assertion of 10.3.3 for each of the biextension
(pri �↵)⇤E of X ⇥X by Zi, i = 1, . . . ,m. So we may and do assume that Z is an isoclinic
p-divisible formal group over .

Suppose that the slope of Z appears in X. Choose a isogeny � : X1 ⇥ X2 ! X
such that X2 is isoclinic with the same slope as Z, and all slopes of X1 are di↵erent
from the slope of Z. Clearly it su�ce to prove the assertion of 10.3.3 for the biextension
�⇤E ! X1 ⇥ X2. But ✓�

⇤
E

n (x2,n, yn) = 0 = ✓�
⇤
E

n (yn, x2,n) for all functorial points yn 2
(X1 ⇥X2)[pn] and all x2,n 2 X2[pn]. So it su�ces to prove the assertion of 10.3.3 for the
biextension �⇤E ⇥(X⇥X) (X1 ⇥X1) of X1 ⇥X1 by Z.

In the rest of 10.3.3.2 we assume that the p-divisible formal groups X and Z have no
slope in common.

Step 2. Represent the G-equivariant section ⇣ of E ⇥(X⇥X) �X in terms a family of
Z-valued functions (fn)n�1 on X[p2n] ⇥ X[p2n], using the canonical splitting ⌅n of the
biextension

([pn]X ⇥ [pn]X)⇤E
��
X[p2n]⇥X[p2n]

�! X[p2n]⇥X[p2n]

defined in 10.2.5.3.
Recall that the bi-additive map �n satisfies the functional equation

(10.3.3.2.1) ✓En (p
nx2n, bn) ⇤ ⌅n(x2n + an, y2n + bn) = ⌅n(x2n, y2n)

for all x2n, y2n 2 X[p2n] and all an, bn 2 X[pn], and the compatibility relations in 10.2.5.4:
(10.3.3.2.2)

⌅n(p
2x2n+2, p

2y2n+2) = [p]+1
[p]+2

⌅n+1(x2n+2, y2n+2) = �n+1(px2n+2, py2n+2)
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for all x2n+2, y2n+2 2 X[p2n+2]. Define morphisms

fn : X[p2n]! Z, n � 1

by �
[pn]⇤X⇣

���
X[p2n]

= fn ⇤
�
⌅n|�

X[p2n]

�

i.e.

(10.3.3.2.3) ⇣(pnx2n) = fn(x2n) ⇤ �n(x2n, x2n)

for all x2n 2 X[p2n], and of course fn(0) = 0. From (10.3.3.2.3) we get

fn(p
2x2n+2) ⇤ �n(p

2x2n+2, p
2x2n+2) = ⇣(pn+2x2n+2)

= fn+1(px2n+2) ⇤ �n+1(px2n+2, px2n+2)

So we deduce from (10.3.3.2) that

(10.3.3.2.4) fn(py2n+1) = fn+1(y2n+1)

for all y2n+1 2 Y [p2n+1]. The functional equation (10.3.3.1) implies that

(10.3.3.2.5) fn(x2n + bn) = ✓En (p
nx2n, bn) + fn(x2n)

for all x2n 2 X[p2n] and all bn 2 X[pn].

Step 3. Show that the functions fn satisfy the theorem of the cube, using orbital rigidity
for p-divisible formal groups.

Define maps �n : X[p2n]⇥X[p2n]⇥X[p2n]! Z, n > 1, by

�n(x2n, y2n, z2n) := fn(x2n + y2n + z2n)� fn(xn + yn)� fn(y2n + z2n)� fn(x2n + z2n)

+ fn(x2n) + fn(y2n) + fn(z2n)

(10.3.3.2.6)

for all x2n, y2n, z2n 2 X[p2n]. An easy calculation using the functional equations (10.3.3.2.5)
shows that

(10.3.3.2.7) �n(x2n + an, y2n + bn, z2n + cn) = �n(x2n, y2n, z2n)

for all x2n, y2n, z2n 2 X[p2n] and all an, bn, cn 2 X[pn]. Therefore there exist uniquely
defined morphisms

�̄n : X[pn]⇥X[pn]⇥X[pn]! Z, n � 1

such that

�n(x2n, y2n, z2n) = �̄n(p
nx2n, p

ny2n, p
nz2n) 8x2n, y2n, z2n 2 X[p2n].

It is easy to deduce from the compatibility relation (10.3.3.2.4) between the fn’s that

�̄n+1

��
X[pn]⇥X[pn]⇥X[pn]

= �̄n 8n � 1.

Thus �̄ := lim�!n
�̄n is a G-equivariant morphism from the X ⇥ X ⇥ X to Z. By orbital

rigidity for p-divisible formal groups, the graph of �̄ is a p-divisible formal subgroup of
X ⇥X ⇥X ⇥ Z, i.e. �̄ is a homomorphism from X ⇥X ⇥X to Z. Since the slopes of X
and Z are disjoint, �̄ is 0. Therefore �n = 0 for all n � 1.
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Step 4. Define morphisms gn : X[p2n]⇥X[p2n]! Z by

gn(x2n, y2n) := fn(x2n + y2n)� fn(x2n)� fn(y2n)

for all x2n, y2n 2 X[p2n]. The fact that fn = 0 for all n implies that the map gn :
X[p2n]⇥X[p2n]! Z is bi-additive for every n � 1.

From (10.3.3.2.5) we get

(10.3.3.2.8) gn(x2n, an) = ✓En (p
nx2n, an)

for all x2n 2 X[p2n] and all an 2 X[pn]. Since ✓En is assumed to be skew symmetric for all
n, ✓En (p

nx2n, pnx2n) = 0 for all x2n 2 X[p2n] and all n � 1. So

(10.3.3.2.9) 0 = gn(x2n, p
nx2n) = pngn(x2n, x2n)

for all x2n 2 X[p2n] and all n � 1.

From (10.3.3.2.4) we get

gn+1(y2n+1, z2n+1) = gn(py2n+1, pz2n+1)

for all y2n+1, z2n+1 2 X[p2n+1]. Iterating, we get

(10.3.3.2.10) gn+m(y2n+m, z2n+m) = gn(p
my2n+m, pmz2n+m)

for all y2n+m, z2n+m 2 X[p2n+m] and all m,n � 1.

Given any n � 1, any m � n, a commutative -algebra R and any element y2n 2
X[pn](R), there exists a finite locally free commutative R-algebra R0 and elements y2n+2m 2
X[p2n+2m] such that p2my2n+2m = y2n and p2mz2n+2m = z2n. Apply (10.3.3.2.10) with
y2n+m = pmy2n+2m, z2n+m = pmy2n+2m, we get

gn(y2n, y2n) = gn+m(pmy2n+2m, pmy2n+2m) = p2mgn+m(y2n+2m, y2n+2m).

the last equality follows from (10.3.3.2.9) because 2m � n + m. We have shown that
gn(y2n, y2n) = 0 for all yn 2 X[pn] and all n � 1.

The map gn : X[p2n]⇥X[p2n]! Z is obviously symmetric by definition, therefore

2gn(x2n, y2n) = gn(x2n + y2n, x2n + y2n)� gn(x2n, x2n)� gn(y2n, y2n) = 0

for all x2n, y2n 2 X[p2n]. This immediately implies that gn = 0 if p 6= 2. In the case p = 2,
an argular similar to but simpler than the argument used in the last two paragraphs again
shows that gn = 0. We conclude from (10.3.3.2.8) that ✓En = 0 for all n � 1. We have
proved corollary 10.3.3 and proposition 10.3.2.

10.3.4. Special formal subvarieties of a biextension.

Let X,Y, Z be p-divisible formal group over a field  of characteristic p, and let ⇡ :
E ! X ⇥ Y be a biextension of X ⇥ Y by Z. We will define a class of reduced irreducible
closed formal subschemes of E, called special formal subvarieties, guided by the proposition
10.3.4.1 below, which is a reformulation of 10.3.2.
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10.3.4.1. Proposition. Let X,Y, Z be p-divisible groups over a field  of characteristic
p. Let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z with Weil pairings

�
✓En
�
n�1

. Let

G be a p-adic Lie group, and let ⇢ : G ! Autbiext(E) be a strongly nontrivial action of G
on E. Let U ✓ X ⇥ Y be a p-divisible subgroup of X ⇥ Y stable under the action of G.

Let q
X

: U ! X be the composition U �
�

// X⇥Y
pr

1
// X and let q

Y
: U ! Y be the

composition U �
�

// X⇥Y
pr

2
// Y. Suppose that there exists a reduced irreducible closed

formal subscheme Ũ of E which is stable under the action of G such that ⇡ induces a purely
inseparable dominant morphism Ũ ! U . Then

✓En (qX (un), qY (un)) = ✓En (qY (un), qX (un))

for all functorial points un of U [pn] and all n � 1.

Proof. There exists a positive integer n0 and a morphism ⇣ : U ! Ũ , necessarily
G-equivariant, such that �

⇡|⇡�1U

�
� ⇣ = [pn0 ]U .

Consider the biextension

E0 :=
�
[pn0 ]X � qX )⇥ ([pn0 ]Y � qY )

�⇤
E

⇡
0

// U ⇥ U

of U ⇥ U by Z, with the induced strongly nontrivial action by G. The G-equivariant map
⇣ : U ! E defines a G-equivariant section ⇣ 0 of E0 over the diagonal subgroup �U ✓ U⇥U .
Proposition 10.3.2 tells us that

pn0 ·
�
✓En (qX (un), qY (un))� ✓En (qY (un), qX (un))

�
= 0

for all n � 1 and all functorial points un of U [pn]. Therefore

✓En (qX (un), qY (un))� ✓En (qY (un), qX (un)) = 0

for all un 2 U [pn] and all n � 1.

10.3.4.2. Proposition. Let X,Y, Z be p-divisible formal groups over a field  of charac-
teristic p, and let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z. Let U be a p-divisible
subgroup of X ⇥Y . Assume that the Weil pairings ✓En of E satisfy the symmetry condition

✓En (qX (un), qY (un)) = ✓En (qY (un), qX (un)) 8n � 1, 8un 2 U [pn]

with respect to U . Then we have a natural commutative diagram

E00 := ([p✏n]U ⇥ [p✏]U )⇤E0
�✏
//

⇡
00

✏✏

E0 := (q
X
⇥ q

Y
)⇤E

�
//

⇡
0

✏✏

E

⇡

✏✏

U

⇣
E00

66

(1U ,1U )
// U ⇥ U

[p✏]U⇥[p✏]U
// U⇥U

q
X
⇥q

Y

// X⇥Y

with the following the following properties.

(i) Both squares are Cartesian.
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(ii)

(
✏ = 0 and �✏ = idE0 if p 6= 2,

✏ = 1 if p = 2.

(iii) If p 6= 2, then the schematic image ⇣E00(U) of the map U
⇣
E00
// E00 is

⇣E00(U) = (E00)⌧
00=1 = (E0)⌧

0=1,

where (E00)⌧
00=1 is the fixed-point subscheme of the involution ⌧ 00 of the biextension

E00 with symmetric Weil pairings as in 10.3.1.4.

(iv) If p = 2, then the schematic image ⇣E00(U) of the map U
⇣
E00
// E00 is

⇣E00(U) =
�
(E00)⌧

00=1
�
red

,

and the schematic image (�✏ � ⇣E00)(U) of U
�✏�⇣E00

// E0 is

(�✏ � ⇣)(U) =
�
(E0)⌧

0=1
�
red

,

where
�
(E0)⌧

0=1
�
red

is the fixed-point subscheme of E0 under the involution ⌧ 0, with
the reduced structure.

Proof. The assumption that ✓En (qX (un), qY (un)) = ✓En (qY (un), qX (un)) for all un 2 U [pn]
and all n � 1 means that the Weil pairings ✓E

00

n of E00 are symmetric. The statement (i)
and (ii) are part of the definiton of the commutative diagram. The existence of the map
⇣E00 with the asserted properties (iii) and (iv) follows from 10.3.1.4.

10.3.4.3. Definition. We keep the notation and assumptions in 10.3.4.2.

(a) For every natural number m � 0, define a morphism

U
[pm]⇤

U
⇣
E00

// ([pm]U ⇥ [pm]U )⇤E00

to be the unique map which makes the following diagram with a Cartesian square
at the lower right corner

U
[pm]⇤

U
⇣
E00

''

⇣
E00�[pm]U

''

(1U ,1U )

##

([pm]
U
⇥[pm]

U
)⇤E00

⇡
00
m

✏✏

�m
// E00

⇡
00

✏✏

U ⇥ U
[pm]U⇥[pm]U

// U ⇥ U

commutative.
(b) For every homomorphism h : U ! Z of p-divisible groups, denote by

U
h⇤[pm]⇤

U
⇣
E00

// ([pm]U ⇥ [pm]U )⇤E00
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the map given by

(h ⇤ [pm]⇤U⇣E00)(u) := h(u) ⇤ [pm]⇤U⇣E00(u) 8u 2 U.

10.3.4.4. Proposition. We keep the notation and assumptions in 10.3.4.2. In particular
⇡ : E ! X ⇥ Y is a biextension of X ⇥ Y by Z, and U is a p-divisible subgroup of X ⇥ Y
satisfying the symmetry condition with respect to U . Suppose that G is a p-adic. Lie group
acting strongly nontrivially on the biextension E, and U is stable under G.

(1) The map ⇣E00 : U ! E00 is G-equivariant. The schematic image (� ��✏ �⇣E00)(U) of

the composition U
���✏�⇣E00

// E is a reduced irreducible closed formal subscheme
of E stable under G, and the morphism (� � �✏ � ⇣E00)(U) �! U induced by ⇡ is
dominant and purely inseparable.

(2) Suppose that T is a reduced irreducible closed formal subscheme of E which is
stable under the action of G and the map ⇡ induces a purely inseparable dominant
map T ! U . Then there exist a G-quivariant homomorphism h : U ! Z of
p-divisible groups and a natural number m, such that the schematic image

�
� � �✏ � �m � (h ⇤ [pm]⇤U⇣E00)

�
(U)

of the compositon of the following maps

U
h⇤[pm]⇤

U
⇣
E00

// ([pm]U ⇥ [pm]U )⇤E00
�m
// E00

�✏
// E0

�
// E

is equal to T , where the map U
h⇤[pm]⇤

U
⇣
E00

// ([pm]U ⇥ [pm]U )⇤E00 is defined in

10.3.4.3 and the maps �m, �✏ and � are as in 10.3.4.2.
In particular if U and Z do not have any slope in common, then (���✏�⇣E00)(U)

is the only G-invariant reduced irreducibel closed formal subscheme T ✓ E lying
above U such that the morphism T ! U induced by ⇡ is dominant and purely
inseparable.

Proof. The assertions in (1) and the first paragraph of (2) are consequences of 10.3.1.4
and 10.3.4.2. The uniqueness of T in the last paragraph of (2) is a corollary of the main
assertion of (2) and the orbital rigidity of p-divisible formal groups.

Remark. Definition 10.3.4.5 is formulated so that the schematic image � � �✏ � ⇣E00(U)
in 10.3.4.4 (1) and reduced irreducible closed formal subschemes T of E satisfying the
assumption in 10.3.4.4 (2) are special formal subvarietis of the biextension E.

10.3.4.5. Definition. Let X,Y, Z be p-divisible groups over a field  of characteristic
p. Let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z. Let T ✓ E be a reduced
irreducible closed formal subscheme of E. We say that T is a special formal subvariety of
E if the following there exist a p-divisible formal subgroup Z1 of Z and a p-divisible formal
subgroup U of X ⇥ Y such that the following statements hold

(i) The formal subscheme T of E is stable under the translation action of the subgroup
Z1 of Z.
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Let Ē := E/Z1, so that the induced morphism ⇡̄ : Ē ! X⇥Y is a biextension
of X ⇥ Y by Z̄ := Z/Z1, and T̄ := T/Z1 is a reduced irreducible closed formal
subscheme of Ē.

(ii) The p-divisible subgroup U ✓ X⇥Y is the schematic image of T under ⇡. Equiv-
alently U is the schematic image of T̄ under ⇡̄.

(iii) The morphism T̄ ! U induced by ⇡̄ is dominant and purely inseparable.
(iv) For every n � 1 and every functorial point un of U [pn], we have

✓Ēn (qX (un), qY (un)) = ✓Ēn (qY (un), qX (un)),

where q
X

: U ! X and q
Y

: U ! Y are the projections of U to X and Y

respectively, and
�
✓Ēn
�
n�1

is the Weil pairing of the biextension Ē.

According to 10.3.4.2 condition (iv) implies that we have the following com-
mutative diagram

Ē00 := ([p✏]
U
⇥[p✏]

U
)⇤Ē0

�✏
//

⇡̄
00

✏✏

Ē0 := (q
X
⇥q

Y
)⇤Ē

�
//

⇡̄
0

✏✏

Ē

⇡̄

✏✏

U
(1U , 1U )

//

⇣
Ē00

77

U ⇥ U
[p✏]U⇥[p✏]U

// U⇥U
q
X
⇥q

Y

// X⇥Y,

where
– both squares are Cartesian,

–

(
✏ = 0, Ē00 = Ē0 and �✏ = id

Ē0 if p 6= 2,

✏ = 1 if p = 2,

– the schematic image (�✏ � ⇣Ē00)(U) of �✏ � ⇣Ē00 is

(�✏ � ⇣Ē00)(U) =

(
(Ē0)⌧̄

0=1 if p 6= 2,�
(Ē0)⌧̄

0=1
�
red

if p = 2.

Here (Ē0)⌧̄
0=1 is the fixed-point subscheme of the involution ⌧̄ 0 of the biextension

Ē0 with symmetric Weil pairings as in 10.3.1.4.
(v) There exist a homomorphism h : U ! Z of p-divisible groups and a natural

number m 2 N such that the schematic image of the map

� � �✏ � �m � (h ⇤ [pm]⇤U⇣Ē00)

from the lower-left corner to the upper-right corner of the commutative diagram

([pm]U⇥[pm]U )⇤Ē00
�m
//

⇡̄
00
m

✏✏

([pm]U⇥[pm]U )⇤Ē00
�✏

//

⇡̄
00

✏✏

Ē0
�

//

⇡̄
0

✏✏

Ē

⇡̄

✏✏

U

h⇤[pm]⇤
U
⇣
Ē00

77

(1U ,1U )
// U ⇥ U //

[pm]U⇥[pm]U
//

⇣
Ē00

44

U ⇥ U //

1U⇥1U
// U ⇥ U //

q
X
⇥q

Y

// X ⇥ Y

is �
� � �✏ � �m � (h ⇤ [pm]⇤U⇣Ē00)

�
(U) = T̄ ,
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where h ⇤ [pm]⇤
U
⇣
Ē00 : U �! Ē00 is the map in definition 10.3.4.3 applied to the

biextension Ē00 ! U ⇥ U .

The statements 10.3.4.6 and 10.3.4.7 below follow quickly from definition 10.3.4.5.

10.3.4.6. Corollary. Let X,Y, Z be p-divisible groups over a field  of characteristic p.
Let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z. Let T ✓ E be a reduced irreducible
formal subscheme of E. Suppose that there exists a p-divisible subgroup Z2 ✓ Z of Z which
satisfies the following properties.

(i) T is stable under the translation action by Z2.
(ii) The quotient T/Z2 is a special formal subvariety of the biextension

E/Z2 = (Z ⇣ Z/Z2)⇤E �! X ⇥ Y

of X ⇥ Y by Z/Z2.

Then T is a special formal subvariety of E.

10.3.4.7. Corollary. Let X,Y, Z be p-divisible formal groups over a field  of characteris-
tic p. Let ⇡ : E ! X⇥Y be a biextension of X⇥Y by Z. Let T be a special formal subvariety
of E. If the sets of slopes of X,Y, Z are pairwise disjoint,then T is a sub-biextension of E.
In other words T has a structure as a biextension of X 0⇥Y 0 by Z 0, where X 0 ✓ X, Y 0 ✓ Y
and Z 0 ✓ Z are p-divisible subgroups, such that (T ,! E,X 0 ,! X,Y 0 ,! Y, Z 0 ,! Z) is a
homomorphism of biextensions.

10.4. Action of a one-parameter subgroup on a biextension

In this section k is a perfect field of characteristic p , X,Y, Z are p-divisible formal
groups over k, and ⇡ : E ! X ⇥ Y is a biextension of X ⇥ Y by Z.

10.4.1. Suppose we have a one-dimensional p-adic Lie group � acting on a biextension
E of X⇥Y by Z. We will extract from such an action a collection of congruence relations;
see proposition 10.7.3.3. This collection of congruence relations comes from the “leading
term” of the action of a sequence (�m) in � with limm!1 �m = 1, and can be regarded as
a substitute for the “derivative” of the action of � on E.1

Recall from 10.2.7.3 that the Lie algebra of the p-adic Lie group Autbiext(E) consists
of all triples (A,B,C) which kill the bilinear form ⇥E , i.e.

C(⇥E(x, y))�⇥E(Ax, y)�⇥E(x,By) = 0 8x 2 D⇤(X), 8 y 2 D⇤(Y ).

10.4.1.1. Lemma. Let v = (A,B,C) be an element of the Lie algebra of Autbiext(E).
Suppose that A 2 End(X), B 2 End(Y ) and C 2 End(Z). Then exp(p2t A) 2 Aut(X),
exp(p2tB) 2 Aut(Y ), exp(p2t C) 2 Aut(Z) and exp(p2t v) 2 Autbiext(E) for all t 2 Zp.

1The challenge of finding a good notion of “derivative” can be seen in a simple example: the standard
action of Zp

⇥ on the formal completion dGm = Spf(Fp[[t]]) of Gm over Fp. The action of an element a 2 Zp
⇥

on dGm sends the coordinate t to (1 + t)a � 1.
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Proof. The Taylor series for exp(p2t A) 2 Aut(X) converges p-adically and defines
an element of Aut(X). Similarly exp(p2tB) 2 Aut(Y ) and exp(p2t C) 2 Aut(Z). That
exp(p2t v) 2 Autbiext(E) follows from 10.2.7.3.

10.4.1.2. Proposition. Let v = (A,B,C) be an element of the Lie algebra of Autbiext(E)
such that A 2 End(X), B 2 End(Y ) and C 2 End(Z). Let n be a positive intger.

(i) For every integer n � 2, The infinite series

X

j�2

pn(j�1)

j!
Cj

converges to an element of End(Z) if n � 2.

(ii) Suppose that n � 3. The restriction to En = ⇡�1(X[pn]⇥ Y [pn]) of the automorphism
exp(pnv) of E is equal to

⇣
� ✓n�(1X⇥B)�(⇡|En

) + C�⌘n +
X

j�2

pn(j�1)

j!
Cj�⌘n

⌘
⇤ idEn

=
⇣
� ✓n�(1X⇥B)�(⇡|En

) + C�✓n�(⇡|En
) + C�⇢n +

X

j�2

pn(j�1)

j!
Cj�⇢n

⌘
⇤ idEn

=
⇣
✓n�(A⇥1Y )�(⇡En

) + C�⇢n +
X

j�2

pn(j�1)

j!
Cj�⇢n

⌘
⇤ idEn

,

where the maps ⌘n, ⇢n : En ! Z are defined in 10.2.6.1.

Proof. The statement (i) follows from the easy estimate

ordp(j!) <
j

p� 1
 j,

which implies that

ordp
⇣p2(j�1)

j!

⌘
� (n� 1)(j � 1)� 1.

Clearly (n � 1)(j � 1) � 1 � 0 for all j � 2 and (n � 1)(j � 1) � 1 ! 0 as j ! 1. The
statement (i) follows.

For (ii), note first that ordp
⇣
p
2(j�1)

j!

⌘
� (n�1)(j�1)�1 > 0 for all j � 2 because n � 3.

The automorphism exp(pnA)⇥ exp(pnB)⇥ exp(pnC) of X[pn]⇥ Y [p2n]⇥ Z descents, via
the finite locally free morphism ↵n : X[pn]⇥Y [p2n]⇥Z ! En in 10.2.5.1, to the restriction
to En of the automorphism exp(pnv) of En. The statement (ii) follows from an easy
calculation, the definition of ⌘n, ⇢n in 10.2.6.1 and the Taylor expansion of exp(pnC), as
follows.



10.4. ACTION OF A ONE-PARAMETER SUBGROUP ON A BIEXTENSION 581

For each functorial point (xn, y2n, z) of X[pn]⇥ Y [p2n]⇥ Z, we have

exp(pnv)
�
↵n(xn, y2n, z)

�
= ↵n

�
exp(pnA)(xn), exp(p

nB)(y2n), exp(p
nC)(z)

�

= ↵n

�
xn, y2n + pnBy2n, z +

X
j�1

p
nj

j! C
jz
�

= ↵n

�
xn, y2n, z � ✓n(xn, Bpny2n) +

X
j�1

p
nj

j! C
jz
�
.

Since ⌘n(↵n(xn, y2n, z)) = pnz and (xn, Bpny2n) = (1X⇥B)(⇡(↵n(xn, y2n, z))), we have
proved that exp(pnv)|En

is given by the first line of the formula in (ii). The first two

expressions in the displayed formula are equal because ⌘n = (✓n � ⇡|En
) + ⇢n and p

n(j�1)

j!
kills ✓n for all j � 2. The second and third expression are equal because

✓n(Axn, yn) + ✓n(xn, Byn) = C✓n(xn, yn)

for all functorial points (xn, yn) of X[pn]⇥ Y [pn].

Remark. The equality of the first and the third expression in 10.4.1.2 (ii) exhibits a clear
symmetry if we take into account the fact that ✓n = �!n, and the relation of ⌘n to +1

(respectively ⇢n to +2) in 10.2.6.1.

10.4.1.3. Definition. Let v = (A,B,C) 2 Lie(Autbiext(E)) \
�
End(X) � End(Y ) �

End(Z)
�
be an element of the Lie algebra of Autbiext(E) as in 10.4.1.2. Define a map

cn[v] : En ! Z

by

cn[v] := ✓n�(1X⇥(�B))�(⇡|En
) + C�⌘n

= �✓n�(1X⇥B)�(⇡|En
) + C�✓n�(⇡|En

) + C�⇢n
= ✓n�(A⇥1Y )�(⇡En

) + C�⇢n .

It is the “linear part”, in v, of the terms before “⇤idEn
” in the formula in 10.4.1.2 (ii).

10.4.1.4. Lemma. For every element v = (A,B,C) 2 End(X) � End(Y ) � End(Z) of
the Lie algebra of Autbiext(E), the maps

�
cn [v]

�
n
satisfy the compatibility relations

[p]Z � cn[v] = cn+1 � (En ,! En+1)

for all n � 1.

Proof. This assertion is immediate from the definition 10.4.1.3 of cn[v] and the similar
compatibility relations

[p]Z � ⌘n = ⌘n+1 � (En ,! En+1), [p]Z � ⇢n = ⇢n+1 � (En ,! En+1)

and

[p]Z � ✓n = ✓n+1 � (X[pn]⇥Y [pn] ,! X[pn+1]⇥Y [pn+1]).
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10.4.2. The following assumptions and notation for a biextension ⇡ : E ! X ⇥ Y of
X ⇥ Y by Z will be used in a number of situations below, where X,Y, Z are p-divisible
formal group over a perfect field  of characteristic p.

(i) Let v = (A,B,C) 2 Lie(Autbiext(E)) \
�
End(X) � End(Y ) � End(Z)

�
be an

element of the Lie algebra of Autbiext(E) with components A 2 End(X), B 2
End(Y ) and C 2 End(Z).

(ii) Assume that a, s, r are three positive integers such that
– 0 < r < s, and a

r
is the largest slope of Z

– a

s
is strictly bigger than every slope of X and every slope of Y .

From general properties of slopes of p-divisible groups we know that there exist
natural numbers n0, c0 2 N with n0 � min(2, c0/r) such that

X[pna] � Ker(FrnsX ) and Y [pna] � Ker(FrnsY )

and
Z[pna] � Ker(Frnr�c0

Z
)

for all n � n0, where Frns
X

: X ! X(pns) (respectively Frns
Y
) is the (ns)-th iterate

of the relative Frobenius for X (respectively Y ). Similarly for Frnr�c0

Z
.

(iii) Let R = RE be the a�ne coordinate ring of the smooth formal scheme E, so that
E = Spf(R) and R is non-canonically isomorphic to a formal power series ring
in d variables, where d = dim(E). Let m = mE be the maximal ideal of R. Let
� = �R be the absolute Frobenius endomorphism of R, which sends every element
x 2 R to xp.

For every natural number j, define an ideal of R by

m
(pj) := �j(m)R.

Note that
m

d·p
j ✓ m

(pj) ✓ m
p
j

.

Denote by E modm(j) the Artinian scheme

E modm(pj) := Spec(R/m(pj))

10.4.3. Proposition. We use the notation and assumption in 10.4.2 and 10.4.1.2. In
particular v = (A,B,C) is an element of the Lie algebra of Autbiext(E), A 2 End(X),
B 2 End(Y ), and C 2 End(Z). There exist positive integers n3, c3 such that the congruence

 (exp(pnav)) ⌘ cna[v] (mod m
(pmin(ns,2nr�c3)))

⌘
�
� ✓na�(1X⇥B)�(⇡|Ena

) + C�⌘na
�
⇤ idEna

(mod m
(pmin(ns,2nr�c3)))

for the action  (exp(pnav)) of the element exp(pnav) 2 G on E holds for all integers

n � n3. In other words, the restrictions to the Artinian scheme Spec(R/m(pmin(ns,2nr�c3)))
of the two automorphisms  (exp(pnav)) and cna[v]⇤idEna

of the formal scheme E coincide.
Here Ena = ⇡�1(X[pna]⇥ Y [pna]) as before, and cna is the map from Ena to Z defined in
10.4.1.3.
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Proof. This proposition is a straight-forward consequence of 10.2.6.3 and 10.4.1.2.

1. The assumption 10.4.2 (ii) tells us that Ena � Spec
�
R/m(pns)

�
for all n � n0.

2. We know from 10.4.1.2 that the restriction of  (exp(pna v)) to Ena is equal to

⇣
� ✓na�(1X⇥B)�(⇡|Ena

) + C�⌘na +
X

j�2

pna(j�1)

j!
Cj�⌘na

⌘
⇤ idEna

.

3. We know from 10.2.6.3 that there exist positive integers n2, c2 such that

⌘na ⌘ 0
⇣
mod m

(pnr�c2 )
⌘

for all n � n2

a
.

4. An elementary calculation shows that

ordp
p
na(j�1)

j! > na(j � 1)� j

p�1 � na� 2 8j � 2

Let n3 := Min(n0, dn2/ae). Combining 3 and 4 above we get an estimate of the typical

“error term” p
na(j�1)

j! Cj � ⌘na:

pna(j�1)

j!
Cj � ⌘na ⌘ 0

⇣
mod m

(p2nr�c3 )
⌘

where c3 := 2c0 + c2, for all n � n3 and all j � 2.

10.4.4. Corollary 10.4.5 below is a variant of 10.4.3 and will be convenient for our pur-
pose.

The setup for 10.4.5 is as follows. We will use the general notation scheme in 10.4.2
and 10.4.3: X,Y, Z are p-divisible groups over a perfect field k � Fp, ⇡ : E ! X ⇥ Y is a
biextension of X ⇥ Y by Z. Let (R,m) = (RE ,mE) be the coordinate ring of E.

(i) Assume that X,Y, Z are p-divisible formal groups, i.e. every slope of X,Y, Z is
strictly positive.

(ii) Let ⌫ = (A,B,C) be an element of the Lie algebra of Autbiext(E ! X ⇥ Y ),
A 2 End(X), B 2 End(Y ) and C 2 End(Z).

(iii) Assume that Z is a product of isoclinic p-divisible groups; write Z as a product
of isoclinic p-divisible subgroups with distinct slopes: Z =

Q
Zl, where each Zl

is isoclinic, the slopes of the Zl are mutually distinct, and the slope of Zl is the
biggest among slopes of Z.

(iv) Assume that the slope of Z1 is strictly bigger than every slope of X ⇥ Y .
(v) Choose positive integers a, r, s, n3 with r < s such that the following conditions

hold.
– slope(Z1) =

a

r

– X[pna] � Ker(Frns
X
) and Y [pna] � Ker(Frns

Y
) for all n � n3.

– Zl[pna] � Ker(Frns
Zl
) for all l 6= 1 and all n � n3.
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(vi) For every n � n3, let

c̄na[v] := prZ1
� cna[v] : Ena �! Z1

be the composition of Ena

cna[v]
// Z with the projection Z

pr
Z1
// Z1 from Z to

its first factor.

10.4.5. Corollary. Notation and assumptions as in 10.4.4. In particular a, r, s are pos-
itive integers, 0 < a < r < s, a

r
is the largest slope of Z, Z1 is the maximal p-divisible

subgroup of Z with slope a

r
, a

s
is strictly bigger than any slope of X ⇥ Y ⇥ (Z/Z1), and

Z1[pa] = Z1[F r] = Ker(Frr
Z1/k

). There exist positive integers n4, c4 such that

exp(pnav) ⌘ c̄na[v] ⇤ idEna
(mod m

(pmin(ns,2nr�c4)))

for all n � n4.

Corollary 10.4.5 is an easy consequence of 10.4.3.

10.5. Hypocotyl elongation in tempered perfections

The main results in section 10.5 are proposition 10.5.3 and theorem 10.5.6. The are
generalizations of 10.5.3 and theorem 7.2.1, to tempered perfections of formal power series
rings and augmented complete Noetherian local domains respectively. See 10.7 for the
definitions and basic properties of tempered perfections.

The base field  in this section is a perfect field of characteristic p, unless stated
otherwise.

10.5.1. We reproduce some notations related to tempered perfections for the convenience
of the readers.

1. Let E,C > 0, d � 0 be real numbers. The support subset

supp(m :[ :E;C, d) ✓ N[1
p
]m

with parameters (E;C, d) defined in 10.7.3.6, and abbreviated to supp(m :E;C, d) in this
subsection, is

supp(m :E;C, d) = supp(m :[ :E;C, d) =
n
I 2 N[1

p
]m : |I|p  C · (|I|� + d)E

o

2. Let x = (x1, . . . , xm) be a tuple of variables,

(i) The total degree of monomials in x gives rise to a decreasing filtration

Fil�•

t.deg

on hhx1, . . . , xmiiE, [

C; d, indexed by real numbers:

Fil�u

t.deg

�
hhx1, . . . , xmiiE, [

C; d) :=

8
<

:
X

I2supp(m:E;C,d)

aI · xI
��� aJ 2  8I, aI = 0 if |I|� < u

9
=

;
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for every u 2 R.
(ii) For every real number u, define Fil>u

t.deg by

Fil>u

t.deg

�
khhx1, . . . , xmiiE, [

C; d) :=
nP

I2supp(m:E;C,d) aI · xI
��� aJ 2  8I, aI = 0 if |I|�  u

o
.

The following lemma deals with the perfection

[xp
�1

1 , . . . , xp
�1

m ] = [n2N [xp
�n

1 , . . . , xp
�n

m ]

of the polynomial ring [x1, . . . , xm] over the perfect base field . Notice that one can

evaluate any element of [xp
�1

1 , . . . , xp
�1

m ] at anym-tuple (c1, . . . , cm) 2 m. Lemma 10.5.2

provides a dichotomy when an element F (x1, . . . , xm) 2 [xp
�1

1 , . . . , xp
�1

m ] is evaluated at
all Frq-powers

{ (cq
n

1 , . . . , cq
n

m ) : n 2 N
of a gien m-tuple (c1, . . . , cm), where q = pr is a power of p, r 2 N>0:

- either F (cq
n

1 , . . . , cq
n

m ) = 0 for infinitely many natural numbers,

- or F (cq
n

1 , . . . , cq
n

m ) = 0 for all n 2 Z.

10.5.2. Lemma. Let r be a positive integer, and let q = pr. Let F (x1, . . . , xm) be an

element of [xp
�1

1 , . . . , xp
�1

m ]. Suppose that (c1, . . . , cm) 2 m is an element of m and n0

is a natural number such that

F (cq
n

1 , . . . , cq
n

n ) = 0

for all integers n � n0. Then F (cq
n

1 , . . . , cq
n

n ) = 0 for all n 2 Z. In particular

F (c1, . . . , cn) = 0.

Proof. When F (x1, . . . , xn) 2 [x1, . . . , xn], this statement was proved in 7.2.3.1; see
also [9, 2.2]. The general case follows because there exists a positive integer i such that
F (x1, . . . , xm)p

i 2 [x1, . . . , xm].

10.5.3. Proposition. Let x = (x1, . . . , xm), y = (y1, . . . , ym), u = (u1, . . . , a) and v =
(v1, . . . , vb) be four tuples of variables. Let (E1;C1, d1) and (E2;C2, d2) be two triples of
real parameters with E1, E2 > 0 and C1, C2, d1, d2 � 1. Let

f(u, v) 2 hhup
�1

1 , . . . , up
�1

a , vp
�1

1 , . . . , vp
�1

b
iiE1, [

C1; d1

be an element of hhup
�1

1 , . . . , up
�1

a , vp
�1

1 , . . . , vp
�1

b
iiE1, [

C1; d1
such that the support supp(f)

of f is contained in the product supp(a : E1;C1, d1)⇥ supp(b : E1;C1, d1):

(10.5.3.1) supp(f) ✓ supp(a : E1;C1, d1)⇥ supp(b : E1;C1, d1).

In other words f lies in the closure in hhup
�1

1 , . . . , up
�1

a , vp
�1

1 , . . . , vp
�1

b
iiE1, [

C1; d1
of the

subring

hhup
�1

1 , . . . , up
�1

a iiE1, [

C1; d1
⌦ hhvp

�1

1 , . . . , vp
�1

b
iiE1, [

C1; d1
.
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Let

(g1(x), . . . , ga(x)) 2
�
Fil>0

t.deghhx
p
�1

1 , . . . , xp
�1

m iiE2, [

C2; d2

�
a

be an a-tuple of elements in hhxp
�1

1 , . . . , xp
�1

m iiE2, [

C2; d2
whose constant terms are 0. Let

(h1(y), . . . , hb(y)) 2
�
Fil>0

t.degkhhy
p
�1

1 , . . . , yp
�1

m iiE2, [

C2; d2

�
b

be a b-tuple of elements in khhyp
�1

1 , . . . , yp
�1

m iiE2, [

C2; d2
whose constant terms are 0. Let q = pr

be a power of p, where r > 0 is a positive integer. Let n0 be a natural number. Suppose
that there exists a sequence (dn)n�n0

of natural numbers such that

(10.5.3.2) lim
n!1

qn

dn
= 0

and

(10.5.3.3) f(g1(x), . . . , ga(x), h1(x)
q
n

, . . . , hb(x)
q
n

) ⌘ 0 (mod Fildnt.deg) 8n � n0.

Then

(10.5.3.4) f(g1(x), . . . , ga(x), h1(y), . . . , hb(y)) = 0.

In the above the congruence relation 10.5.3.3 takes place in hhxp
�1

1 , . . . , xp
�1

m iiE3, [

C3; d3
, and

the equation 10.5.3.4 holds in the ring hhxp
�1

1 , . . . , xp
�1

m , yp
�1

1 , . . . , yp
�1

m iiE3, [

C3; d3
, where

• E3 = E1 + E2 + E1E2,
• C3 = C1+E2

1 · C1+E1+E1E2

2 · (1 + d)E1E2(1+E2), and
• d3 is a su�ciently large constant depending on (E1;C1, d1) and (E2;C2, d2).

See 10.7.6.5 and the trivial lower bound for e2 there.

10.5.4. Proof of proposition 10.5.3. Let

t = (ti,j)(i,j)2{1,...,b}⇥(supp(m:E2;C2,d2)r0)

be an infinite array of variables indexed by {1, . . . , b}⇥
�
supp(m : E2;C2, d2)r{0}

�
, where

0 is the zero element of the support subset supp(m : E2;C2, d2) ✓ N[1/p]m defined in
10.5.1. For each i = 1, . . . , b,

hi(y) =
X

0 6=K2supp(m:E2;C2,d2)

ci,K yJ

with ci,K 2 k for all J 2 S(m : E2;C2, d2)r {0}. Let

Hi(t; y) :=
X

0 6=K 2 supp(m:E2;C2,d2)

ti,K yK

The assumption 10.5.3.1 implies that the composition

f
�
g1(x), . . . , ga(x), H1(t; y), . . . , H1(t; y)

�
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is a well-defined formal series hhxp
�1

1 , . . . , xp
�1

m , yp
�1

1 , . . . , yp
�1

m iiE3, [

C3; d3
whose support is

contained in the product supp(m : E3;C3, d3)⇥ supp(m : E3;C3, d3):

(10.5.4.1) f
�
g(x), H(t; y)

�
=

X

(I,J)2supp(m:E3;C3,d3)⇥supp(m:E3;C3,d3)

AI,J(t) x
IyJ

Moreover each coe�cient AI,J(t) is an element in the perfection

[tp
1

] = 
⇥
tp

�1

i,K

⇤
i2{1,...,b},K2 supp(m:E2;C2,d2)r{0}

of the polynomial ring

[tp
�1

] = [ti,K ]i2{1,...,b},K2 supp(m:E2;C2,d2)r{0}

in infinitely many variables ti,K . Clearly For every n 2 N, we have

(10.5.4.2) f
�
g
1
(x), . . . , g

a
(x), h1(x)

q
n

, . . . , hb(x)
q
n�

=
X

I,J

AI,J(c
q
n

) xI+q
n
J .

In particular

(10.5.4.3) f
�
g
1
(x), . . . , g

a
(x), h1(x), . . . , hb(x)

�
=
X

I,J

AI,J(c) x
I+J .

By assumption 10.5.3.2, we get

(10.5.4.4)
X

(I,J) s.t. |I+qnJ |�<dn

AI,J(c
q
n

) xI+q
n
J = 0 8n � n0 .

We want to show that AI,J(c) = 0 for all (I, J) 2 supp(m : E3;C3, d3) ⇥ supp(m :
E3;C3, d3). Suppose to the contrary that AI0,J0

(c) 6= 0 for some (I0, J0) 2 supp(m :
E3;C3, d3) ⇥ supp(m : E3;C3, d3). By lemma 10.5.2, there exist infinitely many natural
numbers n such that AI0,J0

(cq
n

) 6= 0. Define a subset

T ✓ supp(m : E3;C3, d3)⇥ supp(m : E3;C3, d3)

by

T :=
�
(I, J) : I, J 2 supp(m : E3;C3, d3), AI,J(c

q
n

) 6= 0 for infinitely many n 2 N
 
.

This set T is non-empty because it contains (I0, J0). Again by lemma 10.5.2 we know that

AI,J(c
q
n

) = 0 8n 2 Z if (I, J) 62 T ,

and equation 10.5.4.5 becomes

(10.5.4.5)
X

(I,J)2T s.t. |I+qnJ |�<dn

AI,J(c
q
n

) xI+q
n
J = 0 8n � n0 .

Let
M2 := min { |J |� : (I, J) 2 T}

and let
M1 := min { |I|� : (I, J) 2 T and |J |� = M2} .
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The minimum which definesM2 (respectively M1) exists because every subset supp(m :
E3;C3, d3) whose archimedean norm is bounded above is a finite set. This finiteness prop-
erty for supp(m : E3;C3, d3) also implies that there exists a positive number ✏2 > 0 such
that

(10.5.4.6) J 2 supp(m : E3;C3, d3) and |J |� > M2 =) |J |� > M2 + ✏2.

The subset
T1 := {(I, J) 2 T : |J |� = M2, |I|� = M1}

is a non-empty finite set. There exists a natural number n1 � n0 such that properties
10.5.4.7–10.5.4.9 below hold.

(10.5.4.7) M1 + qnM2 < dn � 2 8 n � n1, n 2 N

(10.5.4.8) qn · ✏2 > M1 8n � n1, n 2 N
(10.5.4.9)

(I1, J1), (I2, J2) 2 T1, I1 + qnJ1 = I2 + qnJ2 and n � n1 =) (I1, J1) = (I2, J2)

Consider the set

Sn :=
�
(I, J) 2 T : |I + qnJ |� = M1 + qnM2

 
.

The property 10.5.4.8 and the inequality 10.5.4.6 imply that Sn = T1 for all n � n1.
Because Sn = T1, when we examine terms of total degree M1+ qnM2 in equation 10.5.4.5,
we find that

(10.5.4.10)
X

(I,J)2T1

AI,J(c
q
n

) xI+q
n
J = 0 8n � n1 .

By property 10.5.4.9 and equation 10.5.4.9, we see that

AI,J(c
q
n

) = 0

for all (I, J) 2 T1 and all n � n1, therefore T1 is the empty set. This is a contradiction.
We have proved proposition 10.5.3.

Remark. (a) The assumption 10.5.3.1 on the support of f(u, v) implies the uniform
bound 10.5.4.1 on the support of the composition f

�
g1(x), . . . , ga(x), H1(t; y), . . . , Hb(t; y)

�
.

This observation allows us to take advantage of the finiteness property of the support set
supp(m;E3;C3, d3). The rest of the argument in the proof of 10.5.3 is identical with the
proof of [9, 3.1].

(b) For application to orbital rigidity of biextensions of p-divisible formal groups, we will
need only the special case of 10.5.3 when f(u, v) 2 [[u1, . . . , ua, v1, . . . , vb]], i.e. f(u, v) is
a usual power series.

(c) Our proof is not strong enough to show that 10.5.3 holds for every element f in

khhup�1

, up
�1iiE1, [

C1; d1
. But we don’t have a counter-example either. It will be interest-

ing if one can find a larger class of formal series f(u, v) in khhup�1

, up
�1iiE1, [

C1; d1
for which

the statement 10.5.3 holds.
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10.5.5. The setup of theorem 10.5.6.

1. Let (R,m) be an augmented complete Noetherian local domain over a perfect field 

of characteristic p. Let (R,m)perf, [
A,b;d be a tempered perfection of R, where A, b, d are real

numbers, A, b > 0, and d � b. See 10.7.4.2 for the definition of (R,m)perf, [
A,b;d .

2. The tempered perfection (R,m)perf, [
A,b;d of (R,m) carries a filtration
⇣
Fil•

(R,m)perf, [
A,b;d

, deg

⌘

•

,

which is induced by the filtration Fil•
Rperf,deg on the perfection Rperf of R. See 10.7.4.2 for

details.

3. Let m,m0 > 0 be a positive integers, and let

hhup�1

, vp
�1iiE, [

C; d = hhup
�1

1 , . . . , up
�1

m , vp
�1

1 , . . . , vp
�1

m0 iiE, [

C; d

be a tempered perfection of [[u, v]] = [[u1, . . . , um, v1, . . . , vm0 ]], where E,C, d are real
numbers, E,C > 0, and d � 0.

4. Let g1, . . . , gm, h1, . . . , hm0 be elements of the maximal ideal of (R,m)perf, [
A,b;d .

5. Let A0 > 0, b0 > 0, d0 � b0 be real numbers such that the following conditions hold.

• The continuous ring homomorphism

evg⌦1,1⌦h : [[u1, . . . , um, v1, . . . , vm0 ]] �!
�
R⌦̂R,m

R⌦̂R

�perf, [
A,b;d

which sends a typical formal power series

f(u1, . . . , um, v1, . . . , vm0) 2 [[u1, . . . , um, v1, . . . , vm0 ]]

to

f(g1 ⌦ 1, . . . , gm ⌦ 1, 1⌦ h1, . . . , 1⌦ hm0) 2
�
R⌦̂R,m

R⌦̂R

�perf, [
A,b;d

,

extends to a continuous ring homomorphism

evg⌦1,1⌦h : hhup�1

, vp
�1iiE, [

C; d �!
�
R⌦̂R,m

R⌦̂R

�perf, [
A0,b0;d0

.

The existence of such a triple (A0, b0, d0) is straight-forward from the definitions.
See 10.7.6.5 for case when (R,m) is a formal power series ring.

• The continuous ring homomorphism

evg,h : [[u1, . . . , um, v1, . . . , vm0 ]] �! (R,m)perf, [
A,b;d ,

which sends a typical formal power series

f(u1, . . . , um, v1, . . . , vm0) 2 [[u1, . . . , um, v1, . . . , vm0 ]]

to
f(g1, . . . , gm, h1, . . . , hm0) 2 (R,m)perf, [

A,b;d ,
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extends to a continuous ring homomorphism

evg,1h : hhup�1

, vp
�1iiE, [

C; d �! (R,m)perf, [
A0,b0;d0 .

• The diagram

hhup�1

, vp
�1iiE, [

C; d

=

✏✏

evg⌦1,1⌦h

//

�
R⌦̂R,m

R⌦̂R

�perf, [
A0,b0;d0

�⇤

✏✏

hhup�1

, vp
�1iiE, [

C; d

evg,h
// (R,m)perf, [

A0,b0;d0

commutes, where the vertical arrow �⇤ is induced by the multiplication map
�⇤ : R⌦R! R for the -algebra R.

6. For every element f 2 hhup
�1

1 , . . . , up
�1

m , vp
�1

1 , . . . , vp
�1

m0 iiE, [

C; d, define elements

f(g, h) 2 (R,m)perf, [
A0,b0;d0 and f(g ⌦ 1, 1⌦ h) 2

�
R⌦̂R,m

R⌦̂R

�perf, [
A0,b0;d0

by

f(g, h) = f(g1, . . . , gm, h1, . . . , hm0) := evg,h(f),

f(g ⌦ 1, 1⌦ h) = f(g1 ⌦ 1, . . . , gm ⌦ 1, 1⌦ h1, . . . , 1⌦ hm0) := evg⌦1,1⌦h(f).

10.5.6. Theorem (Hypocoptyl elongation for tempered virtual functions). We
use the notation in 10.5.5. Let (R,m) be an augmented complete Noetherian local domain
over a perfect field  of characteristic p.

• Let g1, . . . , gm, h1, . . . , hm0 be elements of the maximal ideal of (R,m)perf, [
A,b;d .

• Let f(u1, . . . , um, v1, . . . , vm0) be an element of

hhup
�1

1 , . . . , up
�1

m , vp
�1

1 , . . . , vp
�1

m0 iiE, [

C; d

which lies in the closure of the image of

hhup�1iiE, [

C; d ⌦ hhv
p
�1iiE, [

C; d �! hhup�1

, vp
�1iiE, [

C; d.

• Let q = pr be a power of p for some positive integer r. Let (dn)n2N, n�n0
be a

sequence of positive integers such that limn!1
q
n

dn
= 0.

Suppose that

(†) f(g1, . . . , gm, hq
n

1 , . . . , hq
n

m0) ⌘ 0
⇣
mod Fildn

(R,m)perf, [
A0,b0;d0

,deg

⌘

in (R,m)perf, [
A0,b0;d0 for all n � n0. Then

f(g1 ⌦ 1, . . . , gm ⌦ 1, 1⌦ h1, . . . , 1⌦ hm0) = 0

in the completed tempered perfection
�
R⌦̂R,m

R⌦̂R

�perf, [
A0,b0;d0

of R⌦̂R.
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Proof. Extending the base field  if necessary, we may and do assume that  is
algebraically closed. By 7.2.2.1, there exists a -linear injective local homomorphism
◆ : R ,! [[t1, . . . , tm]]. By 10.7.6.4, the homomorphism

◆[ : (R,m)perf, [
A,b;d �! ([[t]], (t))perf, [

A,b;d

induced by ◆ is also an injection. So it su�ces to show that

f(◆[(g1)⌦ 1, . . . , ◆[(gm)⌦ 1, 1⌦ ◆[(h1), . . . , 1⌦ ◆[(hm0)) = 0.

Moreover the congruence relations (†) implies that

(‡) f(◆[(g1), . . . , ◆
[(gm), ◆[(h1)

q
n

, . . . , ◆[(hm0)q
n

) ⌘ 0
⇣
mod Fildn

([[t]],(t))perf, [
A0,b0;d0

,deg

⌘

for all n � n0. We know from 10.7.5 that there exist real numbers E2, C2, d2 such that

([[t]], (t))perf, [
A,b;d ✓ hht

p
�1

1 , . . . , tp
�1

m iiE2, [

C2; d2
.

So we can apply proposition 10.5.3 and conclude that f(◆[(g)⌦ 1, 1⌦ ◆[(h)) = 0.

10.6. Orbital rigidity for bi-extensions of p-divisible formal groups

10.6.1. Notation and basic setup. In this section k is a perfect field of characteristic
p > 0. The proofs of the main theorems 10.6.2 and other consequences of the argument
are immediately reduced to the case when k is algebraically closed.

(i) Let X,Y, Z be p-divisible formal groups, and ⇡ : E ! X ⇥ Y is a biextension of
X ⇥ Y by Z.

(ii) Let G be a compact p-adic Lie group. Let (⇢,↵,�, �) be an action of G on the
biextension E ! X ⇥ Y , where ⇢ : G ! Autbiext(E ! X ⇥ Y ) is a continuous
injective homomorphism, and ↵ : G ! Aut(X) (respectively � : G ! Aut(Y ),
� : G ! Aut(Z)) is the action of G on X (respectively Y , Z) underlying ⇢. We
know from 10.2.7.3 that the group homomorphism

(↵,�, �) : G �! Aut(X)⇥Aut(Y )⇥Aut(Z)

is a closed embedding of compact p-adic Lie groups, and the induced map

(d↵, d�, d�) : Lie(G) �! End(X)Q � End(Y )Q � End(Z)Q

is an injective homomorphism of finite dimensional Lie algebras over Qp. We often
use the map (↵,�, �) to identify G with a subgroup of Aut(X)⇥Aut(Y )⇥Aut(Z),
and regard Lie(G) as a Qp-vector subspace of Lie(G) End(X)Q � End(Y )Q �
End(Z)Q.

(iii) Let W ✓ E be a formal subvariety of E, in the sense that there exists a prime
ideal IW of the coordinate ring RE of E such that W = Spf(RE/IW ). Assume
that W is stable under the action of G.

(iv) The formal subscheme V = Spf
�
RX⇥Spec(k)Y

/(IW \ RX⇥Y )
�
✓ X ⇥Spec(k) Y will

be called the image of W in X ⇥Spec(k) Y .
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10.6.2. Theorem. Let W be a formal subvariety of E stable under the action of G. Let
µ1 be the maximum of the slopes of Z. Assume that µ1 is strictly bigger than every slope of
X and every slope of Y . Let Z1 be the maximal p-divisible subgroup of Z which is isoclinic
of slope µ1. Let Z 0

1 be a p-divisible subgroups of Z1 which is contained in W and stable
under the action of G. Let ⌥Z

0

1
: Z 0

1 ⇥ E ! E be the morphism

⌥ : Z 0

1 ⇥ E ! E (z01, e) 7! z01 ⇤ e ,
corresponding to the restriction to Z 0

1 of the action of Z on E. For every element v =
(A,B,C) 2 End(X)� End(Y )� End(Z) of the Lie algebra of G, we have

�
⌥ � (C|Z0

1
⇥ idW )

�
(Z 0

1 ⇥W ) ✓W.

In other words the formal subvariety W ✓ E is stable under translation by the p-divisible
subgroup C(Z 0

1) of Z.

Theorem 10.6.2 will be proved in 10.6.3.

10.6.2.1. Corollary. In the situation of 10.6.2, assume in addition that the action of G
on Z 0

1 is strongly nontrivial. Then

⌥(Z 0

1 ⇥W ) ✓W .

Proof. The assumption that the action of G on Z 0
1 is strongly non-trivial implies that

there exists elements vij = (Aij , Bij , Cij) 2 Lie(G), indexed by a finite subset
�
(i, j) 2 N2 : i 2 {1, . . . ,m}, j 2 {1, . . . , ni}

 
,

where ni 2 N�1 for each i = 1, . . . ,m, such that
X

1im

Ci,1|Z0

1
� · · · � Ci,ni

|Z0

1
2 End(Z 0

1)
⇥

Q.

Here Ci,j 2 End(Z 0
1)Q stands for the restriction to Z 0

1 of the element Ci,j 2 End(Z)Q =
End(Z) ⌦Z Q. See [9, 4.1.1] for this lemma on representation theory. The statement (2)
follows from statement (1) and the above linear algebra consequence of the assumption
that G operates strongly non-trivially on Z 0

1.

10.6.2.2. Corollary. Let W be a formal subvariety of E stable under the action of G as
in 10.6.2. Suppose that the largest slope µ1 of Z is strictly bigger than every slope of X⇥Y ,
and the action of G on Z is strongly nontrivial. Then the intersection W \Z1 with reduced
structure is a p-divisible subgroup of Z1, and W is stable under the translation action by
Z 0
1 via the Z-torsor structure of E. Here Z1 is the largest isoclinic p-divisible subgroup of

Z of slope µ1 as in 10.6.2.

Proof. We know from orbital rigidity of p-divisible groups 7.1.1 that (W \ Z1)red =
U1 [ · · ·Um, where each Ui is a p-divisible subgroup of Z1. Corollary 10.6.2.1 implies that
W \ Z1 is stable under the translation action of Ui for i = 1, . . . ,m. So (W \ Z1)red is
equal to the p-divisible subgroup U1 + · · ·+ Um of Z1.
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10.6.3. Proof of Theorem 10.6.2.

Step 1. Preliminary reduction steps.

(a) It su�ces to verify the statement of 10.6.2 after extending the base field k to an
algebraic closure of k. So we may and do assume that k is algebraically closed.

(b) If E ! E0 is an isogeny of biextensions, the statement of 10.6.2 holds for E if and
only if it holds for E0.

Modifying E by suitable isogenies, we may and do assume that X, Y , Z are
product of isoclinic p-divisible groups. Moreover we may assume that for each
isotypic factor U of X, Y , or Z, there exist positive integers a0, r0 such that
U [pa

0

] = U [F r
0

] := Ker(Frr
0

U/k
). In particular there exist positive integers a, r such

that µ1 =
a

r
and Z1[pa] = Z1[F r] := Ker(Frr

Z1/k
).

(c) Choose a suitable regular system of parameters (u1, . . . , ub) for the coordinate ring
Z1 such that Z1 = Spf(k[[u1, . . . , ub]]) and

[pa]⇤
Z1

(ui) = up
r

i

for i = 1, . . . , b.
(d) The largest slope µ1 of Z is assumed to be strictly bigger than every slope ap-

pearing in X ⇥ Y . Multiplying a, r by a suitable positive integer, we may and do
assume that there exists positive intergers s, n0 such that s > r and a

s
is strictly

bigger than every slope of X ⇥ Y , and

X[pna] � Ker(Frns
X/k

) and Y [pna] � Ker(Frns
Y/k

)

for all n � n0.

Step 2. By 10.4.1.4, after suitably adjusting the positive integers s, r, a with s > r > a > 0,
µ1 =

a

r
, there exist positive integers n4 � n0 and c4 such that

(10.6.3.1) exp(pnav) ⌘ c̄na[v] ⇤ idEmodm (mod m
(pmin(ns,2nr�c4)))

for all n � n4, where

c̄na[v] =
�
prZl

� cna
���
⇡�1(Ker(Frns

X
⇥Ker(Frns

Y
))
: ⇡�1

�
Ker(FrnsX )⇥Ker(FrnsY )

�
�! Z1

is the restriction to ⇡�1
�
Ker(Frns

X
) ⇥ Ker(Frns

Y
)
�
of the composition of cna[v] with the

projection
prZl

: Z ! Zl.

For each j = 1, . . . , b, defined a �r-compatible sequence (aj,n)n�n4
with respect to �s in

the sense of 10.7.2.3, by

aj,n := c̄na[v]⇤(uj) modm(pns)
E

2 RE/m
(pns)
E

for all n � n4. Let i1 := max
�
s� r, dn4

r
e
�
. For each j = 1, . . . , b, let

ãj 2 (RE ,mE)
perf,#
s:�r;[i1]

be the formal series corresponding to the �r-compatible sequence (aj,n)n�n4
.
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Although (RE ,mE)
perf,#
s:�r;[i1]

is more tightly related to �r-compatible sequences through

the construction in 10.7.3.2, we will pass to the larger ring (RE ,mE)
perf, [
s:�r;[i1]

, and consider

the ãj ’s as elements of (RE ,mE)
perf, [
s:�r;[i1]

in the rest of the proof.

Step 3. The elements ã1, . . . , ãb 2 (RE ,mE)
perf,#
s:�r;[i1]

define a ring homomorphism

c̃[v]⇤ : RZ1
= k[[u1, . . . , ub]] �! (RE ,mE)

perf,#
s:�r;[i1]

.

Let

!1 : (RE ,mE)
perf, [
s:�r;[i1]

�! (RZ1
,mZ1

)perf, [
s:�r;[i1]

be the ring homomorphism induced by the inclusion Z1 ,! E. Because the restriction to
Z of the morphism cn[v] : ⇡�1(X[pn]⇥Y [pn])! Z is equal to [pn]Z �C|Z for every n 2 N,
We see that

(10.6.3.2) !1 � c̃[v] = jRZ1
� (C|Z1

)⇤

where jRZ1
: RZ1

,! (RZ1
,mZ1

)perf, [
s:�r;[i1]

is the natural injection from RZ1
to its completed

tempered perfection (RZ1
,mZ1

)perf, [
s:�r;[i1]

.

Step 4. We also have the following ring homomorphisms.

(a) The canonical homomorphism ⌧ : RE ! RE/IW = RW gives rise to a homomor-
phism

⌧ [ : (RE ,mE)
perf, [
s:�r;[i1]

�! (RW ,mW )perf, [
s:�r;[i1]

.

(b) The injective local homomorphism ◆ : RW ! k[[t1, . . . , tm]] induces a injective
continuous homomorphism

◆̃ : (RW ,mW )perf, [
s:�r;[i1]

�! khhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i1]

.

(c) Continuous ring homomorphisms

�1 : RE ! RZ1
b⌦RE and �0

1 : RE ! RZ
0

1

b⌦RE

corresponding to the actions Z1 ⇥ E ! E and Z 0
1 ⇥ E ! E of Z1 and Z 0

1 on E.
(d) The ring homomorphism

!0

1 : (RW ,mW )perf, [
s:�r;[i1]

�!
⇣
RZ

0

1
,mZ

0

1

⌘perf, [
s:�r;[i1]

.

induced by the surjective ring homomorphism RW ⇣ RZ
0

1
which corresponds to

the inclusion Z 0
1 ,!W .

(e) The ring endomorphisms C|⇤
Z1

: RZ1
! RZ1

and C|⇤
Z

0

1

: RZ1
! RZ

0

1
corre-

sponding to the endomorphisms C|Z1
(respectively C|Z0

1
) of the p-divisible group

Z1 (respectively Z 0
1).
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(f) The ring homomorphism

q[ : (RZ1
,mZ1

)perf, [
s:�r;[i1]

�!
⇣
RZ

0

1
,mZ

0

1

⌘perf, [
s:�r;[i1]

induced by the canonical surjection q : RZ1
⇣ RZ

0

1

Clearly we have

(10.6.3.3) !0

1 � ⌧ [ = q[ � !1 and C|⇤
Z

0

1

� q = q � C|⇤Z1

The following diagram

(10.6.3.4) RZ1

c̃[v]⇤
//

C|
⇤

Z1

✏✏

(RE ,mE)
perf, [
s:�r;[i1]

!1

✏✏

⌧
// (RW ,mW )perf, [

s:�r;[i1]

!
0

1

✏✏

RZ1
jRZ1

// (RZ1
,mZ1

)perf, [
s:�r;[i1]

q
[

//

⇣
RZ

0

1
,mZ

0

1

⌘perf, [
s:�r;[i1]

commutes by 10.6.3.2. It follows that the diagram
(10.6.3.5)

RZ
0

1
⌦̂RE

1R
Z
0
1

⌦⌧

✏✏

C|
⇤

Z
0
1

⌦⌧

// RZ
0

1
⌦̂RW

=
✏✏

RE

�0

1

44

�1

✏✏

RZ
0

1
⌦̂RW

C|
⇤

Z
0
1

⌦1RW

// RZ
0

1
⌦̂RW

jR
Z
0
1

⌦jRW

✏✏

RZ1
⌦̂RE

q⌦1

55

c̃[v]⇤⌦j
RE

✏✏

(j
RZ1

�C|
⇤

Z1
)⌦(⌧ [�j

RE
)

,,

⇣
RZ

0

1
,mZ

0

1

⌘perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

(RE ,mE)
perf, [
s:�r;[i1]

⌦̂ (RE ,mE)
perf, [
s:�r;[i1]

!1⌦⌧
[

//

⌧
[
⌦⌧

[

✏✏

(RZ1
,mZ1

)perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

q
[
⌦1

OO

q
[
⌦1

✏✏

(RW ,mW )perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

!2⌦1
//

⇣
RZ

0

1
,mZ

0

1

⌘perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

also commutes.

Step 5. Recall that IW is the prime ideal of the coordinate ring of E consisting of all
functions on E which vanishes on the G-invariant formal subvariety W ✓ E. We want to
show that

(A) (C|⇤
Z

0

1

⌦ ⌧) ��0

1(f) = 0 8� 2 IW
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We know from diagram (10.6.3.5) that
�
(C|⇤

Z
0

1

⌦ ⌧) ��0

1

�
(�) =

�
(q[ ⌦ 1) � ((jRZ1

� C|⇤Z1
)⌦ (⌧ [ � j

RE
)) ��1

�
(�).

Because jR
Z
0
1

and jRW
are both injective, our goal (A) is to equivalent to

(B)
�
(q[ ⌦ 1) � ((j

RZ1

� C|⇤Z1
)⌦ (⌧ [ � j

RE
)) ��1

�
(�) = 0 8� 2 IW .

The commutative diagram (10.6.3.5) tells us that

(q[ ⌦ 1) �
�
(j

RZ1

� C|⇤Z1
)⌦ (⌧ [�j

RE
)
�
��1 = (!1 ⌦ ⌧) � (c̃[v]⇤ ⌦ j

RE
) ��1

= (!2 ⌦ 1) � (⌧⌦⌧) � (c̃[v]⇤ ⌦ j
RE

) ��1.

We will show the stronger statement

(C)
�
(⌧⌦⌧) � (c̃[v]⇤ ⌦ j

RE
) ��1

�
(�) = 0 8� 2 IW .

In other words, the composition of the three vertical arrows at the left edge of the diagram
(10.6.3.5) kills every element of the prime ideal IW . Since

(C) =) (B) () (A),

it su�ces to prove (C).

Step 6. Suppose that � is an element of IW . Define an element

f� 2 (RE ,mE)
perf, [
s:�r;[i1]

⌦̂ (RE ,mE)
perf, [
s:�r;[i1]

by

f� :=
�
(c̃[v]⇤ ⌦ j

RE
) ��1

�
(�),

where c̃[v]⇤ ⌦ j
RE
��1 is the composition

RZ1
⌦̂RE

�1
// RE⌦̂RE

c̃[v]⇤⌦j
RE

// (RE ,mE)
perf, [
s:�r;[i1]

⌦̂ (RE ,mE)
perf, [
s:�r;[i1]

.

We want to show the image of f� under the map

(RE ,mE)
perf, [
s:�r;[i1]

⌦̂ (RE ,mE)
perf, [
s:�r;[i1]

⌧
[
⌦⌧

[

// (RW ,mW )perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

is 0.

Step 7. Let � be the Frobenius endomorphism x 7! xp on (RW ,mW )perf, [
s:�r;[i1]

, Let

⌫W : (RW ,mW )perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

�! (RW ,mW )perf, [
s:�r;[i1]

be map which defines multiplication for the ring (RW ,mW )perf, [
s:�r;[i1]

. Geometrically ⌫W

corresponds to the diagonal morphism from Spec((RW ,mW )perf, [
s:�r;[i1]

) to its self-product.



10.6. ORBITAL RIGIDITY FOR BI-EXTENSIONS OF P -DIVISIBLE FORMAL GROUPS 597

Because the formal subvariety W ✓ E is assumed to be stable under G, therefore stable
under exp(pnav) for all n � n4. Hence the congruence relations (10.6.3.1) implies that

(10.6.3.6) (�nr ⌦ 1)
�
(⌧ [ ⌦ ⌧ [)(f�)

�
⌘ 0 (mod Filns�i1

[
) 8n � n4,

where �nr ⌦ 1 is the ring homomorphism

�nr ⌦ 1: (RW ,mW )perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

�! (RW ,mW )perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

.

Applying theorem 10.5.6 on hypocoptyl elongation for tempered virtual functions, we
conclude that

(⌧ [ ⌦ ⌧ [)(f�) = 0

in (RW ,mW )perf, [
s:�r;[i1]

⌦̂ (RW ,mW )perf, [
s:�r;[i1]

, for every element � 2 IW , which is the statement

(C) in step 5. As we have seen, this implies that

(C|⇤
Z

0

1

⌦ 1)(�0

1(�) = 0

in RZ
0

1
⌦̂RW for every element � of the ideal IW . We have proved theorem 10.6.2.

10.6.3.1. Remark. In the situation of 10.6.2.2, the conclusion of 10.6.2.2 implies that
the natural formal morphism

⇡̄|W/Z
00

1
: (W/Z 00

1 ) �! E/Z1 = (Z ⇣ Z/Z1)⇤E

is finite, because the closed fiber of ⇡̄|W/Z
00

1
is finite. However we will need the stronger

statement 10.6.4.4 that the formal morphism from W/Z1 to the schematic image of ⇡̄|W/Z
00

1

induced by ⇡̄|W/Z
00

1
is finite and purely inseparable.

This stronger statement will follow from the method used in the proof of theorem
10.6.2. More precisely, we will further exploit the Z1-equivariant “virtual morphisms”

c̃[v] : E ! Z1,

which correspond to continuous ring homomorphisms

RZ1

c̃[v]⇤
// (RE ,mE)

perf, [
s:�r;[i1]

.

See 10.6.4.1 for the terminology “virtual morphism”. The precise meaning that the virtual
morphisms c̃[v] : E ! Z1 are Z1-equivariant is spelled out in lemma 10.6.3.2 below.

10.6.3.2. Lemma. We continue with the notation 10.6.2 and 10.6.3. For every element
v = (A,B,C) in the Lie algebra of G with components A 2 End(X), B 2 End(Y ) and
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C 2 End(C), the diagram

RZ1

c̃[v]⇤

✏✏

�Z1
// RZ1

⌦̂RZ1

(j
RZ

�pr⇤
Z1

�C|
⇤

Z1
)⌦c̃[v]⇤

// (RZ)
perf, [
s:�r;[i1]

⌦̂ (RE)
perf, [
s:�r;[i1]

j

✏✏

(RE)
perf, [
s:�r;[i1]

�[

//

�
RZ⌦̂RE

�perf, [
s:�r;[i1]

RE

j
RE

OO

�
// RZ⌦̂RE

j
RZ ⌦̂RE

OO

commutes. The arrows prZ1
,�Z1

,�,�[, j
RZ

, j
RE

, j
RZ ⌦̂RE

, j are as follows.

• The homomorphism pr⇤
Z1

: RZ1
! RZ corresponds to the projection prZ1

from
Z = Z1 ⇥ (U1 ⇥ Uc) to Z1, where U1, . . . , Uc are isoclinic p-divisible groups with
slopes strictly smaller than µ1,

• �Z1
corresponds to the group law of the p-divisible group Z1,

• � : RE ! RZ⌦RE corresponds to the Z-torsor structure Z⇥E ! E on E, which

induces a ring homomorphism �[ : (RE)
perf, [
s:�r;[i1]

�!
�
RZ⌦̂RE

�perf, [
s:�r;[i1]

between

tempered perfections
• j

RZ
, j

RE
and j

RZ ⌦̂RE

are the inclusions maps from RZ , RE and RZ⌦̂RE to their

respective tempered perfections, and
• the downward vertical arrow j on the right is the natural ring homomorphism,
from the tensor product (RZ)

perf, [
s:�r;[i1]

⌦̂ (RE)
perf, [
s:�r;[i1]

of tempered perfections of RZ

and RE, to the tempered perfection
�
RZ⌦̂RE

�perf, [
s:�r;[i1]

of RZ⌦̂RE,

The proof of 10.6.3.2 is left as an exercise.

10.6.4. Further consequences of the proof of 10.6.2.

The proof of theorem 10.6.2 shows more than the statement of 10.6.2. We will review the
assumptions and make some definitions before stating other consequences of the argument.

10.6.4.1. We will use the notation in step 2 of 10.6.3. In particular X,Y, Z are p-divisible
groups over a perfect field k of characteristic p. Let ⇡ : E ! X ⇥ Y be a biextension of
X ⇥ Y by Z. Let G be a closed subgroup of Autbiext(E). Let W be a reduced irreducible
closed formal subscheme of E stable under the action of G. Let v = (A,B,C) be an element
of the Lie algebra of G with components A 2 End(X), B 2 End(Y ) and C 2 End(Z). We
make the following assumptions.

• The largest slope µ1 of Z is strictly bigger than every slope of X ⇥ Y .
• The maximal isoclinic p-divisible subgroup Z1 with slope µ1 is a direct factor of
Z, so that Z = Z1⇥Z0 where Z0 is a p-divisible subgroup of Z all of whose slopes
are strictly smaller than µ1.

• There exist positive integers a, r, s, n0, n4 such that
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– 0 < a  r < s,
– µ1 =

a

r
, Z1[pa] = Z[F r],

– condition (d) in step 1 of 10.6.3 holds, and
– the congruence relation (10.6.3.1) in step 2 of 10.6.3 holds.

In step 3 of 10.6.3 we picked a regular system of parameters u1, . . . , ub of the complete
local ring RZ1

with [pa]⇤
Z1
(ui) = up

r

i
for all i = 1, . . . , b, and constructed a continuous ring

homomorphism

c̃[v]⇤ : RZ1
�! (RE ,mE)

perf,#
s:�r;[i1]

.

We will say that c̃[v]⇤ corresponds to a “virtual morphism with tempered coe�cient” c̃[v]
from E to Z1. There are obvious benefits from this geometric view. However we do not have
a fully developed theory of virtual morphisms with tempered coe�cients at this moment,
and allusions to virtual morphisms are completely formal.

Define the schematic image Im
�
c̃[v]

��
W

�
of the restriction to W of c̃[v] by

Im
�
c̃[v]

��
W

�
:= Spf

�
RZ1

�
Ker(⌧ [ � c̃[v]⇤)

�

= Spf
⇣
RZ1

�
Ker

�
RZ1

c̃[v]⇤
// (RE ,mE)

perf,#
s:�r;[i1]

⌧
[

// (RW ,mW )perf,#
s:�r;[i1]

�⌘
.

10.6.4.2. Proposition. We use the notations and make the assumptions in 10.6.4.1.

(a) The formal subvariety W of E is stable under the translation action by the smallest
p-divisible subgroup of Z1 which contains the schematic image Im

�
(c̃[v])

��
W

�
of

the restriction to W of the virtual morphism c̃[v] : E ! Z1, for every element
v 2 Lie(G) \ (End(X)� End(Y )� End(Z)).

(b) Let Z1,c̃ be the smallest p-divisible subgroup of Z1 which contains the schematic

image Im
�
(c̃[v])

��
W

�
for every v 2 Lie(G) \ (End(X)� End(Y )� End(Z)). Then

W is stable under the translation action by Z1,c̃.

Proof. We will show W is stable under the translation action of Im
�
(c̃[v])

��
W

�
. The

statement (a) follows easily from this apparently weaker statement.
Let IW := Ker

�
⌧ : RE ! RW

�
be the ideal of RE consisting of all formal functions on

E which vanish on W . Let

J [v] := Ker
�
⌧ [ � c̃[v]⇤ : RZ1

�! (RW ,mW )perf,#
s:�r;[i1]

.

We need to show that the kernel of the composition

RE

�1
// RZ1

⌦RE

q
[v]

⌦⌧

// (RZ1
/J [v])⌦RW

contains IW , where q
[v]

: RZ1
⇣ J [v] is the quotient map. Let

|
[v]

: RZ1
/J [v] �! (RW ,mW )perf,#

s:�r;[i1]
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be the injective ring homomorphism such that

⌧ [ � c̃[v]⇤ = |
[v]
� q

[v]
.

We have a commutative diagram

RE

�1
// RZ1

⌦RE

q
[v]

⌦⌧

//

c̃[v]⇤⌦j
RE

✏✏

(RZ1
/J [v])⌦RW

|
[v]

⌦jRW

✏✏

(RE ,mE)
perf,#
s:�r;[i1]

⌦̂ (RE ,mE)
perf,#
s:�r;[i1]

⌧
[
⌦⌧

[

// (RW ,mW )perf,#
s:�r;[i1]

⌦̂ (RW ,mW )perf,#
s:�r;[i1]

.

In step 6 of 10.6.3 we proved that

IW ✓ Ker
�
(⌧ [ ⌦ ⌧ [) � c̃[v]⇤ ⌦ j

RE
��1

�
.

Therefore

IW ✓ Ker
�
(q

[v]
⌦ ⌧) ��1

�

because |
[v]
⌦ jRW

is an injective ring homomorphism. We have proved the statement (a).
The statement (b) follows from (a).

10.6.4.3. Corollary. In 10.6.4.2, assume in addition that G operates strongly nontrivially
on Z1. Then the intersection W \ Z with reduced structure is equal to Z1,c̃, the smallest

p-divisible subgroup of Z which contains all schematic images Im
�
(c̃[v])

��
W

�
, where v runs

through all elements of Lie(G) \ (End(X)� End(Y )� End(Z)).

10.6.4.4. Proposition. Let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y by Z over k. Let
µ1 be the largest slope of Z, and let Z1 be the largest isoclinic p-divisible subgroup of Z
with slope µ1. Let G be a closed subgroup of Autbiext(E) such that the action of G on Z1 is
strongly nontrivial. Let W be a reduce irreducible subscheme of E stable under G. Assume
that µ1 is strictly bigger than every slope of X ⇥ Y .

(a) The closed formal subscheme Z 00
1 := (W \ Z1)red is a p-divisible subgroup of Z,

and W is stable under the translation action by Z 00
1 .

Let W2 := W/Z 00
1 , a reduced irreducible closed formal subscheme of the biex-

tension E/Z 00
1 = (Z ⇣ Z/Z 00

1 )⇤E of X ⇥ Y by Z/Z 00
1 .

(b) The natural map

q
W2

: W2 �! E/Z1 = (Z ⇣ Z/Z1)⇤E

is a finite purely inseparable formal morphism. In other words the a�ne coor-
dinate ring RW2

of W2 is a finite module over the subring RIm(q
W2

), the a�ne

coordinate ring of the schematic image of q
W2

, and there exists a natural number

m such that xp
m 2 RIm(q

W2
) for every x 2 RW2

.

Proof. The statement (a) is 10.6.2.2. We only need to prove (b).
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Extending the perfect base field k if necessary, we may and do assume that the base
field k is algebraically closed. Replacing E by E/Z 00

1 = (Z ⇣ Z/Z 00
1 )⇤E and W by W/Z 00

1 ,
we may and do assume also that Z 00

1 = 0.

Let Ē := E/Z1 = (Z ⇣ Z/Z1)⇤E. Corollary 10.6.2.2 tells us that the closed fiber of
the formal morphism ⇡|W : W ! Ē is finite over k, therefore ⇡|W is finite. Denote by W̄
be schematic image of ⇡|W , a reduced irreducible formal subscheme of Ē stable under the
action of G. We need to show that W is purely inseparable over W̄ .

Let RW and R
W̄

be the coordinate rings ofW and W̄ respectively, and let | : R
W̄
! RW

be the continuous injective ring homomorphism induced by ⇡|W . We know that RW is

finite over R
W̄
, and must show that there exists N 2 N such that xp

N 2 RW for all
x 2 R

W̄
. Suppose no such natural number N exists. Then there exist continuous ring

homomorphisms h1, h2 : RW ! k[[u]] from RW to the power series ring k[[u]] in one
variable u, such that h1 � | = h2 � | but h1 6= h2. Since the projection E ! E/Z1 is a
Z1-torsor, there exists a continuous k-linear ring homomorphism � : RZ1

! k[[u]] such that

µ
k[[u]]
� (� ⌦ h1) ��1 = h2,

where

• �1 : RE ! RZ1
⌦̂RE corresponds to the action of Z1 on E,

• µ
k[[u]]

: k[[u]]⌦̂k[[u]]! k[[u]] is the multiplication map on k[[u]], and

• Ker(�) $ mZ1
, or equivalently k[[u]] is a finite module over the subring Im(�),

because h1 6= h2.

We know from 10.6.4.3 that for every element (A,B,C) of the Lie algebra of G with
components A 2 End(X), B 2 End(Y ) and C 2 End(Z), the kernel of the composition
⌧ [ � c̃[v]⇤ of continuous ring homomorphism

RZ1

c̃[v]⇤
// (RE ,mE)

perf, [
s:�r;[i1]

⌧
[

// (RW ,mW )perf, [
s:�r;[i1]

contains the maximal ideal mZ1
of RZ1

. In other words ⌧ [ � c̃[v]⇤ is the equal to the

composition RZ1
⇣ k ,! (RW ,mW )perf, [

s:�r;[i1]
, the trivial k-linear ring homomorphism.

Consider the following diagram, an expansion of the top half of the diagram in 10.6.3.2.

RZ1

c̃[v]⇤

✏✏

�Z1
// RZ1
⌦̂RZ1

(j
RZ1

�C|
⇤

Z1
)⌦c̃[v]⇤

// (RZ1
)perf, [
s:�r;[i1]

⌦̂(RE)
perf, [
s:�r;[i1]

j

✏✏

(RE)
perf, [
s:�r;[i1]

�[

1
//

(h2�⌧)[

✏✏

�
RZ1
⌦̂RE

�perf, [
s:�r;[i1]

(1⌦⌧)[

✏✏

(k[[u]])perf, [
s:�r;[i1]

�
k[[u]]⌦̂k[[u]]

�perf, [
s:�r;[i1]

µ
[

k[[u]]
oo

�
RZ1
⌦̂RW

�perf, [
s:�r;[i1]

(�⌦h1)[
oo
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The commutativity of the top half of the diagram follows from 10.6.3.2, while the bottom
half commutes because µ

k[[u]]
� (� ⌦ h1) ��1 = h2. The homomorphism

RZ1

(h2�⌧)[�c̃[v]⇤
//

�
k[[u]]⌦̂k[[u]]

�perf, [
s:�r;[i1]

is the trial k-linear ring homomorphism because ⌧ [ � c̃[v]⇤ is. On the other hand, we have

(h2 � ⌧)[ � c̃[v]⇤ = µ[
k[[u]]
� (� ⌦ h1)

[ � (� ⌦ h1)
[ � �(1⌦ ⌧)[ � j � ((j

RE
� C|⇤Z1

)⌦ c̃[v]⇤) ��Z1
.

The right hand side of the above equality is equal to the following composition

RZ1

C|
⇤

Z1
// RZ1

�
// k[[u]]

j
k[[u]]
// (k[[u]])perf, [

s:�r;[i1]
.

Therefore the non-trivial k[[u]]-point �⇤ of Z1 lies in the kernel of the endomorphism C|Z1

for every element v = (A,B,C) 2 (End(X)�End(Y )�End(Z))\Lie(G). Since the action
of G on Z1 is strongly non-trivial, the point �⇤ 2 Z1(k[[u]]) is 0. This is a contradiction.
We have proved that W is purely inseparable over W̄ .

10.6.5. Proposition. Let ⇡ : E ! X ⇥ Y be a biextension of X ⇥ Y over k. Let G be a
closed subgroup of Autbiext(E). Let µ2 be a slope of Z, and let Z2 be the largest p-divisible
subgroup of Z will all slopes � µ2. Let W be a reduced irreducible closed formal subscheme
of E stable under the action of G. Suppose that the action of G on Z2 is strongly nontrivial,
and µ2 is strictly bigger than every slope of X ⇥ Y .

(a) The reduced formal subscheme Z 00
2 := (W \ Z2)red is a p-divisible subgroup of Z,

and W is stable under the translation action by Z 00
1 .

Let W3 := W/Z 00
2 , a reduced irreducible closed formal subschem of the biexten-

sion E/Z 00
2 = (Z ⇣ Z 00

2 )⇤E of X ⇥ Y by Z/Z 00
2 .

(b) The natural map

q
W3

: W3 �! E/Z2 = (Z ⇣ Z/Z2)⇤E

is a finite purely inseparable formal morphism.

Proof. The case when Z2 is isoclinic is proposition 10.6.4.4.

Consider next the case when Z2 has exactly two slopes, µ1, µ2 with µ1 > µ2. The
largest isoclinic p-divisible subgroup of Z with slope µ1 is contained in Z2.

Let Z 00
1 := (W \ Z1)red, a p-divisible subgroup of Z1. We know that W is stable under

translation by Z 00
1 , and the natural map W2 := W/Z 00

1 �! E/Z1 is finite and purely insep-
arable. Let W̄2 = Im(q

W2
) be the schematic image of q

W2
: W2 ! E/Z1. The intersection

W \ Z2 with reduced structure has a finite number of irreducible components, and each
irreducible component is a p-divisible subgroup of Z2, by orbital rigidity for p-divisible
groups. Since W \ Z2 is stable under translation by Z 00

1 , each irreducible components of
(W \Z2)red is stable under translation by Z 00

1 . Let U be one of the irreducible components
of (W \ Z2)red.
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Claim. The formal subscheme W ✓ E is stable under the translation action of the p-
divisible group U ✓W \ Z2.

Proof of claim. We may and do assume that i = 1. Changing Z by an isogeny, we may
and do assume that U = Z 00

2 ⇥ U2, where U2 is an isoclinic p-divisible subgroup of Z2 of
slope µ2. Replacing W by W/Z 00

1 , we may and do assume that Z 00
1 = 0.

In our simplified situation, (W \Z1)red = 0, the p-divisible subgroup U is an irreducible
component of (W \ Z2)red, U is isoclinic of slope µ2. We need to show that W is stable
under the translation action of U .

Let q
W

: W ! E/Z1 be the composition W ,! E ⇣ E/Z1. Let W̄ be the schematic
image of q

W
. Since q

W
is finite dominant and purely inseparable, there exist a natural

number N and a morphism ⇣ : W̄ !W (pN ) such that the relative Frobenius FrW/k : W !
W (pN ) is equal to the composition ⇣ � q

W
. On the other hand 10.6.4.4 tells us that the

reduced irreducible formal subscheme W̄ ✓ E/Z1 is stable under the translation action of
U on E/Z1. Consider the two morphisms

↵,� : U ⇥ W̄ �! E(pN ),

defined by

↵(u, w̄) = ⇣(u ⇤ w̄), �(u, w̄) = Frr
U/k

(u) ⇤ ⇣(w̄).

for all functorial points (u, w̄) of U ⇥ W̄ . For every functorial point w of W , we have

↵(u, q
W
(w)) = ⇣(q

W
(u ⇤ w)) = FrN

E/k
(u ⇤ w) = FrN

U/k
(u) ⇤ FrN

E/k
(w)

and

�(u, q
W
(w)) = FrN

U/k
(u) ⇤ ⇣(q

W
(w)) = FrN

U/k
(u) ⇤ FrN

E/k
(w),

i.e. ↵� (1U ⇥q
W
) = � � (1U ⇥q

W
). So ↵ = � because 1U ⇥q

W
is faithfully flat. The equality

↵ = � implies that the schematic image of ⇣ is stable under translation by the schematic
image of FrN

U/k
: U ! U (pN ). It follows that W is stable under translation by U . We have

proved the claim.

We go back to the situation in the paragraph before the claim. Since W is stable under
translation by every irreducible component of (W \Z2)red, W is stable under the smallest
p-divisible subgroup containing (W \ Z2)red. It follows that (W \ Z2)red is a p-divisible
group. We have proved statement (a) in the case when Z2 has two slopes.

We turn to the statement (b). We may and do assume that Z2 = Z1 ⇥U 0, where U 0 is
isoclinic with slope µ2. Let W2 = W/(W \Z1)red, let W̄2 be the schematic image of W2 in
E/Z1. Proposition 10.6.4.4 tells us that the map W2 ! W̄2 is purely inseparable, and also
that the map from W = W̄2/(W̄2 \ U2)red to E/Z2 is purely inseparable. The statement
(b) follows. We have proved proposition 10.6.5 when Z2 has two slopes.

An easy induction on the number of slopes of Z2, using the argument for the two slope
case above, proves the general case.
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10.6.6. Proposition. Let X,Y, Z be p-divisible formal groups over k, let E ! X ⇥ Y
be a biextension of X ⇥ Y by Z, and let G be a closed subgroup of Autbiext(E) operating
strongly nontrivially on E. Let W be a reduced irreducible formal subscheme of E stable
under the action of G. Let µ1 be the maximum among the slopes of Z, and let Z1 be the
largest isoclinic p-divisible subgroup of Z with slope µ1.

(a) The reduced formal subscheme (W \ Z1)red is a p-divisible subgroup Z 0
1 of Z1.

(b) The formal subscheme W of E is stable under the translation action by Z 0
1.

(c) The composition q
W/Z

0
1

: W/Z 0
1 ,! E/Z 0

1 ⇣ E/Z1 is a finite purely inseparable

formal morphism from W/Z 0 to E/Z1 = (Z ⇣ Z/Z1)⇤E.

Proof. If µ1 is strictly bigger than every slope of X ⇥ Y , the statements (a)–(c) follow
from 10.6.2.2 and 10.6.4.4.

Suppose that some slopes of X ⇥ Y are bigger than or equal to µ1. Modifying X,Y
by suitable isogenies, we may and do assume that X and Y are products of the form
X = X1 ⇥ X2, Y = Y1 ⇥ Y2, such that all slopes of X1 ⇥ Y1 are bigger than or equal to
µ1, and all slopes of X2 ⇥ Y2 are strictly smaller than µ1. We know from 10.2.4.4 that the
Weil pairings ✓En : X[pn] ⇥ Y [pn] ! Z[pn] vanishes on X1[pn] ⇥ Y [pn] and X[pn] ⇥ Y1[pn]
for all n. Apply lemma 10.2.5.10, we get a new biextension structure

(⇡0 : E ! X2 ⇥ Y2, +0

1 : E ⇥Y2
E ! E, +0

1 : E ⇥X2
E ! E, ✏01 : Y2 ! E, ✏02 : X2 ! E)

on E, of X2 ⇥ Y2 by Z 0 := X1 ⇥ Y2 ⇥ Z, which satisfies properties (1)–(8) in 10.2.5.10.
In particular the Z-torsor structure on E associated to the old biextension structure is
compatible with the Z 0-torsor structure associated to the new biextension structure, i.e.
z ⇤

E
e = z ⇤

E0
e for all functorial points (z, e) of Z ⇥ E. So it su�ces to prove statement

(a)–(c) for the new biextension structure on E.

Apply proposition 10.6.5 with the biextension structure ⇡0 : E ! X2 ⇥ Y2 and Z2 =
X1 ⇥ Y1 ⇥ Z1, we see that (W \ Z2)red is a p-divisible subgroup of Z 0, W is stable under
translation (W \Z2)red with respect to the Z 0-torsor structure attached to the biextension
⇡0 : E ! X2 ⇥ Y2, and the natural formal morphism

W/(W \ Z2)red �! E/Z2

is finite and purely inseparable. Since (W \ Z1)red ✓ (W \ Z2)red), and the Z-torsor
structure for the biextension ⇡ : E ! X ⇥ Y is compatible with the (X1 ⇥ Y1 ⇥ Z)-torsor
structuer for the biextension ⇡0 : E ! X2⇥Y2, W is stable under translation by (W\Z1)red,
(W \ Z1)red is stable under the group law of Z1. It follows that (W \ Z1) is a p-divisible
subgroup of Z1. We have proved statements (a) and (b).
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Consider the commutative diagram

W/(W \ Z1)red

⇤
✏✏

q
W/(W\Z1)red

))

� � j1
// E/(W \ Z1)red

✏✏

q
1

//

⇢

E/Z1

✏✏

W/(W \ Z2)red
� � j2

//

q
(W\Z2)red

,,

E/(W \ Z2)red
q
1
// E/(Z1 + (W \ Z2)red)

q
3

✏✏

E/Z2 ,

where the vertical arrows are the obvious ones. The square ⇤ on the left is Cartesian. The
square ⇢ on the right is not Cartesian, but it induces a finite purely inseparable morphism

E/(W \ Z1)red �! E/(W \ Z2)⇥E/(Z1+(W\Z2)red) E/Z1

from E/(W \ Z1)red to the fiber product, over E/(Z1 + (W \ Z2)red), of E/(W \ Z2) and
E/Z1. Therefore q

1
� j1 is finite and purely inseparable if and only if q

2
� j2 is. Since

q(W\Z2)red = q
3
� (q

2
� j2) is finite purely inseparable, q

2
� j2 is also finite and purely

inseparable. It follows that q
1
� j1 is finite and purely inseparable as well. We have proved

the statement (c).

10.6.7. Theorem. Let X,Y, Z be p-divisible formal groups over k, let E ! X ⇥ Y be a
biextension of X ⇥ Y by Z, and let G be a closed subgroup of Autbiext(E) acting strongly
nontrivially on E. Let W be a reduced irreducible formal subscheme of E stable under the
action of G.

(1) The formal subscheme W of E is a special formal subvariety.
(2) If the slopes of X,Y, Z are pairwise disjoint, then W is a sub-biextension of E.

Proof. The statement (1) follows, by induction on the height of Z, from 10.6.6, and
10.3.4.6. The statement (2) is a corollary of (a); see 10.3.4.7.

10.7. Appendix: Tempered perfections of complete local domains

In this appendix we define a class a complete augmented commutative local domains
over a perfect field  of characteristic p > 0, completed tempered perfections of complete
augmented Noetherian local domains (R,m) over , and document some of their basic
properties used in 10.5–10.6. These rings are completions of suitable subrings sandwiched
between R and the perfection Rperf of R. We will often shorten “completed tempered
perfection” to “tempered perfection”.

The method of hypocotyl prolongation, first established in 7.2.1 and 7.2.2 for augmented
Noetherian completed local domains, also holds for their tempered perfections; see 10.5.3
and 10.5.6. This method, enhanced by the adoption of tempered perfections, provides the
critical ingredient in the proof of orbital rigidity for p-divisible formal groups. It should
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also be useful in studying the orbital rigidity phenomenon for sustained deformation spaces
of p-divisible groups.

Since the main body of this appendix is pretty dry and technical, we provide a long
introductory subsection 10.7.1 with examples and motivations. The examples 10.7.1.3
and 10.7.1.4 both involve the Poincaré biextension of a supersingular elliptic curve. The
generalization of 10.7.1.3–10.7.1.4 to biextensions of p-divisible formal groups, which is the
genesis of the notion of tempered perfections, is explained in 10.7.2–10.7.3.2.

Only the easy properties of tempered perfections, explained in 10.7.5, are used in the
proof of orbital rigidity for biextensions of p-divisible formal groups. We include an analog
of Weierstrass preparation theorem in 10.7.7, as an example among a host of questions one
may ask about these rings. These questions and their potential applications are left to the
interested readers.

10.7.1. What are completed tempered perfections?

10.7.1.1. An impressionistic sketch.

Throughout 10.7.1 the base field  is a perfect of characteristic p. A completed tem-
pered perfection R0 of a complete augmented Noetherian local domain R over  is sand-
wiched between R and the completion (Rperf)^ of the perfection of R. In general R0 is
not Noetherian, except for trivial cases such as the field  itself. But R0 is not as big as
(Rperf)^, and it retains some weak versions of the finiteness properties valid for complete
Noetherian local domains. These properties are illustrated in the example in 10.7.1.2.

Elements of a tempered perfections R0 of R can be viewed as limits of functions on a
suitable projective system T of purely inseparable covers of the formal spectrum Spf(R)
of R. Such a tower T is substantially smaller than the projective family of all purely
inseparable covers of Spf(R), except in the trivial case when R = . This point is partly
reflected in the weak finiteness properties of R0.

Inspired by the analogy with tempered distributions as generalized functions, we pro-
pose to call elements of a tempered perfection R0 of R tempered virtual functions on Spf(R),
and elements of Rperf virtual functions on Spf(R).

10.7.1.2. Tempered perfections of [[t]].

A simple example of tempered perfections is the following family
�
hhtp�1iiE

C;d

�
C,d,E

of

tempered perfections of the power series ring [[t]], parametrized by triples (C, d,E) of real
numbers with C > 0, d � b, E > 0. By definition hhtp�1iiE

C;d is the completed semigroup
algebra attached to the semigroup

N[1
p
]E
C;d =

n
i 2 Z[1

p
]�0

��� |i|p  max
�
C(|i|+ d)E , 1)

�o
✓ (Z[1

p
]�0,+),

where | · |p = p�ordp(·) is the normalized p-adic absolute value on Q. In other words

hhtp�1iiE
C;d =

nX
i2N[1/p]E

C;d

bi t
i

��� bi 2  8 i
o
,
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consisting of all formal power series of the form
P

i2N[1/p]E
C;d

bi ti with coe�cients in .

Note that the product of any two elements of hhtp�1iiE
C;d is well-defined because

Card
��

i 2 N[1
p
]E
C;d

�� i M
 �

<1
for every M 2 R�0.

Tempered perfections of the power series ring [[t1, . . . , tm]] are defined similarly, but
there are at least two versions, corresponding to two archimedian norms

|(i1, . . . , im)|1 := max(|i1|, . . . , |im|) and |(i1, . . . , im)|� := |i1|+ · · ·+ |im|
on Qm. As the parameters (C, d,E) vary, these two versions of tempered perfections of
[[t1, . . . , tm]] give rise to two filtered inductive systems of subrings of the completion of
the perfection of [[t1, . . . , tm]], which are cofinal to each other in the obvious sense.

10.7.1.3. The Weil pairings on a supersingular elliptic curve as a toy model.

Let  be an algebraically closed field of characteristic p as before and let A be a supersin-
gular elliptic curve over . For each positive integer n � 1, let

!n : A[pn]⇥A[pn] �! lµ.. pn = Gm[p
n],

be the p-adic Weil pairing on E[pn]. The family
�
!n)n�1 satisfies the compatibility condi-

tion
!n+1(xn+1, pyn+1) = !n(pxn+1, pyn+1) = !n+1(pxn+1, yn+1)

for all functorial points xn+1, yn+1 of A[pn+1].

Let Â be the formal completion of A. We pose the following question.

Question. Is there a “formula”, in terms of a single function on Â ⇥ Â, which gives all
!n’s?

On the face of it, this is a stupid and unmotivated question. The obvious answer is
“no”, because the !n’s do not glue to a map from Â⇥ Â to the formal completion of Gm.
The restriction of !n+1 to A[pn]⇥A[pn] is not equal to !n; instead

!n+1|A[pn]⇥A[pn] = [p]lµ.. pn
� !n.

But let’s continue this foolhardy pursuit undeterred. Let [x, x�1] be the coordinate ring

of Gm, let t = x� 1 2 [x, x�1], so dGm = Spf([[t]]) and [p]⇤Gm
t = tp. Pick a uniformizer u

of the coordinate ring of Â such that [p]⇤
A
(u) = up

2

. So A[pn] = Spec
�
[u]/(up

2n

)
�
for each

n � 1, and !n is encoded by an element

wn := !⇤

n(t) 2 [u, v]
�
(up

2n

, vp
2n

).

The equality !n+1|E[pn]⇥A[pn] = [p]lµ.. pn
� !n means that

(10.7.1.3.a) wn+1mod (up
2n

, vp
2n

) = wp

n in [u, v]
�
(up

2n

, vp
2n

)

for all n � 1. An easy induction shows that

(10.7.1.3.b) wn ⌘ 0mod (up
2bn/2c

, vp
2bn/2c

).
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This estimate of wn also follows from the fact that

!n � ([pdn/2e]A[pn] ⇥ [pdn/2e]A[pn]) = 0.

Consider the element

fn := wp
�n

n 2 [up
�n

, vp
�n

]
.
(up

n

, vp
n

)[up
�n

, vp
�n

]

The congruence (10.7.1.3.a) implies that

(10.7.1.3.c) fnmod (up
n�1

, up
n�1

) = fn+1mod (up
n�1

, up
n�1

)

in the ring [up
�n�1

, vp
�n�1

]
�
(up

n�1

, vp
n�1

)[up
�n�1

, vp
�n�1

]. As n!1, the fn’s converges
to a formal power series

f1 =
X

i,j2N[1/p]
bi,ju

ivj ,

and the estimate (10.7.1.3.c) implies that for every pair (i, j) with bi,j 6= 0 we have

max
�
|i|p, |j|p

�
 p2 ·max

�
|i|, |j|

�
.

So f1 2 hhup
�1

, vp
�1iiE

C;d with C = p2, d = 0, E = 1, for either of the two archimedian

norms on Q2.

The whole family of Weil pairings
�
!n

�
n
is encoded in the power series f1: for each n �

1, !n is the unique element of [u, v]
�
(up

2n

, vp
2n

such that !n ⌘ fp
n

1 modulo (up
2n

, vp
2n

).
This gives a positive answer to the question at the beginning of 10.7.1.3 if the power series
f1, a “generalized function” on the formal scheme Â⇥ Â is deemed admissible.

10.7.1.4. Splitting a Poincaré biextension with tempered virtual functions.

Let A be a supersingular elliptic curve over  as in 10.7.1.3. Let ⇡ : P ! A⇥A be the
Poincaré biextension of A⇥A by Gm. There are two relative group laws

+1 : P ⇥(pr
2
�⇡,A,pr

2
�⇡) P ! P, +2 : P ⇥(pr

1
�⇡,A,pr

1
�⇡) P ! P

on P , with zero sections ✏1, ✏2 respectively. The group law +1 comes from the theorem of
the square, while the group law +2 corresponds to the group structure of the Jacobian of
A, i.e. tensor product of invertible sheaves which are algebraically equivalent to 0.

For each integer n > 0, multiplication by pn for the relative group law +1 defines a
morphism [pn]+1

: P ! P over [pn]A ⇥ 1A : A ⇥ A ! A ⇥ A. The restriction of [pn]+1
to

Pn := ⇡�1(A[pn]⇥A[pn]) defines a morphism

⌘n : Pn ! Gm

such that
[pn]+1

��
Pn

= ⌘n ⇤
�
✏1
��
A[pn]

�
,

where ⇤ : Gm⇥P ! P denotes the structural map of the Gm-torsor P ! A⇥A. The ⌘n’s
satisfy the compatibility condition

(10.7.1.4.a) ⌘n+1

��
Pn

= [p]Gm
� ⌘n,

which is hardly a surprise given that ⌘n|Gm
= [pn]Gm

.
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As before the map ⌘n corresponds to a function ⌘⇤n(t) on Pn. For each m � 1, let
Frm

P
: P ! P (pm) be the m-th iterate of the relative Frobenius map for P . Denote by P [Fm]

the inverse image of the 0-point 0P of P abover (0A, 0A) 2 A ⇥ A. Let P̂ = [mP [Fm] be
the formal completion of P .

Let hn be the restriction of ⌘⇤n(t) to P [F 2n]. The same argument in 10.7.1.3 shows that

hp
�n

n converges to an element g⇤1 of a tempered perfection of the coordinate ring of the
formal completion P̂ with parameters (C, d,E) = (p2, 0, 1).

It is helpful to regard g⇤1 as the coordinate function of a map g1 from a tower T(C,d,E)

of inseparable covers of P̂ to Gm, so that g1 is a “virtual tempered map” from P̂ to Gm.
The tower T(C,d,E) is substantially smaller then the projective family of all inseparable

covers of P̂ . This accounts for the weak finiteness properties of tempered perfections,
which make “virtual tempered retractions” such as g1 useful in proving orbital rigidity for
biextensions.

10.7.1.5. Remarks on di↵erent families of tempered perfections. There are sev-
eral families of completed tempered perfections of a complete augmented Noetherian local
domain (R,m) over a perfect field  of characteristic p. Each of the families listed below
has a [-version and a ]-version, depending on whether one uses the filtration defined by the
ideals

�
m

N
�
or the ideals

�
m

(pn)
�
, where m(pn) denotes the ideal generated by {ypn | y 2 m}.

(a) In 10.7.2–10.7.3.2 we define a family of tempered perfections of R ⇠= [[t1, . . . , tm]]
as rings of limits of �r-compatible sequences. The case when R is the coordinate
ring of the completion of a biextension of p-divisible formal groups is what led to
the notion of tempered perfections.

(b) The family
�
hhtp

�1

1 , . . . , tp
�1

m iiE,#
C; d

�
C,d,E

and
�
hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d

�
C,d,E

of

tempered perfections of [[t1, . . . , tm]] are defined in 10.7.3.6 as completed semi-
group algebras of suitable sub-semigroups S of (N[1/p]m,+) containing Nm. Such
a sub-semigroup S of “allowed exponents” consist of all elements I = (i1, . . . , im) 2
N[1/p]m satisfying an inequality involving parameters C, d,E which bounds the
p-adic norm of I in terms of the archimedean norms of I. This family include
those in (a) defined through �r-compatible sequences.

(c) For a general augmented complete Noetherian local domain R over , we have

two families of tempered perfections of R. The family
�
(R,m)perf,#

s:�r;[i0]

�
r,s,i0

and
�
(R,m)perf, [

s:�r;[i0]

�
r,s,i0

defined in 10.7.4.1 is close in spirit to (a), while the family
�
(R,m)perf, [

A,b;d

�
A,b,d

and
�
(R,m)perf,#

A,b;d

�
A,b,d

defined in 10.7.4.2–10.7.4.3 is close to

(b) above and include the family
�
(R,m)perf, [

s:�r;[i0]

�
r,s,i0

and
�
(R,m)perf,#

s:�r;[i0]

�
r,s,i0

defined in 10.7.4.1

Each of the above families of tempered perfections of R forms a filtered inductive system
as the parameters vary. For a general complete augmented Noetherian local domain R, the
two families of tempered perfections defined in 10.7.4.1 and 10.7.4.2 are mutually cofinal.
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Similarly for R ⇠= [[t1, . . . , tm]], the filtered inductive systems of tempered perfections of
R described in (a)–(c) above are mutually confinal to each other.

We sketch the definition of the tempered perfection (R,m)perf, [
A,b;d of an augmented com-

plete Noetherian local domain (R,m) over a perfect field  of characteristic p, where A, b, d
are real numbers, A, b > 0, and d � b; see 10.7.4.2 for details. First we define a decreasing
filtration Fil• of the perfection Rperf of R with Fil0 = Rperf, by

Filu =
n
x 2 Rperf

��� 9j 2 N s.t. xp
j 2 m

du·p
j
e

o

for any u � 0. Note that restriction to R of this filtration is essentially the m-adic filtration
of R.

Next we define a subring
�
(R,m)perf, [

A,b;d

�
fin

of Rperf by

�
(R,m)perf, [

A,b;d

�
fin

:=
X

n2N
(��nR \ Filb·p

An
�d) ,

consisting of the linear span of the set of all elements y 2 Rperf such that there exists an
n 2 N with yp

n 2 R and y 2 Filb·p
An

�d. Note that in the case R = [[t1, . . . , tm]], such an
element y has the form

y =
X

I2S
cI t

I

with cI 2  for all I 2 S, where S is the subset of N[1/p]m consisting of all elements
(i1, . . . , im) 2 p�nNm such that b · pAn � d  i1 + . . .+ im. In particular

|I|p := max(|i1|p, . . . , |im|p)  pn  b�1/A [(i1 + · · ·+ im) + d]1/A

for every element I 2 S.
The completed tempered perfection (R,m)perf, [

A,b;d of R is by definition the completion of
�
(R,m)perf, [

A,b;d

�
fin

with respect to the filtration of
�
(R,m)perf, [

A,b;d

�
fin

induced by the filtration

Fil• of Rperf.

10.7.2. �r-compatible sequences.

In 10.2.6.1 we defined a compatible sequence of morphisms
�
⌘n : ⇡�1E =: En ! Z

 
n2N

for any biextension of E of p-divisible groups X,Y by another p-divisible group Z, over
an arbitrary base scheme S. In this section we will consider the special case when S is
the spectrum of a perfect field k � Fp. An interesting phenomenon reveals itself in the
special case described in 10.7.2.1, and the compatible sequence of morphisms (⌘n) lead us
to families commutative rings, whose elements consists of formal series of the form

X

(i1,...,im)2Z[1/p]m
�0

ai1,...,im ti11 t
i2

2 · · · timm

with coe�cients ai1,...,im 2 k, subject to the condition roughly of the following form

|I|p  C · |I|E1,max
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for every I such that aI 6= 0, where C,E > 0 are parameters which define the ring. Here
for any multi-index I = (i1, . . . , im) 2 Z[1/p]m

�0, |I|p is the p-adic norm of I and |I|1,max

is the archimedean norm of I, defined by

|I|p := max(p�ordp(i1), . . . , p�ordp(i1)), and |I|1,max := max(i1, i2, . . . , im).

These rings do not seem to have appeared in the literature, but they hold the key to the
orbital rigidity for biextensions of p-divisible groups. In this section we give the motivation
and definition of these new rings.

10.7.2.1. Definition. Let  be a perfect field of characteristic p. Let R be an augmented
complete Noetherian local domain over , and let Q = Spf(R). Let Z be a p-divisible
formal group over . Let a, s > 0 be positive integers. A sequence of morphisms

⌧n : Q[Fns]! Z, n 2 N, n � n0

is said to be [pa]-compatible with respect to �s if

⌧n+1

��
Q[Fns]

= [pa]Z � ⌧n 8n � n0.

Here for every positive integer j, Q[F j ] = Spf
�
R/m(pj)

�
is the inverse image of Spf(k)

under the relative Frobenius morphism Frj
Q/k

: Q ! Q(pj), and m
(pj) is the ideal of R

generated by {xpj
��x 2 m}. If the integer s is clear from the context, we will shorten

“[pa]-compatible with respect to �s” to “[pa]-compatible”.

Clearly if
�
Q[Fns]

⌧n
// Z

�
is [pa]Z-compatible sequence and h : Z ! Z 0 is a homo-

morphism of p-divisible groups, then the sequence
�
Q[Fns]

h�⌧n
// Z 0

�
is [pa]Z0-compatible.

Similarly if Q0 is a reduced irreducible formal subscheme of Q, Q0 �
� inc

// Q is the in-

clusion map, and
�
Q[Fns]

⌧n
// Z

�
is [pa]Z-compatible, then

�
Q0[Fns]

⌧n�inc
// Z

�
is also

[pa]Z-compatible.

Remark. Given a [pa]-compatible sequence of morphisms
�
Q[Fns]

⌧n
// Z

�
n�n0

, one

might wish to encode such a compatible sequence in a formal morphism from Q to Z by
a suitable limit process. A moment’s reflection shows that this is wishful thinking, and
counter-examples abound. So if this wish is to have any chance of being partially realized,
some sort of “generalized morphism” from Q to Z, whose coordinates are “generalized
functions” on Q, must be allowed. This is indeed the case, as we will see soon.

10.7.2.2. [pa]-compatible sequences of maps in applications to biextensions

In applications to orbital rigidity of biextensions, the [pa]Z-compatible sequences
�
Q[Fns]

⌧n
// Z

�
n�n0

we encounter satisfy the conditions (1)–(3) below after some preliminary maneuver.
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(1) The formal scheme Q = Spf(R) is a reduced irreducible formal subscheme of a
biextension ⇡ : E ! X ⇥ Y of p-divisible formal groups of X ⇥ Y over  by Z.

(2) All slopes of X,Y are strictly smaller than the biggest slope µ1 of Z.

(3) There exist maps
�
Em := ⇡�1(X[pm]⇥ Y [pm])

�̃m
// Z

�
m�1

such that

�̃m+1|Em
= [p]Z � �̃m 8m � 1

and

⌧n = �̃na
��
Q[Fns]

8n � n0.

Here s is chosen as in R2, and n0 = dm0

a
e is chosen/defined also in R2 below.

Note that Q[Fns] ✓ Ena for all n � n0 according to the estimate (2a) in R2.

Reduction steps and consequences of the above assumptions.

R1. After modifying Z be a suitable isogeny, one may assume Z = Z1 ⇥ · · · ⇥ Zc is a
product of isoclinic p-divisible groups Z1, . . . , Zc, with distinct slopes µ1 > · · · > µc.

R2. Choose and fix a positive rational number µ0 < µ1 such that µ0 is strictly bigger than
every slope of Z2 ⇥ · · ·⇥ Zc ⇥X ⇥ Y . Write µ0, µ1 in the form

µ1 =
a

r
, µ0 =

a

s
, s > r, a, b, s, r 2 N>0.

From general properties of slopes we know that there exists a m0 2 N such that

(2a) X[pm] � Ker(Frbm/µ0c

X/k
) and Y [pm] � Ker(Frbm/µ0c

Y/k
)

for all m � m0. Therefore

(2b) X[pna] � Ker(Frns
X/k

) and Y [pna] � Ker(Frns
Y/k

)

for all n � n0 := dm0

a
e.

R3. After extending the base field  we may assume that  is algebraically closed. Modi-
fying the isoclinic p-divisible group Z1 by an isogeny if necessary, we may assume that

Ker([pa]Z1
) = Frr

Z1/
,

where Frr
Z1/

: Z1 ! Z(pr)
1 is the r-th iterate of the relative Frobenius morphism for Z1/.

Equivalently, there exist local parameters u1, . . . , ub of the formal scheme Z such that

Z1 = Spf(k[[u1, . . . , ub]]) and [pa]⇤Z1
(ui) = up

r

i
8 i = 1, . . . , b.

R4. Passing to the isoclinic component Z1 of Z, and consider the [pa]Z1
-compatible se-

quence
�
Q[Fns]

�̃n
// Z

pr
1
// Z1

�
n�n1

with coordinates

(pr1 � �̃n)⇤ui =: f̃i,n 2 R/mp
(ns)

, i = 1, . . . , b, n � n0.
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For each i = 1, . . . , b, the sequence
�
f̃i,n

�
n�n0

satisfy

(4a) f̃p
r

i,n
⌘ f̃i,n+1 (mod m

(pns)) 8n � n0.

We may assume that s� r � 2. Choose an integer s1 such that r < s1 < s. Let fi,n be
the image of f̃i,n in R/m(pns1 ) for all i = 1, . . . , b and all n � max(n0, r) := n1. Then

(4b) fp
r

i,n
⌘ fi,n+1 (mod m

(pns1+r)) 8n � n1, i = 1, . . . , b.

Remark. (i) In practice we will choose µ0 to be “just a tiny bit bigger than the maximum
of the slopes of X and Y ”.

(ii) If we choose µ0 to be the maximum of the slopes of X and Y , then the estimate (2b)
needs to be changed to: there exists a constant e (depending on X and Y ) such that

(10.7.2.2.3) X[pna] � Ker(Frns�e

X/k
), and Y [pna] � Ker(Frns�e

Y/k
)

for all n � n1 := dm0

a
e.

(iii) The congruences relations (4b) means that for each i = 1, . . . , b, the sequence
�
fi,n 2 R/m(pns1 )

�
n�n1

is �r-]-compatible in the sense of definition 10.7.2.3 (a).
As one sees in R4 above, the di↵erence in the compatibility conditions (4a) and (4b)

is essentially one of appearance rather than substance.

10.7.2.3. Definition. Let (R,m) be an augmented complete Noetherian local ring over
a field  of characteristic p. Let r, s > 0 be positive integers with r < s.

(a1) A sequence of elements (fn)n�n0
with fn 2 R/m(pns) for all n is �r-]-compatible

with respect to �s if

fp
r

n ⌘ fn+1 (mod m
(pns+r)) 8n � n0

(a2) A sequence of elements (fn)n�n0
with fn 2 R/m(pns) for all n is weakly �r-]-

compatible with respect to �s if

fp
r

n ⌘ fn+1 (mod m
(pns)) 8n � n0

(b1) A sequence of elements (gn)n�n0
with gn 2 R/mp

ns

for all n is �r-[-compatible
with respect to �s if

gp
r

n ⌘ gn+1 (mod m
p
ns+r

) 8n � n0

(b2) A sequence of elements (gn)n�n0
with gn 2 R/mp

ns

for all n is weakly �r-[-
compatible with respect to �s if

gp
r

n ⌘ gn+1 (mod m
p
ns

) 8n � n0

If the context makes confusion unlikely, we will shorten both “�r-]-compatible with respect
to �s ” and “�r-[-compatible” to “�r-compatible with respect to �s ”. Similarly, if the
integer s is clear in the context, we will omit the part “with respect to �s.
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Remark. (i) We have used the fact that the r-th power of Frobenius induces well-defined
maps

R/m(pns) ! R/m(pns+r) and R/mp
ns ! R/mp

ns+r

in the statements (a1) and (b1) above.

(ii) The [-version (b1), (b2) is di↵erent from the ]-version (a1), (a2) in that the element
gn is in the congruence class modulo the ideal mp

ns

, which is bigger than the ideal m(pns).

(iii) Suppose that
�
fn
�
n�n0

with fn 2 R/m(pns) is a �r-]-compatible (respectively weakly

�r-]-compatible) sequence. Let gn be the image of fn in R/mp
ns

. Then
�
gn
�
n�n0

is a

�r-[-compatible (respectively weakly �r-]-compatible) sequence.

The following lemma 10.7.2.4 is obvious.

10.7.2.4. Lemma. Let r, s, s0 > 0 are positive integers with r < s < s0. Let (f̃n)n�n0

be a sequence of elements with f̃n 2 R/m(pns
0

) for each n, and let (g̃n)n�n0
be a sequence

of elements with g̃n 2 R/mp
ns

0

for each n. Let fn be the image of f̃n in R/m(pns
0

), and

let gn be the image of g̃n in R/mp
ns

0

. Let n1 be a natural number such that n1 � n0 and
n1(s0 � s) � r.

(a) If (f̃n)n�n0
is weakly �r-]-compatible then (fn)n�n1

is �r-]-compatible.
(b) If (g̃n)n�n0

is weakly �r-[-compatible then (gn)n�n1
is �r-[-compatible.

The following lemma 10.7.2.5, which relates the notion of [pa]-compatible sequences to
the notion of �r-compatible sequences, follows easily from the definitions.

10.7.2.5. Lemma. Let R be an augmented complete Noetherian local domain over a field
 of characteristic p, and let Q = Spf(R). Let Z,Z1 be p-divisible groups over . Let
h : Z ! Z1 be a -homomorphism. Suppose that Z1 = Spf([[u1, . . . , ub]]) and

[pa]⇤Z1
(ui) = up

r

i
for i = 1, . . . , b,

where a, r > 0 are positive integers. Let ⌧n : Q[Fn(s+1)]! Z, n � n0 be maps from Q[Fns]
to Z, where s > r is a positive integer. If the sequence

�
⌧n
�
n�n0

is [pa]Z-compatible, then
for each i = 1, . . . , b, the sequence

⇣
fi,n := (h � ⌧n)⇤(ui)

��
Q[Fns]

⌘

n�n0

of elements of R/m(pns) is weakly �r-]-compatible.

10.7.3. Tempered perfections of formal power series rings.

In this subsection  is a perfect field of characteristic p, and m is a positive integer.
We will define several families of completed tempered perfections of the power series ring
[[t1, . . . , tm]].
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10.7.3.1. Notations.

(i) Let [[t]] := [[t1, . . . , tm]], let t be the m-tuple with entries t1, . . . , tm, and let
(t) := t1[[t]] + · · ·+ tm[[t]], the maximal ideal of [[t]].

(ii) Denote by � the Frobenius map on [[t]] which sends every element of [[t]] to its
p-th power.

(iii) For each element I = (i1, . . . , im) 2 Nm, let

tI := ti11 · · · timm
be the corresponding monomial in the variables t1, . . . , tm.

(iv) For every natural number j, let (t)p
j

be the pj-th power of the maximal ideal (t)
as usual. Note that (t)p

j

is the ideal generated by all monomials tI := ti11 · · · timm
such that I = (i1, . . . , im) 2 Nm satisfies i1 + · · ·+ im � pj .

Let
(tp

j

) = (t)(p
j) := (tp

j

1 , . . . , tp
j

m)

be the ideal of [[t]] generated by �j(t1[[t]] + · · ·+ tm[[t]]); i.e. (tp
j

) = (t)(p
j) is

the completion of the -linear span of all monomials tI with I ⌘ 0 (mod pj).
(v) We will use the following two archimedean norms on Qm:

|J |1 := max(|j1|, . . . , |jm|), |J |� := |j1|+ · · ·+ |jm|
for every element J = (j1, . . . , jm) 2 Qm. Obviously

|J |1  |J |�  m · |J |1 8 J 2 Qm

(vi) There is also the following p-adic norm on Qm:

|J |p := max (|j1|p, . . . , |jm|p)

where | · |p is multiplicative p-adic absolute value on Q, defined by |x|p = p�ordp(x)

for all x 2 Q, so that |p| = 1
p
and |x|p = 1 if both the numerator and denominator

of x are prime to p. Define

ordp(J) := Min (ordp(j1), . . . ordp(jm)) ,

hence
|J |p = p�ordp(J).

We will use the restriction of these norms to N[1/p]m := Z[1/p]m
�0, the additive

semigroup of exponents with p-power denominators.

10.7.3.2. Limits of �r-compatible sequences. Let r < s be positive integers. Let
(an)n�n0

be a sequence with an 2 [[t]]/(tp
ns

) for all n � n0. Suppose that this sequence
is �r-]-compatible in the sense of 10.7.2.3 (a), i.e.

(†) ap
r

j,n
⌘ aj,n+1 (mod m

(pns+r)
[[t]] )

for all n � n0. We will construct a “limit” of such a �r-]-compatible sequence in a lowbrow
fashion.
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For each n � n0, write the element an 2 [[t]]/(tp
ns

) as

an =
X

J2Nm, |J |1<pns

an,J t
J mod (tp

ns

).

Clearly the coe�cients an,J 2  with |J |1 < pns are uniquely determined by an. The

compatibility relation ap
r

n ⌘ an+1 (mod (tp
ns+r

)) means that an+1,J = an,p�rJ for all
J 2 Nm with |J |1 < pns+r and all n � n0. More precisely,

(‡) an+1,J =

(
0 if |J |1 < pns+r, p�rJ 62 Nm

ap
r

n,p�rJ
if |J |1 < pns+r, p�rJ 2 Nm

for all n � n0. Thus the among the coe�cients an,J for a fixed natural number n � n0+1,
those with |J |1 < p(n�1)s+r arises from coe�cients an0,J 0 with n0 < n. More precisely
suppose that n � n0 + 1, then the following statements hold.

- If |J |1 < p(n�1)s+r and J is not divisible by pr, then an,J = 0.
- Suppose that |J |1 < p(n�1)s+r and J = p(n�n

0)rJ 0, where n0 < n and J 0 is not

divisible by pr. Then an,J = ap
(n�n

0
)r

n0,J 0 .

There is no constraint for those an,J ’s with |J |1 � p(n�1)s+r; these coe�cients will be
propagated to coe�cients of an00,J ’s with n00 > n.

Construction of the limit. For each element I 2 N[1/p]m, define bI 2  by

bI := (an,pnrJ)
p
�rn

= ��rn(an,pnrJ) ,

where n 2 N is su�ciently large such that pnrI 2 Nm and |pnrI|1 < psn, so that an,pnrI

makes sense. The compatibility relation for the an,J ’s immediately implies that the above
definition does not depend on the choice of n, as long as

n � Max

✓
�ordp(J)

r
,
logp(|J |1)

s� r

◆
.

The formal series
X

I2N[1/p]m
bI tI =

X

(i1,...,im)2N[1/p]m
bi1,...,im ti11 · · · timm

attached to a given �r-compatible sequence of elements
�
an 2 [[t]]/(tp

sn

)
�
n�n0

according

to the above construction will be called the limit of the �r-compatible sequence (an)n�n0
.

10.7.3.3. Proposition. (a) The construction described in 10.7.3.2 establishes a bijection,
from the set of all �r-]-compatible sequences of elements

�
an 2 [[t]]/(tp

sn

)
�
n�n0

, to the
set of all formal series X

I2N[1/p]m
bI tI
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such that bI 2  for all I 2 N[1/p]m, and

(⇤) �ordp(I)  Max

⇢
n0, r ·

✓�
logp(|I|1)

s� r

⌫
+ 1

◆�

for every I 2 N[1/p]m with bI 6= 0.

(b) A similar construction, with the archimedean norm | · |1 replaced by | · |� , gives a
bijection from set of all �r-[-compatible sequences of elements

�
an 2 [[t]]/(t)p

sn
�
n�n0

, to
the set of all formal series X

I2N[1/p]m
bI tI

such that bI 2  for all I 2 N[1/p]m, and

(⇤⇤) �ordp(I)  Max

⇢
n0, r ·

✓�
logp(|I|�)
s� r

⌫
+ 1

◆�

for every I 2 N[1/p]m with bI 6= 0.

Proof. We will prove the statement (a) only. After replacing | · |1 by | · |�, the
construction of the limits of �r-[-compatible sequences works verbatim. So does the proof
of (b).

Although the estimate in the statement (a) of 10.7.3.3 looks complicated, its proof is
completely straight-forward from the construction explained in 10.7.3.2.

Suppose that
P

I2N[1/p]m bI tI is attached to a �r-]-compatible sequence (an)n�n0
,

an 2 [[t]]/(tp
ns) for all n � n0. Let I 2 N[1/p]m be an index in the support of the above

formal series, i.e. bI 6= 0. We need to show that the inequality (⇤) holds. Let n1 be the
smallest natural number such that pn1rI 2 Nm. There is nothing to prove if n1  n0, so

we may assume that n1 � n0 + 1. In particular ordp(I) < 0, and n1 = d�ordp(I)
r
e.

From the definition of n1 we know that pn1rI is not divisible by pr. If |pn1rI|1 <
p(n1�1)s+r, we get from 10.7.3.2 (‡) that bI = 0, a contradiction. We have shown that

|pn1rI|1 � p(n1�1)s+r.

The last inequality is equivalent to
⇠
�ordp(I)

r

⇡
= n1 

logp |I|1
s� r

+ 1,

which is easily seen to be equivalent to the inequality (⇤).
It remains to show that every formal series

P
I2N[1/p]m bI tI whose support satisfies

the inequality (⇤) arises from a �r-compatible sequence (an)n�n0
. One verifies using the

inequality (⇤) that for every natural number n � n0, the truncated series

cn :=
X

I2N[1/p]m, |pnrI|1<pns

bp
nr

I
tp

nr
I 2 [[t]]
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Let an := cn mod (tp
ns

). It is easily verified that (an)n�n0
is a �r-]-compatible sequence,

whose limit is the given formal series
P

I2N[1/p]m bI tI .

10.7.3.4. Definition. Let  be a perfect field of characteristic p, and let t1, . . . , tm be
m variables, m � 1. Let r, s 2 Z>0 be two positive integers with r < s, and let n0 be a
natural number.

(a) hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

is the commutative -algebra consisting of all formal series

X

I2N[1/p]m
bI tI

such that bI 2  for all I 2 N[1/p]m, and

(⇤) �ordp(I)  Max

⇢
n0, r ·

✓�
logp(|I|1)

s� r

⌫
+ 1

◆�

for every I 2 N[1/p]m such that bI 6= 0.

Denote by supp
�
hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

�
the subset of N[1/p]m consisting of all

multi-indices I 2 N[1/p]m such that the inequality (⇤) holds.

(b) hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

is the commutative -algebra consisting of all formal series

X

I2N[1/p]m
bI tI

such that bI 2  for all I 2 N[1/p]m, and

(⇤⇤) �ordp(I)  Max

⇢
n0, r ·

✓�
logp(|I|�)
s� r

⌫
+ 1

◆�

for every I 2 N[1/p]m such that bI 6= 0.

Denote by supp
�
hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

�
the subset of N[1/p]m consisting of all

multi-indices I 2 N[1/p]m such that the inequality (⇤⇤) holds.

Remark. (i) The two support sets

supp
�
hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

�
and supp

�
hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

�

are sub-semigroups of (N[1/p]m,+) containing the 0-element. Moreover for every M > 0,
there are only a finite number elements I in either sub-semigroup such that |I|1  M .
The last property implies that for each I, there are only a finite number of pairs (I1, I2)
of elements in either sub-semigroup such that I1 + I2 = I. Therefore multiplication is

well-defined on both hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

and hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

, via the
standard formula for multiplication of formal series.
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(ii) It is easy to see that the rings hht1, . . . , tmii#s:�r,>n0
and hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

are non-Neotherian local domains. It is easy to see that neither of the two local domains
is normal. Moreover the integral closure of

hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

�
respectively hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

�

in its own fraction field is not a finitely generated module over hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

(respectively hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

), because the normalizations of both rings contain

tj
i
for all j 2 N[1/p] and all i = 1, . . . ,m.

Below is a slightly di↵erent version of the rings defined in 10.7.3.4.

10.7.3.5. Definition. Let  be a perfect field of characteristic p. Let r < s be two positive
integers, and let i0 2 N be a natural number. The perfection of the formal power series
[[t1, . . . , tm]] is naturally isomorphic to

[

n2N
[[tp

�n

1 , . . . , tp
�n

m ]].

Denote by � the Frobenius automorphism of this perfect ring.

(a) Consider the following subring
�
hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

�
fin

:=
X

n2N
��nr

�
(t)(p

ns�i0 )
�

of the perfection of the formal power series ring [[t1, . . . , tm]], where our convention is that
(t)(p

ns�i0 ) = R if ns� i0  0.

(a1) Define a decreasing filtration
⇣
Fil#,p

•

s:�r,[i0]

⌘

•2Z
on

�
hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

�
#, fin

by

ideals

Fil#,p
j

s:�r,[i0]
:=

n
x 2

�
hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

��� 9n 2 N>0 s. t. n+ j � 0 and xp
n 2 (t)(p

n+j)
o
,

of
�
hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

�
#,fin

, where (t) is the maximal ideal of [[t1, . . . , tm]].

(a2) Define hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

to be the completion of the ring

�
hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

�
fin

with respect to the filtration Fil#,p
•

s:�r,[i0]
.

(b) Consider the following subring
�
hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

�
fin

:=
X

n2N
��nr

�
(t)p

ns�i0
�

of the perfection of the formal power series ring [[t1, . . . , tm]]. In the above our convention
is that (t)p

ns�i0 = R if ns� i0  0.
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(b1) Define a decreasing filtration
⇣
Fil[,•

s:�r,[i0]

⌘

•2Z[1/p]>0

on
�
hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

�
fin

by

Fil[,u
s:�r,[i0]

:=
n
x2

�
hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

��� 9n2N>0 such that pnu 2 N and xp
n2 (t)u·p

n

o
.

(b2) Define hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

to be the completion of the ring

�
hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

�
fin

with respect to the filtration Fil[,•
s:�r,[i0]

.

We will introduce in 10.7.3.6 two other families,

hhtp
�1

1 , . . . , tp
�1

m iiE,#
C; d and hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d,

of completed tempered perfections of the power series ring [[t1, . . . , tm]], related to the
rings defined in 10.7.3.4 and 10.7.3.5. We will also see in 10.7.4.1 and 10.7.4.2 that the
notion of completed tempered perfection in 10.7.3.4 and 10.7.3.5 can be extended to general
complete Noetherian local domains of equi-characteristic p > 0 with perfect residue fields.

10.7.3.6. Definition. Let  be a perfect field of characteristic p, and let t1, . . . , tm be
variables. Let C > 0, d � 0, E > 0 be real numbers.

(a) Define a commutative -algebra

hhtp
�1

1 , . . . , tp
�1

m iiE,#
C; d

whose underlying abelian group is the set of all formal series
P

I
bI tI with bI 2  for all

I, where I runs through all elements in N[1/p]m such that

(]) |I|p  Max
�
C · (|I|1 + d)E , 1

�
.

The ring structure is given by the standard formula for product of power series.

The inequality (]) defines a subset supp(m :] :E;C, d) of N[1/p]m:

supp(m :] :E;C, d) :=
n
I 2 N[1/p]m

�� |I|p  Max
�
C · (|I|1 + d)E , 1

�o
.

(b) Define a commutative -algebra

hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d

whose underlying abelian group is the set of all formal series
P

I
bI tI with bI 2  for all

I, where I runs through all elements in N[1/p]m such that

([) |I|p  Max
�
C · (|I|� + d)E , 1

�
.

The above condition on the support (of elements of this subset) shows that the standard

formula for multiplication makes sense and gives hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d a natural structure
as an augmented commutative algebra over .
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The inequality ([) defines a subset supp(m :[ :E;C, d) ✓ N[1/p]m:

supp(m :[ :E;C, d) :=
n
I 2 N[1

p
]m

�� |I|p  Max
�
C · (|I|� + d)E , 1

�o

10.7.3.7. Lemma. Denote by Fil•t.deg the decreasing filtration on hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d
such that

Filut.deg
�
hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d

�
:=

8
<

:
X

I2supp(m:E;C,d), |I|��u

bI t
I

������
bI 2  8 I

9
=

;

for every u 2 R. Let

Filu+t.deg
�
hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d

�
:=

[

✏>0

Filu+✏t.deg(hht
p
�1

1 , . . . , tp
�1

m iiE, [

C; d

�

(i) Both Filut.deg
�
hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d

�
and Filu+t.deg

�
hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d

�
are

ideals of the ring hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d, for every u 2 R.
(ii) Let gr•

�
hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d

�
be the graded ring attached to the filtration Fil•t.deg

of the ring hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d. This graded ring is naturally isomorphic to the
graded subring M

I2supp(m:E;C,d)

 · tI

of the perfection

[tp
�1

1 , . . . , tp
�1

m ] =
M

I2N[1/p]m
 · tI

of the polynomial ring [t1, . . . , tm], where the latter is graded by the total degree
|I|� of monomials tI .

The proof is easy, therefore omitted.

10.7.4. Tempered perfections of general augmented Noetherian local domains.

10.7.4.1. Definition. Let (R,m) be an augmented complete Noetherian local domain
over a perfect field  of characteristic p. Let Rperf be the perfection of R, and let � be the
Frobenius automorphism on R. Let r, s, n0 be natural numbers, 0 < r < s, i0 � 0.

(a) Consider the following subset
�
(R,m)perf,#

s:�r;[i0]

�
fin

:=
X

n�0

��nr
�
m

(pns�i0 )
�

of the perfect domain Rperf. In the above m
(pns�i0 ) = R by convention if ns � i0  �1.

It is easy to see that this subset is a subring of Rperf . Define a decreasing filtration
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�
Fil#,p

•

s:�r;[i0]

�
•2Z on

�
(R,m)perf,#

s:�r;[i0]

�
fin

by ideals

Fil#,p
j

s:�r;[i0]
:=

n
x 2

�
(R,m)perf,#

s:�r;[i0]

�
fin

��� 9n 2 N s.t. xp
n 2 m

p
n+j

o
.

Define a complete augmented local domain (R,m)perf,#
s:�r;[i0]

over  by

(R,m)perf,#
s:�r;[i0]

:= the completion of
�
(R,m)perf,#

s:�r;[i0]

�
fin

with respect to
�
Fil#,p

•

s:�r;[i0]

�
•
.

(b) Consider the following subset
�
(R,m)perf, [

s:�r;[i0]

�
fin

:=
X

n�0

��nr
�
m

p
ns�i0

�

of the perfect domain Rperf. Here m
p
ns�i0 = R if ns � i0  �1. It is easy to see

that this subset is a subring of Rperf . Define a decreasing filtration
�
Fil[,p

•

s:�r;[i0]

�
j2Z on

�
(R,m)perf, [

s:�r;[i0]

�
fin

by ideals

Fil[,p
j

s:�r;[i0]
:=

n
x 2

�
(R,m)perf, [

s:�r;[i0]

�
fin

��� 9n 2 N s.t. xp
n 2 m

p
n+j

o
.

Define a complete augmented local domain (R,m)perf, [
s:�r;[i0]

over  by

(R,m)perf, [
s:�r;[i0]

:= the completion of
�
(R,m)perf, [

s:�r;[i0]

�
fin

with respect to
�
Fil[,p

•

s:�r;[i0]

�
•
.

10.7.4.2. Definition. Let (R,m) be an augmented complete Noetherian local domain
over a perfect field  of characteristic p. Let Rperf be the perfection of R, and let � be the
Frobenius automorphism on R. Let A, b, d be real numbers, A, b > 0, and d � b.

(i) Define a decreasing filtrations
�
Fil•

Rperf,deg

�
•2R 0

on Rperf indexed by real numbers
u by

Filu
Rperf,deg :=

8
><

>:

n
x 2 Rperf

�� 9j 2 N s.t. xp
j 2 m

du·p
j
e

o
if u � 0

Rperf if u  0

It is easy to see that Filu
Rperf,deg is an ideal of Rperf for every u 2 R.

(ii) Define a subring
�
(R,m)perf, [

A,b;d

�
fin

of Rperf by

�
(R,m)perf, [

A,b;d

�
fin

:=
X

n2N
(��nR \ Filb·p

An
�d

Rperf,deg
)

It is not di�cult to see that
�
(R,m)perf, [

A,b;d

�
fin

is a subring of Rperf.
(iii) Define

(R,m)perf, [
A,b;d
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to be the completion of
�
(R,m)perf,#

A,b;d

�
fin

with respect to the filtration induced by

the filtration
�
Fil•

Rperf,deg

�
of Rperf:

(R,m)perf, [
A,b;d = lim

u!1

�
(R,m)perf, [

A,b;d

�
fin

.⇣
Filu

Rperf,deg \
�
(R,m)perf, [

A,b;d

�
fin

⌘
.

(iv) Define a filtration
⇣
Fil•

(R,m)perf, [
A,b;d

⌘

•

on (R,m)perf, [
A,b;d by

Filu
(R,m)perf, [

A,b;d

:= lim
v!1

⇣
Filu

Rperf,deg \
�
(R,m)perf, [

A,b;d

�
fin

⌘.⇣
Filv

Rperf,deg \
�
(R,m)perf, [

A,b;d

�
fin

⌘
.

10.7.4.3. Definition. Let (R,m) be an augmented complete Noetherian local domain
over a perfect field  of characteristic p. Let Rperf be the perfection of R, and let � be the
Frobenius automorphism on R. Let A, b, d be real numbers, A, b > 0, and d � max(b�1, 0).

(i) Define a decreasing filtrations
�
Fil•

Rperf,fr

�
•2R 0

on Rperf by ideals of Rperf, indexed
by real numbers u as follows.

Filu
Rperf,fr :=

8
><

>:

n
x 2 Rperf

�� 9j 2 N s.t. xp
j 2 m

(pj+dlog u/ log pe)
o

if u � 1

Rperf if u  1

(ii) Define a subring
�
(R,m)perf,#

A,b;d

�
fin

of Rperf by

�
(R,m)perf,#

A,b;d

�
fin

:=
X

n2N
(��nR \ Filb·p

An
�d

Rperf,fr
)

(iii) Define

(R,m)perf,#
A,b;d

to be the completion of
�
(R,m)perf,#

A,b;d

�
fin

with respect to the filtration induced by

the filtration
�
Fil•

Rperf,fr

�
of Rperf:

(R,m)perf,#
A,b;d = lim

u!1

�
(R,m)perf,#

A,b;d

�
fin

.⇣
Filu

Rperf,fr \
�
(R,m)perf,#

A,b;d

�
fin

⌘
.

(iv) Define a filtration
⇣
Fil•

(R,m)perf,#
A,b;d

⌘

•

on (R,m)perf,#
A,b;d by

Filu
(R,m)perf,#

A,b;d

:= lim
v!1

⇣
Filu

Rperf,fr \
�
(R,m)perf,#

A,b;d

�
fin

⌘.⇣
Filv

Rperf,fr \
�
(R,m)perf,#

A,b;d

�
fin

⌘
.

10.7.5. How various tempered perfections compare.

In 10.7.3.2 we defined six families of rings. Each ring in these families consist of formal
series of the form

P
I2N[1/p] bI t

I , where bI 2  8 I, subject uniform constraint (depending
on parameters) on the support of such series. The six families are:

(1]) hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

(1[) hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r,>n0
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(2]) hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

(2[) hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

(3]) hhtp
�1

1 , . . . , tp
�1

m iiE,#
C; d

(3[) hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d

We have defined four additional family of rings, attached to any given equi-characteristic-p
complete Noetherian local domain (R,m):

(4]) (R,m)perf,#
s:�r;[i0]

(4[) (R,m)perf, [
s:�r;[i0]

(5]) (R,m)perf,#
A,b;d

(5[) (R,m)perf, [
A,b;d

Each rings in the families (1])–(3[) is naturally embedded in the completion of the per-
fection of [[t1, . . . , tm]]. We will explain how they compare. Similarly each ring in the
families (4])–(5[) is naturally embedded in the completion of the perfection of R, and we
will compare them.

10.7.5.1. Remark. (i) The families (1]) and (1[) are motivated by the notion of [pa]-
compatible sequence of maps; c.f. 10.7.2.1 and 10.7.2.2. The family (1]) is directly tied with
[pa]-compatible families of maps; see 10.7.2.2R4. With r, s fixed, the ring increases as the
second parameter n0 increases. The [-version results from the # version when one replaces
congruences modulo (tp

n

1 , . . . , tp
n

m ) by the coarser congruences modulo (t1, . . . , tm)p
n

.

(ii) The families (2]) and (2[) are slight variants of (1]) and (1[) and somewhat more
convenient than the family (1]) and (1[). It is straight forward to generalize them to
tempered perfections of augmented complete Noetherian local domains; see 10.7.4.2.

(iv) In (3]) and (3[) the parameters E,C > 0 and d � 0 are real numbers. The most
significant parameter is the “exponent” E; it is written as a superscript in the notation, to
indicate that it serves as an exponent in the estimate of p-adic absolute value in terms of
archimedean absolute value for elements in the support of formal series in family (3).

The “multiplicative constant” C is secondary, while the parameter d is of least im-
portance among the three. When E is fixed while C and d vary, the #-version and the
[-version are interlaced; see 10.7.5.4 (1). Rings in the family (2]) (respectively (2[)) with
primary parameters s > r > 0 are closely related to rings in the family (3]) (respectively
(3[) with E = r

s�r
; see 10.7.5.3 (3) and 10.7.5.4 (2).

(iv) Clearly the families (2]) and (2[) are special cases of the families (4]) and (4[). This
is reflected in the notation for (2) and (4).

(v) The families (5]) and (5[) with real parameters A > 0, b > 0, d � b generalize the
families (3]) and (3[). When R is the formal power series ring [[t1, . . . , tm]], the parameter
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triple (A1, b1, d1) corresponding to a given parameter triple (E,C, d) is

A1 =
1
E
, b1 = C1/E , d1 = d.

When the parameters are related as above, the rings

hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d and ([[t]], (t))perf, [
A1,b1;d1

are “quite close”.

10.7.5.2. Below is a summary of the relation between this myriad of tempered perfec-
tions.

(i) With the primary parameters r < s fixed, the inductive family of rings in (1]) is
interlaces with the inductive family of rings in (1[) as their respective secondary
parameters n0 and i0 vary, i.e. the inductive family (1]) is co-final with the family
(1[). Similarly the inductive family of rings in (2]) interlaces with the inductive
family of rings in (2[). See 10.7.5.3 (1)–(2).

However, with r, s fixed, the family of rings in (1]) is in general not co-final
with the family of rings in (2]); c.f. 10.7.5.3 (3).

(ii) When all parameters r, s, n0, i0 vary, the four families (1]), (1[), (2]) and (2[)
are mutually co-final; they are also co-final with the families (3]) and (3[). See
lemmas 10.7.5.4 and 10.7.5.5.

(iii) With parameters r, s fixed the inductive families (4]) and (4[) with varying i0
are co-final to each other. Similarly with parameters A fixed while b, d vary, the
inductive families (5]) and (5[) are co-final to each other. See 10.7.5.6.

The main takeaway of the above comparison is: given an augmented noetherian local
domain (R,m), in any of the eligible family tempered perfections of R, the union of all
tempered perfections in the chosen family is independent of the family you happen to
choose. We propose to call elements in such unions tempered virtual functions on the
formal scheme Spf(R).

10.7.5.3. Lemma. Let s > r > 0 be positive integers. and let i0 � 0 be a natural number.
Let  ◆ Fp be a perfect field, and let t1, . . . , tm be variables.

(1) Let i0 � 0 be a natural number. We have inclusions

hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

✓ hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

and

hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

✓ hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r;[i0+dlog

p
me]

as sets of formal series.
(2) Let n0 be a natural number. If i1 is a natural number such that

i1 � max
�
s� r, s · dn0

r
e
�
,
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then

hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r,>n0

✓ hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r;[i1]

and

hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

✓ hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i1]

.

(3) Let i0 be a natural number. We have

hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

✓ hhtp
�1

1 , . . . , tp
�1

m iir/(s�r),#

pi0 r/(s�r); 0

and

hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

✓ hhtp
�1

1 , . . . , tp
�1

m iir/(s�r), [

pi0 r/(s�r); 0

Proof. The first inclusion in (1) is obvious. The second inclusion in (1) holds because

(t1, . . . , tm)p
j+dlogp me

✓ (tp
j

1 , . . . , tp
j

m)

for all j 2 N. The statements (2), (3) are easy exercises.

10.7.5.4. Lemma. Let  ◆ Fp be a perfect field. Let E > 0, C > 0 be positive real
numbers. Let d � 0 be a non-negative real number as in 10.7.3.6.

(1) We have natural inclusions

hhtp
�1

1 , . . . , tp
�1

m iiE,#
C; d ✓ hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d

and

hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d ✓ hhtp
�1

1 , . . . , tp
�1

m iiE,#
C·mE ; d/m

.

(2) Let r < s be positive integers such that

E <
r

s� r
.

Suppose that i2 a su�ciently natural number such that

pdm/re·(s�r)�i2  C�1/E · pm/E � d

for every integer m � r·i2

s�r
. Note that such an integer i2 exists because s�r

r
< 1

E
.

Then

hhtp
�1

1 , . . . , tp
�1

m iiE,#
C; d ✓ hhtp

�1

1 , . . . , tp
�1

m ii#
s:�r;[i2]

and
hhtp

�1

1 , . . . , tp
�1

m iiE, [

C; d ✓ hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r;[i2]

.

10.7.5.5. Lemma. Let 0 < r < s be positive integers, and let i0 2 N be a natural number.
For any pair of positive integers 0 < r0 < s0 with r

0

s0�r0
> r

s�r
, there exists a natural number

n0, depending on r0, s0 and i0, such that

hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r;[i0]

✓ hhtp
�1

1 , . . . , tp
�1

m ii#
s:�r,>n0
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and
hhtp

�1

1 , . . . , tp
�1

m ii[
s:�r;[i0]

✓ hhtp
�1

1 , . . . , tp
�1

m ii[
s:�r,>n0

.

The proofs of lemmas 10.7.5.4, 10.7.5.5, and 10.7.5.6–10.7.5.7 below are omitted.

10.7.5.6. Lemma. Let (R,m) be an augmented complete Noetherian local ring over a
perfect field  of characteristic p. Suppose that the maximal ideal m can be generated by m
elements.

(1) Let s > r > 0 be positive integers. Let i0 be a natural number. We have

(R,m)perf,#
s:�r;[i0]

✓ (R,m)perf, [
s:�r;[i0]

and
(R,m)perf, [

s:�r;[i0]
✓ (R,m)perf,#

s:�r;[i0+dlog
p
me] .

(2) Let A, b, d be real numbers, A, b > 0, d � b. We have

(R,m)perf,#
A,b;d ✓ (R,m)perf, [

A,b;d

and
(R,m)perf, [

A,b;d ✓ (R,m)perf,#
A,b/m;d/m .

10.7.5.7. Lemma. Let (R,m) be an augmented complete Noetherian local ring over a
perfect field  of characteristic p.

(1) Let r, s, i0 be natural numbers with r < s. We have natural inclusions

(R,m)perf,#
s:�r;[i0]

✓ (R,m)perf,#(s�r)/r,1;0

and
(R,m)perf, [

s:�r;[i0]
✓ (R,m)perf, [(s�r)/r,1;0 .

(2) Let A, b, d be real numbers with A, b > 0 and d � b�1. Suppose that r, s are positive
integers with s > r > 0 such that s�r

r
< A. There exists a natural number i0,

depending only on the parameters A, b, d, r, s, such that we have natural inclusions

(R,m)perf,#
A,b;d ✓ (R,m)perf,#

s:�r;[i0]

and
(R,m)perf, [

A,b;d ✓ (R,m)perf, [
s:�r;[i0]

.

10.7.6. Functoriality of tempered perfections. Every local homomorphism h be-
tween two equi-characteristic-p complete Noetherian local domains induces a ring homo-
morphism between their completed tempered perfections. It is clear that surjections induce
surjections between completed tempered perfections. We show that injective local homo-
morphisms induce injections on completed tempered perfections.

10.7.6.1. Lemma. Let (R1,m1), (R2,m2) equi-characteristic-p complete Noetherian local
domains with perfect residue fields 1 and 2. Let h : R1 ! R2 be a ring homomorphism
such that h(m1) ✓ m2.
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(a) Let A, b, d be real numbers, A, b > 0, d � b. Let ◆i : Ri ! (Ri,mi)
perf, [
A,b;d be

the natural ring homomorphisms from Ri to its completed tempered perfection
(Ri,mi)

perf, [
A,b;d for i = 1, 2. The ring homomorphism h induces a homomorphism

h̃[ : (R1,m1)
perf, [
A,b;d ! (R2,m2)

perf, [
A,b;d

such that h̃ � ◆1 = ◆2 � h. Similarly h induces a continuous ring homomorphism

h̃] : (R1,m1)
perf,#
A,b;d ! (R2,m2)

perf,#
A,b;d

(b) Let r, s, i0 2 N , r, s > 0, i0 � 0 Let ◆1 : R1 ! (R1,m1)
perf,#
b:�A;[d]

be the natural

ring homomorphism from R1 to its completed tempered perfection (R1,m1)
perf,#
s:�r;[i0]

.

Similarly we have a ring homomorphism ◆2 : R2 ! (R2,m1)
perf,#
s:�r;[i0]

.

The ring homomorphism h induces a homomorphism

h# : (R1,m1)
perf,#
s:�r;[i0]

! (R2,m2)
perf,#
s:�r;[i0]

such that h# : �◆1 = ◆2 �h. Similarly h extends naturally to a ring homomorphism

h[ : (R1,m1)
perf, [
s:�r;[i0]

! (R1,m1)
perf, [
s:�r;[i0]

.

The proof is easy, therefore omitted.

10.7.6.2. Proposition. Let (R,m) be a Noetherian local domain. Assume that the integral
closure S of R in the field of fraction of R is a finite R-module. There exists a natural
number n0 such that such that

{x 2 R | xa 2 m
n} ✓ m

b
n

a
�n0c 8 a 2 N>0, 8n � a · n0.

Proof. Let Blm(R) = Spec
�
�j2N m

j
�
be the blow-up of Spec(R/m) ✓ Spec(R), and let

Y be the normalization of Blm(R). The Noetherian normal domain S is a semi-local finite
R-algebra. The natural morphism ⇡ : Y ! Spec(R) factors through a unique morphism
f : Y ! Spec(S): ⇡ = g � f , where g : Spec(S) ! Spec(R) corresponds to the inclusion
R ,! S. We know that �(Y,OY ) = S because S is normal.

Let L = ⇡⇤m = m · OYi
be the pull-back to Y of the maximal ideal m ✓ R; it is

an invertible sheaf of OY -ideals on Y and is an ample invertible OY -module. The closed
subset Spec

Y
(OY /mOY ) of Y is the union of irreducible Weil divisors E1, . . . , Er, where r

is a positive integer. There exist positive integers e1, . . . , er 2 N>0 such that

L = OY

�
� (e1E1 + · · ·+ erEr)

�
.

Define for each n 2 N an ideal Jn ✓ S by

Jn := �(Y,Ln) ✓ �(Y,OY ) = S.

It is clear that m
nS ✓ Jn for all n 2 N.
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Claims.

1. There exist a positive natural number n1 2 N such that Jn+1 = mJn for all integers
n � n1. In particular Jn ✓ m

n�n1S for all n � n1

2. There exists a natural number n2 2 N such that R \ (mn+n2S) ✓ m
n for all n 2 N.

3. We have Jn+n1+n2
\R ✓ m

n for all n 2 N, with the constants n1, n2 in claims 1
and 2 respectively.

4. If y 2 S, a 2 N>0, n 2 N and ya 2 Jn, then y 2 Jbn/ac.

5. If x 2 R, a 2 N>0, n 2 N, and xa 2 m
n, then x 2 m

bn/ac�n1�n2 for all n �
a(n1 + n2).

Obviously proposition 10.7.6.2 follows from claim 5, with n0 = n1 +n2. J1 ✓ m̃1 \ · · ·\ m̃s

and S is Noetherian.
The general finiteness property for proper morphism [EGA III, §5, Cor. 3.3.2], applied

to the proper morphism Y ! Spec(R) and the coherent sheaf L = mOY , implies that the
graded �i�0m

i -module
�i�0 �(Y,m

iOY ) = �i�0 Ji
is a finitely generated as a graded module. The claim 1 follows.

Claim 2 is the Artin–Rees lemma applied to the finite R-module S. Claim 3 is a formal
consequence of claims 1 and 2, while claim 5 is a formal consequence of claims 3 and 4.

It remains to prove claim 4. Given an element y 2 S such that ya 2 Jn. For each
i = 1, . . . , s, let Si be the localization of S at the generic point of the exceptional divisor
Ei. Each Ei is a discrete valuation ring; let ordEi

(·) be associated normalized valuation
with value group Z. The assumption that ya 2 Jn implies that ordEi

(ya) � n · ei for all i,
therefore

ordEi
(y) � n ei

a
� bn

a
cei

for i = 1, . . . , s. Therefore there exists an open subset U ✓ Y such that U contains
Y r (E1 [ · · · [ Es) and also the maximal points of E1 [ · · · [ Es, and y defines a section

y
U
of Lb

n

a
c over U . Because Y is normal and the codimension of U in Y is at least 2, y

U

extends uniquely to a section of Lb
n

a
c over Y . Therefore y 2 Jbn/ac. We have proved claim

4 and proposition 10.7.6.2.

10.7.6.3. Corollary. Let (R,m) be a complete Noetherian local domain of characteristic
p > 0, with perfect residue field .

(i) Let A, b > 0, d � b be real numbers. The linear topology on the ring
�
(R,m)perf, [

A,b;d

�
fin

defined by the filtration on
�
(R,m)perf, [

A,b;d

�
fin

induced by the filtration
�
Filu

Rperf,deg

�

of Rperf is separated. Therefore the natural ring homomorphism
�
(R,m)perf, [

A,b;d

�
fin
�! (R,m)perf, [

A,b;d

from
�
(R,m)perf, [

A,b;d

�
fin

to its completion (R,m)perf, [
A,b;d is an injection.
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(ii) Let r, s, n0 be natural numbers, 0 < r < s. The natural ring homomorphism
�
(R,m)perf,#

s:�r;[i0]

�
fin
�! (R,m)perf,#

s:�r;[i0]

and �
(R,m)perf, [

s:�r;[i0]

�
fin
�! (R,m)perf, [

s:�r;[i0]

are injections.

Proof. The statements (i) and (ii) are easy consequences of 10.7.6.2. We note that the
statements (i) and (ii) are in fact equivalent.

10.7.6.4. Corollary. Notation as in 10.7.6.1. In particular h : (R1,m1) ! (R2,m2)
is a ring homomorphism between equi-characteristic-p complete Noetherian local domains.
Suppose that h is an injection. Then the induced homomorphisms h̃, h# and h[ in 10.7.6.1
are also injections.

Proof. This statement is a corollary of 10.7.6.3. We explain the proof for h̃. The same
argument in general topology also proves the statement for h# and h[.

The injective ring homomorphism h : R1 ! R2 induces a injective ring homomorphism

h0 :
�
(R1,m1)

perf, [
A,b;d

�
fin
�!

�
(R2,m2)

perf, [
A,b;d

�
fin
.

According to 10.7.6.3, we can identify
�
(R2,m2)

perf, [
A,b;d

�
fin

as a subring of (R2,m2)
perf, [
A,b;d . The

injection h0 identifies
�
(R1,m1)

perf, [
A,b;d

�
fin

also as a subring of (R2,m2)
perf, [
A,b;d . (It is actually

contained in
�
(R2,m2)

perf, [
A,b;d

�
fin
.) Let

�
(R2,m2)

perf, [
A,b;d

�^
fin

be the closure of
�
(R2,m2)

perf, [
A,b;d

�
fin

in the topological ring (R2,m2)
perf, [
A,b;d .

The topology on
�
(R1,m1)

perf, [
A,b;d

�
fin

induced by the filtration
�
Filu

R
perf

1
,deg

�
is stronger

than the topology (R2,m2)
perf, [
A,b;d . The closure of

�
(R1,m1)

perf, [
A,b;d

�
fin

with respect to this

stronger topology is naturally identified with a subset of
�
(R2,m2)

perf, [
A,b;d

�^
fin
. We have

shown that h̃ is an injection.

Let  be a perfect field. Denote by � the Frobenius automorphism on , which sends every

element x 2  to xp. Let u1, . . . , ua and t1, . . . , tm be variables, and let [up
�1

1 , . . . , up
�1

a ]

be the perfection of the polynomial ring [u1, . . . , um]. Elements of [up
�1

1 , . . . , up
�1

a ] are
finite sums of the form X

J2N[1/p]a
bJ u

J ,

where bJ 2  for all J 2 N[1/p]a, and all bJ = 0 for all J outside of a finite subset of
N[1/p]a.

We observe that for each element i 2 N[1/p], the i-th power of an element
X

J2N[1/p]a
bJ u

J 2 [up
�1

1 , . . . , up
�1

a ]
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is well-defined: write i = r

ps
with r 2 Z and s 2 N, and define

⇣ X

J2N[1/p]a
bJ u

J

⌘
r/p

s

:=
⇣ X

J2N[1/p]a
b�

�s

J · up�s
J

⌘
r

.

Therefore if f 2 [up
�1

1 , . . . , up
�1

a ] and g1, . . . , ga 2 [tp
�1

1 , . . . , tp
�1

m ], the composition

f(g1, . . . , ga) is a well-defined element of [tp
�1

1 , . . . , tp
�1

m ]. It is not di�cult to show that
the operation “composition” extends to completed tempered perfections of power series
rings.

10.7.6.5. Lemma (Functoriality of composition). Let  � Fp be a perfect field. Let

u1, . . . , ua and t1, . . . , tm be variables. Suppose that f 2 hhup
�1

1 , . . . , up
�1

a iiE1, [

C1; d1
, and

gi 2 hhtp
�1

1 , . . . , tp
�1

m iiE2, [

C2; d2
for i = 1, . . . , a. Assume for simplicity that C1, C2, d1, d2 � 1.

There exists a positive real number d3 such that

f(g1(t), . . . , ga(t)) 2 hhtp
�1

1 , . . . , tp
�1

m iiE3, [

C3; d3

where

• E3 = E1 · E2 + E1 + E2,
• C3 = C2 · C1+E2

1 · ( 1
e2
)E1(1+E2), and

• e2 := Min
n
|J |� : J 6= 0 and tJ 2 hhtp

�1

1 , . . . , tp
�1

m iiE2, [

C2; d2

o
.

A trivial lower bound for e2 is

e2 � C�1
2 (1 + d2)

�E2 .

Proof. Let S2 ✓ N[1/p]m be the set of supports of all formal power series in the ring

hhtp
�1

1 , . . . , tp
�1

m iiE2, [

C2; d2
whose constant terms are 0. Similarly let S1 ✓ N[1/p]a be the

set of supports of all formal series in hhup
�1

1 , . . . , up
�1

a iiE1, [

C1; d1
whose constant terms are

0. By definition e2 = Min{|J |� : J 2 S2}. Every non-zero element K in the support of
f(g1(t), . . . , ga(t)) can be written in the following form

K = p�r (J1,1 + · · ·+ J1,i1 + · · ·+ Ja,i + · · ·+ Ja,ia) ,

where

• (i1, . . . , ia) 2 Na, r = max(�ordp(i1), . . . ,�ordp(i1), 0),
• I := p�r(i1, . . . , ia) 2 S1, and
• J⌫,µ 2 S2 for all ⌫ = 1, . . . , a and all µ = 1, . . . , ia.

Clearly the following inequalities hold.

(10.7.6.5.1) |K|� � e2 · p�r(i1 e+ · · ·+ is e) = e2 · |I|�

(10.7.6.5.2) M� := Max {|J⌫,µ|� : 1  µ  i⌫ , 1  ⌫  a}  pr · |K|�

(10.7.6.5.3) p�r · |K|p  Max {|J⌫,µ|p : 1  µ  i⌫ , 1  ⌫  a} =: Mp
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From the definitions of the rings hhtp
�1

1 , . . . , tp
�1

m iiE2, [

C2; d2
and hhup

�1

1 , . . . , up
�1

a iiE1, [

C1; d1
we

know that

(10.7.6.5.4) pr  C1(|I|� + d1)
E1  C1 · ( 1

e2
|K|� + d1)

E1

(10.7.6.5.5) Mp  C2(M� + d2)
E2

Combining the above inequalities, we see that

|K|p  pr·C2·(pr |K|�+d2)
E2  C1(e

�1
2 ·|K|�+d1)

E1 ·C2
�
C1(e

�1
2 · |K|� + d1)

E1 |K|� + d2
�E2

The last term in the above displayed inequality is a polynomial in |K|� of degree

E3 := E1 + E2 + E1 · E2

whose leading term is

C3 := C1+E2

1 · C2 · ( 1
e2
)E1(1+E2).

Hence for a su�ciently large constant d3 it is bounded above by C3(|K|� + d3)E3 for all
|K|� � 0. We have proved the main assertion of lemma 10.7.6.5.

To see the trivial lower bound for e2, we only have to observe that if J 2 S2 and
|J |�  1 and J 6= Nm, then

|J |� � |J |�1
p �

�
C2(1 + d2)

E2

��1
.

Remark. Composition can be formulated for completed tempered perfections of general
equi-characteristic-p complete Noetherian local rings.

10.7.7. Weierstrass preparation theorem for tempered perfections. Let  � Fp
be a perfect field. We will generalize the Weierstrass preparation theorem to completed

tempered perfections hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d of power series rings.

10.7.7.1. Definition. Let  � Fp be a perfect field of characteristic p > 0.

(i) Let hhtp
�1

1 , . . . , tp
�1

m ii be the set of all formal series of the form
X

i1,...,im2N[1/p]
bi1,...,im ti11 · · · timm

where bi1,...,im 2  for all (i1, . . . , im) 2 N[1/p]m. Note that hhtp
�1

1 , . . . , tp
�1

m ii
has a natural structure as a module over the perfection [tp

�1

1 , . . . , tp
�1

m ] of the
polynomial ring [t1, . . . , tm].

(ii) Let e 2 Z[1/p]>0 be a positive rational number whose denominator is a powere of

p. An non-zero element F (t1, . . . , tm) in hhtp
�1

1 , . . . , tp
�1

m ii is regular of order e
in the variable tm if the formal series F (0, . . . , 0, tm) in one variable tm has order
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e. In other words when F (t1, . . . , tm) is expanded in powers of tm with coe�cients
in formal series of t1, . . . , tm�1,

F (t1, . . . , tm) =
X

j2N[1/p]
Fj(t1, . . . , tm�1) t

j

m

we have

Fj(0, . . . , 0) = 0 8 j < e, and Fe(0, . . . , 0) 2 ⇥.

10.7.7.2. Proposition. Let F (t1, . . . , tm) be a non-zero element of the ring

hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d

which is regular of order e > 0 in the variable tm.

(1) There exist constants C 0 > 0, d0 > 0 depending only on the parameters C, d,E,m

such that for every element G 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d, there exist elements

U,R 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C0; d0 such that

G = U · F +R

and for every element I = (i1, . . . , im) 2 N[1/p]m 2 supp(R) in the support of R,
the inequalities

im < e, i1 + · · ·+ im�1 > 0

hold. Moreover the quotient U and the remainder R are uniquely determined by
G and F . The constants C 0 and d0 can be taken to be

C 0 = C · (1 + ✏�1
0 )E , d0 = d+e

1+✏�1

0

,

where ✏0 is defined in 10.7.7.6.
(2) Suppose that e = Min

�
|I|� : I 2 supp(F )

 
. Then

U,R 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d+2e.

10.7.7.3. The uniqueness part 10.7.7.2 (1) is easy: suppose that

G = U 0 · F +R0

with U 0, R0 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C0; d0 and R0 satisfies the same condition as R. Then

(U 0 � U) · F = R � R0. Examine the degree in tm of monomials appearing on both
sides, we see that R0 � R = 0. Therefore (U 0 � U) · F = 0. Hence U 0 � U = 0 because

hhtp
�1

1 , . . . , tp
�1

m iiE, [

C0; d0 is an integral domain.

Our proof of the existence part of 10.7.7.2 is a generalization of the constructive proof
of the Weierstrass preparation theorem in [134, p. 139]. The actual proof is in 10.7.7.5–
10.7.7.8 below; the crucial estimates are in lemma 10.7.7.7. We will review the argument
in [134, p. 139] after recalling the definition of the linear operators used in [134, p. 139].
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10.7.7.4. Definition. Let  be a perfect field of characteristic p. Let t1, . . . , tm be

variables. Let e > 0 be a positive rational number in N[1/p]. Let F 2 hhtp
�1

1 , . . . , tp
�1

m ii
be a formal series which is regular of order e in the variable tm.

(i) Define -linear operators

⌘, ⇢ : hhtp
�1

1 , . . . , tp
�1

m ii �! hhtp
�1

1 , . . . , tp
�1

m ii
depending on e, by

f = tem · ⌘(f) + ⇢(f)

for every element f 2 hhtp
�1

1 , . . . , tp
�1

m ii . Clearly for every monomial ti11 · · · timm
with exponent (i1, . . . , im) 2 N[1/p]m, ⌘(ti11 · · · timm ) and ⇢(ti11 · · · timm ) are given by

⌘(ti11 · · · timm ) =

⇢
ti11 · · · tim�1

m�1 · tim�e
m if im � e

0 if im < e

⇢(ti11 · · · timm ) =

⇢
0 if im � e
ti11 · · · timm if im < e

.

For a general element f =
P

i1,...,im2N[1/p] bi1,...,im ti11 · · · timm 2 hht
p
�1

1 , . . . , tp
�1

m ii,
we have

⌘(f) =
X

i1,...,im2N[1/p]
bi1,...,im ⌘(ti11 · · · timm )

⇢(f) =
X

i1,...,im2N[1/p]
bi1,...,im ⇢(ti11 · · · timm )).

Note that if f 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d for some parameter E,C > 0 and d � 0,

then ⇢(f) 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d and ⌘(f) 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d+e
.

(ii) Suppose that the formal series F is in hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d for some constants
E > 0, C > 0, d � 0. Define a -linear operator

µ :
[

C00,d00>0

hhtp
�1

1 , . . . , tp
�1

m iiE, [

C00; d00 �! hhtp
�1

1 , . . . , tp
�1

m ii

depending on e and F , by

µ(f) := ⌘(�⌘(F )�1 · ⇢(F ) · f)

for all C 00, d00 > 0 and every element f 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C00; d00 . Note that ⌘(F )

is a formal series whose contant term is in ⇥, therefore

⌘(F )�1 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d+e

because ⌘(F ) 2 hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d+e
. The product ⌘(F )�1 · ⇢(F ) · f on the

right hand side of the above displayed formula makes sense because both formal

series ⇢(F ) is also an element of hhtp
�1

1 , . . . , tp
�1

m iiE, [

C; d+e
.


