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§1. Introduction
The main result of this note is that for any primes ` 6= p, the `-adic monodromy group of
the Zariski closure H(x0) of the `-adic Hecke orbit of a non-supersingular point x0 in Ag
over Fp is equal to the full symplectic group; see Prop. 4.1. Here Ag denotes the moduli
space of g-dimensional principally polarized abelian varieties. The proof consists mostly
of group theory. It does use some nontrivial information from algebraic geometry, namely
Grothendieck’s semisimplicity theorem for pure Q`-sheaves and the Riemann hypothesis for
abelian varieties over finite fields.

Some immediate consequences of the main results are recorded as corollaries in §4. A
generalization from the case of one prime ` to the set of all primes not equal to p is formulated
in Prop. 4.5.4. The method used in this note applies to the reduction of other Shimura
varieties as well, with the reductive group in the Shimura input data replaced by the simply
connected cover of its derived group.

The group-theoretic argument has an unexpected geometric consequence. Suppose that
Z is a smooth, locally closed subset Z of Ag over Fp stable under all `-adic Hecke correspon-
dences, such that the Hecke correspondences operate transitively on the set of irreducible
components of Z, and the maximal points of Z are not supersingular. Then Z is irreducible;
see Prop. 4.4. This result is useful for proving the irreducibility of certain subschemes of Ag
defined by p-adic invariants of the Barsotti-Tate group of the universal abelian scheme; see
4.7 and 4.8. We also prove an “independence of `”-type result, that Z is stable under all
prime-to-p Hecke correspondences if it is stable under all `-adic Hecke correspondences for
one prime number ` 6= p; see Prop. 4.6.

It is a pleasure to thank E. P. van den Ban and A. Borel for their help with Lemma
3.3, B. Moonen for pertinent and helpful comments, and F. Oort for stimulating discussions
on applications of Prop. 4.4. The author would like to thank the referee for a very careful
reading and for pointing out an error in §2. This paper was written during a visit to Utrecht
University in November 2002, and I would like to the Mathematisch Instituut of Utrecht
University for hospitality. Financial support from the NSF and the NWO are gratefully
acknowledged.
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§2. Notations and preliminaries

(2.1) Throughout this note, we work over an algebraically closed field k of characteristic
p > 0. Let ` be a prime number, ` 6= p, and let N ≥ 3 be a natural number relatively
prime to p`. Let Z be a smooth locally closed subvariety of Ag,N over k. Here Ag,N denotes
the moduli space of g-dimensional principally polarized abelian varieties with principal sym-
plectic level-N structure. Assume that Z is stable under all `-adic Hecke correspondences
coming from Sp2g(Q`), and that the `-adic Hecke correspondences operate transitively on
the set of connected components of Z. Let A → Z be the restriction to Z of the universal
abelian scheme. Let Z0 be an irreducible component of Z, let η = η

Z
be the generic point

of Z0, and let η̄ be a geometric point of Z above η.

(2.2) Denote by T = T` = A[`∞]η̄ the `-adic Tate module of Aη, and let V = V` = T` ⊗Q`.
Let 〈 , 〉` : T` × T` → Z`(1) be the Weil pairing. Let G = Sp(V, 〈 , 〉`), considered as an
algebraic group over Q`. The semisimple group G has a natural Z`-model whose Z`-points
is Sp(T`, 〈 , 〉`). We choose and fix an isomorphism between (T`, 〈 , 〉`) and the standard
symplectic pairing on Z2g

` , and use it to identify G with Sp2g,Q` .

(2.3) Let ρ
A,`

: π1(Z0, η̄)→ Sp(T`, 〈 , 〉`) be the `-adic representation attached to the `-adic
Tate module of A → Z0. For each n ∈ N, denote by 〈 , 〉n : (T`/`

nT`) × (T`/`
nT`) →

(Z/`nZ)(1) the restriction of the Weil pairing to the `n-torsion points. Let ρn : π1(Z0, η)→
Sp(T`/`

nT`, 〈 , 〉`) be the monodromy representation attached to A[`n]→ Z0, the subgroup
of `n-torsion points of A → Z0. Let Mn = ρn(π1(Z, η)), the image of ρn. The finite groups
Mn form a projective system whose limit M is the monodromy group ρ(π1(Z0, η)). The
group M is a compact closed subgroup of G(Q`).

(2.4) For each n ∈ N, “forgetting the `-part of the level structure” defines a morphism
Ag,`nN → Ag,N between moduli spaces; this morphism is a principal étale Sp2g(Z/`nZ)-cover.
Moreover we have natural morphisms Ag,`n+1N → Ag,`nN . Let Ag,`∞N be the projective limit
of the Ag,`nN ’s. It is a principal pro-étale Sp2g(Z`)-cover of Ag,N . There is a natural action
of Sp2g(Q`) on Ag,`∞N , extending the action of Sp2g(Z`). This Sp2g(Q`)-action on Ag,`∞N

induces the `-adic Hecke correspondences on Ag,N .

(2.5) For each n ∈ N, let Z(n) = Ag,`nN×Ag,NZ and let Z0(n) be the restriction of Z(n)→ Z
to Z0 ⊂ Z. The natural map Z(n) → Z is a principal étale Sp2g(Z/`nZ)-cover. Moreover
the contraction product

Z(n)×Sp2g(Z/`nZ),std (Z/`nZ)2g

of the principal cover Z(n) → Z with the standard representation of Sp2g(Z/`nZ) on
(Z/`nZ)2g is isomorphic to the group scheme A[`n] → Z of `n-torsion points of A → Z.
As n varies the principal covers Z(n) form a projective system; denote by Z̃ the projec-
tive limit of the Z(n)’s; it is a pro-étale principal Sp2g(Z`)-cover of Z. Similarly denote by
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Z̃0 the projective limit of the Z0(n)’s; it is the restriction to Z0 of the pro-étale principal
Sp2g(Z`)-cover Z̃ → Z to Z0. Of course Z̃ is canonically isomorphic to Ag,`∞N ×Ag,N Z.

The assumption that Z is stable under the `-adic Hecke correspondences means that the
closed subscheme Z̃ of Ag,`∞N is stable under the action of Sp2g(Q`) on Ag,`∞N . So the

action of Sp2g(Z`) on Z̃ extends to an action of Sp2g(Q`) on Z̃. This action of Sp2g(Q`) on

Z̃ induces the `-adic Hecke correspondences on the base scheme Z.

(2.6) Choose a point η̃ ∈ Z̃(η̄) above η; one can write η̃ as the limit of a compatible
system of points η̃n ∈ Z(n)(η̄). Let Yn be the connected component of Z(n) containing ηn.
The projective limit Y of the Yn’s is a connected component of Z̃ and is also a connected
component of Z̃0. According to general Galois theory, the stabilizer in Sp2g(Z/`nZ) of the
connected component Yn is equal to Mn, and the stabilizer of Y in Sp2g(Z`) is M . Also we

know from Galois theory that Aut(Y/Z0) = M and Y ×M Sp2g(Z`) = Z̃0.

The set π0(Z̃0) of connected components of Z̃0 is a pro-finite set, endowed with the

pro-finite topology: π0(Z̃0) = lim←− π0(Z(n)). The same holds for the set π0(Z̃) of connected

components of Z̃. The assumption that the `-adic Hecke correspondences operate transitively
on π0(Z) means that Sp2g(Q`) operates transitively on the set π0(Z̃) of connected components

of Z̃. Clearly π0(Z̃0) is a subset of π0(Z̃), and π0(Z̃) is non-canonically homeomorphic to the

disjoint union of a finite number of copies of π0(Z̃0) because Sp2g(Q`) operates transitively

on π0(Z̃). The base point [Y ] ∈ π0(Z̃0) gives us a continuous bijection f1 : M\ Sp2g(Z`)
∼−→

π0(Z̃0) which is necessarily a homeomorphism since the source and the target are both
compact.

(2.7) Let Q be the stabilizer subgroup of Y in Sp2g(Q`), consisting of all elements of Sp2g(Q`)
which send Y to itself; Q is a closed subgroup of Sp2g(Q`) because the action of Sp2g(Q`)

on π0(Z̃) is continuous. By definition, each element of Q operates as an automorphism of
Y ; Q ∩ Sp2g(Z`) = M because Aut(Y/Z0) = M . The base point [Y ] ∈ π0(Z̃) gives us a

continuous bijection f2 from Q\ Sp2g(Q`) to π0(Z̃).

(2.8) Lemma The bijection f2 above is a homeomorphism.

Proof. The source of f2 is locally compact, and is a countable union of compact-open
subsets. The target of f2 is a profinite topological space, hence is a complete metric space.
By Baire’s category theorem applied to the complete metric space π0(Z̃), there exists an
compact open subset U in Q\ Sp2g(Q`) such that f2(U) contains an open subset W of π0(Z̃).
Shrinking W , we see that there exists a compact open subset U1 of Q\ Sp2g(Q`) contained in

U such that f2 induces a homeomorphism from U1 to a compact open subset W1 of π0(Z̃).
Because f2 is compatible with the continuous action of Sp2g(Q`) on its source and its target,
we conclude that the continuous bijection f2 is open, hence it is a homeomorphism.
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(2.9) Remark Infinite Galois coverings with action by a non-compact `-adic Lie group
related to Hecke correspondences have been considered in [17], [10], [8] and [7].

§3. Lemmas

(3.1) Lemma Let L be a subgroup of finite index of Sp2g(Q`). Then L = Sp2g(Q`).

Proof. This Lemma is surely well-known; here is a proof. Let T be a split maximal torus
of G = Sp2g over Q`. For every root α of G, denote by Uα the corresponding root subgroup.
Denote by χα : T → Gm the character of T attached to α. By assumption L ∩ Uα(Q`)
is an open subgroup of finite index in Uα(Q`). The p-adic group Uα(Q`) is divisible as an
abelian group, being the abelian group underlying a vector space over Q`. So the subgroup
L ∩ Uα(Q`) of finite index in Uα(Q`) is equal to Uα(Q`) itself. Since Sp2g(Q`) is generated
by the root subgroups Uα(Q`), we have proved that L = Sp2g(Q`).

(3.2) Lemma Let P be a connected closed subgroup of a connected reductive G split over
Q`. Then the coset space P (Q`)\G(Q`) is compact if and only if P is a parabolic subgroup
of G.

Proof. This is a special case of [2, Prop. 9.3].

(3.3) Lemma Let H be a connected semisimple subgroup of G = Sp2g over a field E of
characteristic 0. Then the neutral component NG(H)0 of the normalizer of H in G is reduc-
tive.

Proof. We offer two proofs. The first one uses compact groups. We may and do assume
that E = C. Choose a maximal compact subgroup KH of H(C), and choose a maximal
compact subgroup KG of G(C) containing KH . From the compact subgroups KH and KG

we get compact real forms HR and GR of H and G respectively, such that HR(R) = KH and
GR(R) = KG as subgroups of G(C). Therefore NG(H)0 has a compact real form, namely
NGR(HR)0, the neutral component of the normalizer of HR in GR. Hence NG(H)0 is reductive.

Here is an algebraic proof, due to A. Borel. We may and do assume that G is semisimple.
Let C = ZG(H)0 be the neutral component of the centralizer subgroup of H, and let U
be the unipotent radical of C. The group H being reductive, we have natural orthogonal
decompositions

Lie(G) = Lie(C)⊕ V = Lie(U)⊕ Lie(C/U)⊕ V

with respect to the Killing form B on Lie(G), and each direct summand is stable under the
action of C · H = NG(H)0. Since U is unipotent, there is a separated decreasing filtration
Fil• of Lie(G) such that ad(u) · Fili ⊂ Fili+1 for all u ∈ Lie(U) and all i. This implies that
the restriction of the Killing form B to Lie(U) vanishes identically. Therefore Lie(U) = (0)
since B is nondegenerate. Hence C and NG(H)0 = C ·H are both reductive.
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(3.4) Lemma Assumptions as in §2. If Aη̄ is not supersingular, then the abelian scheme
A×Z0 Z ′ → Z ′ is not isogenous to a constant abelian scheme for any finite surjective mor-
phism Z ′ → Z . Conversely if Aη̄ is supersingular, then A→ Z0 is isogenous to a constant
abelian scheme.

Proof. Suppose that Aη̄ is not supersingular. Let Z be the closure of Z in Ag,N . If A→ Z0

is isogenous to an isotrivial abelian scheme after a finite surjective base change Z ′ → Z, then
Z is proper. Clearly Z is stable under all `-power Hecke correspondences since Z is. The
argument of [3, Prop. 6], which uses [15, Thm. 4.1] and [3, Prop. 1], shows that Z contains
a supersingular point. This is a contradiction. The converse statement is well-known.

(3.5) Corollary Assumptions as in §2. Assume moreover that Aη̄ is not supersingular.
Then the image ρ`(π1(Zx, η)) of the `-adic monodromy representation attached to A → Z0

is not finite. Conversely, if Aη̄ is supersingular, then ρ`(π1(Zx, η)) is finite.

Proof. Suppose that ρ`(π1(Zx, η)) is finite. By [13, Thm. 2.1], there exists a finite surjective
base change map Z ′ → Z0 such that A×Z0Z ′ → Z is isogenous to a constant abelian scheme.
This contradicts Lemma 3.4. The converse holds because the geometric `-adic monodromy
group of any abelian scheme isogenous to a constant one is finite.

§4. Results
(4.1) Proposition Assumptions as in §2. Assume moreover that the image of the `-adic
monodromy representation ρ

A,`
attached to A → Z0 is not finite. Then ρ

A,`
(π1(Z0, η)) con-

tains an open subgroup of Sp(T`, 〈 , 〉`)

Proof. Recall that G = Sp(V, 〈 , 〉`), identified with Sp2g,Q` as an algebraic group over Q`.
Let M the image of π1(Z0, η) in G(Q`).

Let H be the neutral component of the Zariski closure of M in G; H is not the trivial
subgroup by assumption. The closed subgroup M of Sp2g(Z`) is an `-adic Lie group; denote
its Lie algebra by m. By [1, §7, Cor. 7.9], the commutator of the Lie algebra of H is contained
in the Lie algebra of M . Hence it suffices to show that the subgroup H of G is equal to G.

Since Z is stable under all `-power Hecke correspondences, the group Sp2g(Q`) operates

naturally on Z̃. This gives us an action of Sp2g(Q`) on Z̃, extending the action of Sp2g(Z`)
on Z̃. Notice that this action is not compatible with the projection map Z̃ → Z.

Recall that Q is the stabilizer subgroup in Sp2g(Q`) of the connected component Y of Z̃.
Although M is not stable under the conjugation action of Q, this turns out to hold on the
level of Lie algebras. More precisely, for any element γ ∈ Q, there exists an open subgroup
U ⊂ Sp2g(Z`) such that γ ·U ·γ−1 ⊂ Sp2g(Z`). Therefore γ ·(M∩U)·γ−1 ⊂ Q∩Sp2g(Z`) = M .
Passing to the Lie algebras of the `-adic Lie groups M∩U and M yields the desired conclusion
that Ad(γ)(m) ⊆ m for all γ ∈ Q.
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The fact that the Lie algebra m of M is stable under Ad(γ) for all γ ∈ Q implies that
the neutral component H of the Zariski closure of M is stable under conjugation by any
element γ ∈ Q. In other words Q is contained in NG(H)(Q`). Since Q\G(Q`) is compact,
we conclude that coset space NG(H)0(Q`)\G(Q`) is compact, where NG(H)0 denotes the
neutral component of the algebraic group NG(H). By Lemma 3.2, NG(H)0 is a parabolic
subgroup of G.

Now we use a theorem of Grothendieck and a theorem of Deligne in [9, Cor. 1.3.9] and [9,
Thm. 3.4.1]. They imply that the neutral component of the Zariski closure of the geometric
monodromy group of any pure Q`-sheaf over a variety defined over a finite field is semisimple.
In our situation Grothendieck’s theorem tells us that H is semisimple. Notice that the purity
condition comes from the Riemann hypothesis for abelian varieties over finite field, proved
by Weil. Since H is semisimple, its normalizer subgroup in G is reductive by Lemma 3.3.

The subgroup NG(H)0 of G is a parabolic subgroup of G and it is also reductive, hence
NG(H)0 = G. So H is a non-trivial normal subgroup of G. Therefore H is equal to G since
G = Sp2g is a simple algebraic group over Q`.

(4.1.1) Remark According to Cor. 3.5, the assumption that ρ
A,`

(π1(Z0, η)) is not finite is
equivalent to the condition that Aη̄ is not supersingular.

(4.2) Corollary Assumptions as in §2. Assume moreover that Aη̄ is not supersingular.
Then End(Aη̄) = Z.

Proof. Obviously the action of End(Aη̄)⊗Z Q` on V = T`(Aη̄)⊗Z` Q` commutes with the
monodromy representation, hence End(Aη̄)⊗Z Q` ⊆ Q` · IdV .

(4.3) Corollary Notation and assumption as in §2. Suppose that ground field k is Fp.
Then there exists a point y ∈ Z(Fp) such that EndFp(Ay) ⊗Z Q is a number field E with
[E : Q] = 2g, and there is exactly one place v in E above `.

Proof. Use Chebotarev and Prop. 4.1.

(4.4) Proposition Notation and assumption as in §2. Assume that Aη̄ is not supersingular.
Then the image ρ

A,`
(π1(Z0, η)) of the `-adic monodromy representation of A → Z0 is equal

to Sp(T`, 〈 , 〉`) ∼= Sp2g(Z`). Moreover Z = Z0, i.e. Z is irreducible.

Proof. We use the notation in the proof of Prop. 4.1. Cor. 3.5 shows that the `-adic mon-
odromy representation of A → Z0 is not finite. Prop. 4.1 tells us that the set π0(Z̃0) ∼=
M\ Sp2g(Z`) of connected components of Z̃0 is finite, and so is the set of connected compo-

nents π0(Z̃) ∼= Q\ Sp2g(Q`). Lemma 3.1 implies that Q = Sp2g(Q`). Hence Z̃ is connected.

So the finite set π0(M\ Sp2g(Z`)) = π0(Z̃0) ⊆ π0(Z̃) has only one element, i.e.M = Sp2g(Z`).
Since the map Z̃ → Z is faithfully flat, we deduce that Z is connected.
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(4.4.1) Remark We have assumed that the level N is prime to `p for simplicity. Our
argument still applies if we assume only that the level N ≥ 3 is prime to p. Then Prop. 4.1
remains true, while Prop. 4.4 should be changed to state that the image ρ`(π1(Z0, η̄)) of ρ
is equal to the principal congruence subgroup of level N ′ = (N, `∞) in Sp2g(Z`).

(4.5) Let S be a set of prime numbers different from p. Then one can consider S-adic
Hecke correspondences coming from elements of the restricted product

∏′
`∈S Sp2g(Q`) =:

Sp2g(AQ,S). The method used in the proof of Prop. 4.1, 4.4 applies as well and yield analogous
statements. Here we formulate only the case when S is the set of all prime numbers different
from p. The corresponding Hecke correspondences are usually referred to as the set of all
prime-to-p Hecke correspondences.

(4.5.1) Let W be a smooth locally closed subset of Ag,N over Fp, such that W is stable under
all prime-to-p Hecke correspondences and the set of all prime-to-p Hecke correspondences
operate transitively on π0(W ).

(4.5.2) Denote by Γ(N) the subgroup of Sp2g(Ẑ(p)) =
∏

`6=p Sp2g(Z`), where ` runs through

all prime numbers different from p, consisting of all elements of Sp2g(Ẑ(p)) which are congru-
ent to Id modulo N .

(4.5.3) Let W 0 be a connected component of W , let η be the generic point of W 0, and let
η̄ be a geometric point above η. Denote by

ρ
A,Ẑ(p)

: π1(W 0, η̄)→ Γ(N) ⊂ Sp2g(Ẑ(p))

the monodromy representation attached to the prime-to-p torsion points of A → W 0. The
following proposition can be proved by the same argument as before; the proof is omitted.

(4.5.4) Proposition Notation as above. Assume that the abelian variety Aη̄ is not super-
singular. Then the image of the monodromy representation ρ

A,Ẑ(p)
is equal to Γ(N). Moreover

W = W 0, i.e. W is irreducible.

Remark We shall prove in Prop. 4.6 a sort of “independence of `” result, to the effect
that every subvariety Z in Ag,N which is stable under all `-adic Hecke correspondences is
actually stable under the action of all prime-to-p Hecke correspondences. Therefore Prop.
4.5.4 applies, giving the maximality of the Galois representation attached to the prime-to-p
torsion points of A→ Z.

(4.6) Proposition Notation and assumptions as above. In particular, Z is a smooth ir-
reducible subvariety of Ag,N stable under all `-adic Hecke correspondences, and Aη̄ is not
supersingular. Then Z is stable under the action of all λ-adic Hecke correspondences for any
prime number λ 6= p.
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Proof. The idea of the proof already appeared on page 477 of [3]; here we explain the
use of the strong approximation theorem in more detail, correcting some inaccuracies in loc.
cit. We may and do assume that g ≥ 2. As in the proof of Lemma 3.4, the Zariski closure
Z of Z contains a supersingular point s. Denote by U (resp. G) the unitary group (resp.
the special unitary group) over Q attached to the semisimple algebra End(As) ⊗Z Q with
the Rosati involution. The group G is an inner form of Sp2g such that G(R) is compact,
while G(Qr) is non-compact for every prime number r, including r = p. For every prime
number r 6= p, the groups G is split over Qr. Moreover, if r 6= p, then the Zr-lattice
End(As)⊗Z Zr in End(As)⊗Z Qr defines a hyperspecial maximal compact subgroups G(Zr)
of G(Qr), isomorphic to Sp2g(Zr). The isomorphism is unique up to conjugation by elements
of Sp2g(Zr).

Let U(Zp) := U(Qp) ∩ (End(As) ⊗Z Zp)×, G(Zp) := G(Qp) ∩ (End(As) ⊗Z Zp)×. We
note that End(As) ⊗Z Zp

∼−→ End(As[p
∞]) by Tate’s theorem in [18], because there exists a

finite extension Fq of Fp with q = p2a, a ∈ N, such that the principally polarized abelian
variety As is defined over Fq, and the Frobenius morphism Frq is equal to pa · Id. So we can
identify U(Zp) with Aut(End(As[p

∞], ∗)). The latter group operates naturally on the local

deformation space A/sg,N , and is sometimes referred to as the local automorphism group of
the deformation space.

For each prime number r 6= p, let Γr = G(Zr) if (r,N) = 1, and let Γr be the principal
congruence subgroup of level re if re||N , e ≥ 1. According to the strong approximation
theorem, the image of

G(Q) ∩

(
Γp ×

∏
r 6=p,`

Γr

)

in G(Zp) is dense in G(Zp). This implies that the formal completion Z
/s

of Z at s, as a

closed formal subscheme of A/sg,N , is stable under the action of an G(Zp). This is an example
of a general principle underlying the methods used in [3]; it can be seen as follows. For any
element γp in G(Zp) and any compact open subgroup Km of G(Zp), there exists an element
u ∈ G(Q) such that ur ∈ Γr for every prime number r 6= p, `, and up · γp ∈ Km in G(Zp).
Here ur and up denote the image of u in G(Qr) and G(Qp) respectively. Let u` be the image

of u in G(Q`). Then the action on A/sg,N of the Hecke correspondence H(u`) attached to u`

is equal to the natural action of u−1
p on the local deformation space A/sg,N . For every natural

number m ≥ 1, one can choose Km sufficiently small so that the actions of γp and u−1
p onA/sg,N

coincide on the m-th infinitesimal neighborhood Spec(Os,Ag,N/m
m
s,Ag,N ) of s in Ag,N . Since Z

is stable under the `-adic Hecke correspondence H(u`), the m-th infinitesimal neighborhood
Spec(OZs

/mm
s,Z

) of s in Z, as a closed subscheme Spec(Os,Ag,N/m
m
s,Ag,N ), is stable under the

action of γp, for every natural number m ≥ 1. Therefore the closed formal subscheme Z
/s

of

A/sg,N is stable under the action of γp.

We may and do assume that λ 6= `. Let γ
λ

be an element of G(Qλ). Let W be the
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image of Z under the Hecke correspondence H(γ
λ
) attached to γ

λ
. According to the strong

approximation theorem, the image of G(Q) in the restricted product
∏′

r 6=λG(Zr) is dense.
So there exists an element δ in G(Q), such that

• δr ∈ Γr for all prime number r 6= `, λ,

• δλ ∈ (γλ ·Γλ) ∩ (Γλ ·γλ), where δr and δλ denote the image of δ in G(Qr) and G(Qλ)
respectively.

Then the effect on A/sg,N of the Hecke correspondence H(γλ) attached to γλ is equal to

the composition of the action δ−1
p and the Hecke correspondence H(δ−1

` ) attached to δ−1
` .

Since Z
/s

is invariant under the action of G(Zp) and Z is stable under all `-adic Hecke
correspondences, we deduce that W contains s and the formal completion W /s coincide with
Z/s. Notice that the same statement holds if s is replaced by any supersingular point s1 in
Z.

The prime-to-p Hecke orbit Hnon−p ·s of s in Ag,N , induced by elements of the symplectic
group, is in natural bijection with the finite set (G(Q) ∩G(Zp)) \

∏′
r 6=pG(Qr)/Γ(N), where

Γ(N) is the principle congruence subgroup of
∏′

r 6=pG(Qr) of level N . By the strong approxi-
mation theorem, the `-adic Hecke correspondences induced by elements of Sp2g(Q`) ∼= G(Q`)
operates transitively on Hnon−p ·s. It is clear that the subvariety W of Ag,N , being the image
of the irreducible subvariety Z under the Hecke correspondence H(γ

λ
), has the property

that each of its irreducible component contains a point of Hnon−p · s. The conclusion of
the previous paragraph, applied to points of the Hecke orbit Hnon−p · s of s, implies that
W is contained in and hence equal to Z. We have shown that Z is stable under all Hecke
correspondences attached to elements of Sp2g(Qλ).

(4.7) Remark The irreducibility results in 4.4 and 4.5.4 is handy for proving the irre-
ducibility of certain subsets of Ag,N defined by geometric invariants which are invariant
under prime-to-p isogenies. An example is a result of Oort on the set of irreducibility of any
non-supersingular Newton polygon stratum in Ag,N . We sketch the argument here; see [16]
for more details. Let Wξ be a Newton polygon stratum in Ag,N which is not supersingular.
It is known that Wξ is equi-dimensional, and the closure of every irreducible component of
Wξ contains an irreducible component of the supersingular locus of Ag,N ; see [12], [11]. One
can verify that the prime-to-p Hecke correspondences operate transitively on the irreducible
components of the supersingular locus, using the description of the supersingular locus in
[12]. Furthermore local information is available from deformation theory at points of a dense
open subset of the supersingular locus, see [14]. A standard degeneration method in alge-
braic geometry enables one to deduce from adequate local information that the set of all
prime-to-p Hecke correspondences operate transitively on the irreducible components of Wξ.
Then one can apply Prop. 4.5.4 to conclude that Wξ is irreducible.
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(4.8) Remark One can deduce the irreducibility of non-supersingular central leaves from
the irreducibility of non-supersingular Newton polygon strata, using Prop. 4.4 and the no-
tation of hypersymmetric points in [5], [6]. As the last example, C.-F. Yu has proved the
irreducibility of non-supersingular central leaves in a Hilbert modular variety using Prop.
4.4.
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