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§1. Introduction
Let p be a prime number, fixed throughout this article..

Given three commutative group schemes X ,Y,Z over a base field k, a biextension of X ×Y by
Z is a morphism E → X ×Y plus two relative group laws. The first group law, for E → Y , makes
E→Y an extension of XY := X×Y by ZY := Z×Y , while the second group law, for E→ X , makes
E → X and extension of YX by ZX . The best-known example is the Poincare bundle for an abelian
variety A; it is a biextension of A×At by Gm, where At is the dual abelian variety of A. Mumford
invented the concept of bi-extension in [6] to treat deformation and lifting problems for polarized
abelian varieties. In standard applications of biextensions the “fiber group” Z is usually Gm.

Biextensions also arise when one tries to deform a p-divisible group in such a way that all p-adic
invariants of the deformed p-divisible group are fixed. Suppose that U1,U2,U3 are three isoclinic
p-divisible formal groups over a perfect field k ⊃ Fp, such that

slope(U1)> slope(U2)> slope(U3).

The equi-characteristic-p deformation space D=Def(U1×U2×U3) of the product U1×U2×U3 is a
smooth formal scheme. There exists a closed formal subscheme S= S(U1×U2×U3) of D such that
the restriction to S of the universal p-divisible group U is sustained, and every closed subscheme
S′ with this property is contained is S. That U|S is sustained means that for every n ∈ N, there
exists a faithfully flat cover T→ S such that U[pn]×S T is isomorphic to (U1×U2×U3)×Spec(k) T.
Similarly one has the maximal sustained locus S(Ui×U j) in the deformation space D(Ui×U j) for
any pair (i, j) with 1≤ i < j ≤ 3. We will call S(U1×U2×U3) the (central) leaf in the deformation
sapce Def(U1×U2×U3) which passes through the closed point. Similarly S(Ui×U j) is the leaf in
Def(Ui×U j) through the closed point.

It turn out that in the two-slope case, the leaf S(Ui×U j) has a natural structure as an isoclinic p-
divisible group whose slope is equal to slope(Ui)− slope(U j) for any pair (i, j) with 1≤ i≤ j ≤ 3.
In the three-slope case, the leaf S(U1×U2×U3) is not a p-divisible group, but it has a natural
structure as a biextension of p-divisible formal groups: there exists a canonical morphism

π : S(U1×U2×U3)→ S(U1×U2)×S(U2×U3)

plus two relative group laws

+1 : S(U1×U2×U3)××S(U2×U3) S(U1×U2×U3)→ S(U1×U2×U3)

and
+2 : S(U1×U2×U3)××S(U1×U2) S(U1×U2×U3)→ S(U1×U2×U3),

making S(U1×U2×U3) a biextension of S(U1×U2)×S(U2×U3) by S(U1×U3).
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Suppose that G is a closed subgroup of the group Aut(U1×U2×U3) of automorphisms of the
p-divisible group U1×U2×U3. By functoriality the group G also acts on S(U1×U2×U3) We
assume that the action of G on S(U1×U2×U3) is strongly nontrivial, in the sense that there is no
open subgroup of G which fixes all points of a non-trivial p-divisible subgroup of S(Ui×U j) for
some pair (i, j) with 1≤ i < j ≤ 3. The goal of the local rigidity problem for this biextension is:

Question (local rigidity for the biextension S(U1×U2×U3)). Find a sharp constraint on formal
subvarieties of the biextension S(U1×U2×U3) which are stable under a strongly non-trivial action
by a p-adic Lie group G.

More generally one can ask the local rigidity question for general biextensions of p-divisible
formal groups. One can also ask the (easier) local rigidity question for the leaves S(Ui ×U j),
1 ≤ i ≤ j ≤ 3. Recall that S(Ui×U j) is a p-divisible formal group, and local rigidity question
for p-divisible groups has a clean answer; see [3, Thm. 4.3].

THEOREM (local rigidity for p-divisible formal groups). Suppose that G is a p-adic Lie group
acting strongly nontrivially on a p-divisible formal group V over a base field k ⊃ Fp. Every formal
subvariety of V which is stable under the action of G is a p-divisible subgroup of V .

For a long time it was unclear whether there is a good answer to the local rigidity question
for biextensions of p-divisible formal groups. It turns out that the outline of the argument in [3]
can be followed, but new ideas are needed to analyse the asymptotic behavior of the action on the
biextension by elements sufficiently close to 1 in a one-parameter subgroup .

Suppose that a p-adic Lie group G acts on a p-divisible group V , and w is an element of the
Lie algebra of G which operates on V through an endomorphism C ∈ End(V ). Let V1 be the largest
among isoclinic subgroups of whose slope µ1 is bigger than other slopes of V . Assume that V is the
product of V1 and another p-divisible subgroup V2 of V , and let prV1

: V → V1 be the projection to
V1. Then for all n� 0, the action of the element exp(pnw) ∈ G on V is very closely approximated
by IdV + pn ·C|V1 ◦ prV1

. The precise meaning of “very closely approximated” is provided by the
following estimates for the “main term” pn ·C|V1 ◦ prV1

and the difference of exp(pnw) and IdV +
pn ·C|V1 ◦ prV1

. The size of the main term and the error term will be estimated by powers of the
maximal ideal m=mV

- There are constants c1,c2 ∈ N>0 such that the main term pnC · |V1 ◦ prV1
has coordinates in

mc1·pbn/µ1c and is non-zero modulo mc1·pbn/µ1c+c2 , for all n� 0.

- There is a constant µ2 with 0 < µ2 < µ1 such that the error term

exp(pnw)− IdV − pn ·C|V1 ◦prV1

is congruent to 0 modulo mpbn/µ2c for all n� 0.

With the above analysis of the action by a one-parameter subgroup, one is in a position to apply the
identity principle [3, 3.1], recalled in 6.1.1, to conclude that the given formal subvariety of V stable
under G is stable under translation by elements of the p-divisible subgroup C ·V1 of V .
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For the case of a biextension π : E→ X×Y of two p-visible formal groups X , Y by a p-divisible
formal group Z, one does not have an analog of “the projection from E to the isoclinic factor of
Z of maximal slope”, nor an analog of “the projection to Z” for that matter, no matter how one
modifies E by isogenies. The first step to deal with this difficulty is the construction of a morphism
ηn : π−1(X [pn]×Y [pn])→ Z in 2.7. After modifying Z by a suitable isogeny so that Z is a product
of Z1 with a p-divisible subgroup Z2 of Z, we can compose ηn with the projection pr1 from Z to Z1,
and obtain a morphism ρ ′n : π−1(X [pn]×Y [pn])→ Z1. This morphism ρ ′n is an analog of pn · prV1
(but not prV1

).

To make use of the maps ρ ′n, one needs the existence of a single object ρ̃ such that each ρ ′n
“is” pn · ρ̃ in a suitable sense. To figure out where this animal ρ̃ might be found, we first remind
ourselves that if we choose a coordinate system for Z1, a map from E to Z1 is determined by a
sequence of functions on E, one for each coordinate of Z1. If we think of the coordinate ring of
E, which is isomorphic to a power series ring k[[t1, . . . , tm]], as functions on E, what we need is to
introduce a suitable ring of “generalized functions”. Then we can define the sought-after object ρ̃

as a “generalized map” whose components with respect to the chosen coordinate system for Z1 are
generalized functions.

There are a few related procedures, each depending on some parameters, which take Noethe-
rian complete equi-characteristic-p local domains as input, and produce “generalized functions” as
outputs. We call the resulting rings complete restricted perfections of the input, because they are
completions of suitable subrings of the perfection of the input complete local domains. Here we pro-
vide a sample, denoted by k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d , The where E > 0,C≥ 1,d ≥ 0 are real parameters.
The support set supp(m : E;C,d) for this ring is a subset of Z[1/p]≥0, defined by

supp(m : E;C,d) =
{

I ∈ Z[1/p]m≥0 : |I|p ≤C · (|I|σ +d)E} .
Here for any I = (i1, . . . , im) ∈ Z[1/p]≥0, |I|σ := i1 + · · ·+ im is the usual archimedean norm of I,
|I|p = max(|i1|p, . . . , |im|p) is the normalized p-adic norm of I, and | · |p is the normalized p-adic
absolute value on Q with |p|p = 1/p. By definition

k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d :=
{

∑
I∈supp(m:E;C,d)

aI · tI |aI ∈ k ∀I ∈ supp(m : E;C,d)
}
,

where tI stands for the monomial tI = t i1
1 · · · t im

m for every I = (i1, . . . , tm) ∈ Z[1/p]m≥0. The standard

formula for multiplication of formal series make sense in the ring k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . One can
also compose generalized function, and substitute the variables t1, . . . , tm of an element

f ∈ k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

by elements g1, . . . ,gm ∈ k〈〈up−∞

1 , . . . ,up−∞

n 〉〉E1, [
C1;d1

. The result is a function

f (g1(u), . . . ,gm(u)) ∈ k〈〈up−∞

1 , . . . ,up−∞

n 〉〉E2, [
C2;d2

for suitable parameters E2,C2,d2. Details about the construction of the coordinates of ρ̃ in suitable
complete restricted perfections are explained in §3. Basic properties of complete restricted perfec-
tions are in §3 and §4. The identity principle in [3, 3.1] is extended to complete restricted perfection
of complete equi-characteristic-p local rings in 6.4.
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We don’t know whether the rings κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d have applications to other problems.
These local rings are not Noetherian, but smaller and more manageable than the completion of the
perfection κ[t−∞

1 , . . . , t−p∞

m ] κ[t1, . . . , tm] with respect to the filtration given by the total degree of
monomials. We provide a form of the Weierstrass preparation theorem for these rings and compute
the integral closure of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d in its field of fractions, in 4.4.2 and 4.5 respectively.
These two results are not needed for rigidity of biextensions. Most of the basic algebraic properties
of these rings are still unexplored.

Armed with the above tools, the same train of thoughts in the proof of local rigidity for p-
divisible group leads to a satisfactory answer of the local rigidity question for biextensions of p-
divisible formal groups, theorems 7.2 and 7.5. The latter is easy to state: in a biextension E of
p-divisible formal groups X ×Y by Z such that X, Y , Z have mutually distinct slopes, every formal
subvariety of E which is stable under a strongly non-trivial action of a p-adic Lie group is a sub-
biextension.

From the perspective of the Hecke orbit problem, a good answer to the local rigidity question
for leaves in deformation spaces of p-divisible groups is quite useful. It provides a tight structural
constraint on what the Zariski closure of a Hecke orbit can possibly be, when examined at any Fp-
point of the intersection of the Zariski closure of the given Hecke orbit with the leaf containing the
Hecke orbit. It is hoped that the tools introduced to solve the three-slope case will bring us closer
to the answer of the general local rigidity problem for leaves in deformation spaces of p-divisible
groups.

§2. Biextension basics
The notion of biextensions of commutative groups was first introduced by Mumford in [6] and
further developed by Grothendieck in expositions VI, VII of [5].

(2.1) DEFINITION. Let R be a noetherian complete local ring whose residue R/m is a field of
characteristic p, and S := Spf(R). Let X ,Y,Z be p-divisible groups over R (resp. commutative
formal groups) over R. A biextension of X×S Y by Z is a 5-tuple

(π : E→ X×S Y, +1 : E×Y E→ E, +2 : E×X E→ E, ε1 : Y → E, ε2 : X → E)

where E is the formal spectrum of a Noetherian complete local ring formally smooth over R, π is
an S-morphism, +1 and ε1 are Y -morphisms, +2 and ε2 are X-morphisms. In addition the following
properties are satisfied.

(0) The morphism π is formally smooth and faithfully flat.

(1a) The pair (+1,ε1) makes E a p-divisible group (resp. commutative smooth formal group) over
Y .

(1b) The projection map π : E → X ×S Y is a group homomorphism for the group law +1 and the
base change to Y of the group law +X : X×S X → X of the p-divisible group X .
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(2a) The pair (+2,ε2) makes E a p-divisible group (resp. commutative smooth formal group) over
X .

(2b) The projection map π : E → X ×S Y is a group homomorphism for the group law +2 and the
base change to X of the group law +Y : Y ×S Y → Y of the p-divisible group Y .

(3a) The S-morphism
Z×S Y → E, (z,y) 7→ z+2 ε1(y)

defines an S-isomorphism from Z×S Y to E×(X×SY ) (0X ×S Y ).

(3b) The S-morphism
Z×S X → E, (z,x) 7→ z+1 ε2(x)

defines an S-isomorphism from Z×S X to E×(X×SY ) (X×S 0Y ).

(4) (compatibility of the two relative group laws) For any formal scheme T over S and any four
T -valued points w11,w12,w21,w22 of E such that

π1(w11) = π1(w12), π1(w21) = π1(w22), π2(w11) = π2(w21), π2(w12) = π1(w22)

where π1 := pr1 ◦π and π2 := pr2 ◦π are the two projections from E to X and Y respectively,
the equality

(w11 +2 w12)+1 (w21 +2 w22) = (w11 +1 w21)+2 (w12 +1 w22)

holds.

(2.1.1) REMARK. Conditions (1a) and (1b) assert that the relative group law +1 on E over Y is an
extension of (the base change to Y of) X by (the base change to Y of) Z. Similarly (2a) and (2b) say
that the relative group law +2 on E over X is an extension of (the base change to X of) Y by (the
base change to X of) Z.

(2.1.2) REMARK. Of course the definition 2.1 of biextension works in other contexts, for instance
sheaves of commutative groups for the fppf site for a general scheme S. For our purpose the case
when X , Y and Z are all p-divisible groups will be sufficient. For the main result on local rigidity
for p-divisible groups, S will be the spectrum of a field k of characteristic p > 0 and X , Y , Z are
p-divisible formal groups over k.

(2.1.3) REMARK. The following properties are easily verified.

(i) For any formal scheme T over S, any T -valued points y1,y2 of Y and any T -valued points
x1,x2 of X , we have

ε1(y1)+2 ε1(y2) = ε2(y1 + y2), ε2(x1)+1 ε2(x2) = ε2(x1 + x2).

(ii) For any formal scheme T over S, any T -valued points z of Z and any T -valued point w of E,
we have

(z+1 ε2(π1(w)))+2 w = (z+2 ε1(π2(w)))+1 w.
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This equality means that the Z-actions on E induced by the relative group laws +1 and +2 are
equal, given π : E→ X×S Y a natural structure as a Z-torsor. Let

∗ : Z×S E = (Z×S (X×S Y ))×(X×Y ) E→ E

be the morphism defining this Z-torsor structure on E.

(iii) The restriction of +1 to Z×S Z ⊂ E ×Y E is equal to the group law of Z. Similarly for the
restriction of +2 to Z×S Z ⊂ E×X E.

(iv) The S-isomorphism (z,y) 7→ z+2 ε1(y) in (3a) is a group isomorphism from the product group
Z×SY to the group law on E×(X×Y ) (0X×Y ) induced by +2. In other words the restriction to
0X ⊂X of the extension of Y by Z over X , given by the partial group law +2, splits canonically.
Similarly for the S-isomorphism (z,x) 7→ z+1 ε2(x) in (3b) is a group isomorphism from the
product group Z×S X to the group law on E×(X×Y ) (X×0Y ) induced by +1.

(v) The restriction of ε1 to 0Y is equal to the restriction of ε2 to 0X . Over the scheme-theoretic
union ∆ of the images of X ×S 0Y and 0X ×S Y , i.e. the smallest closed subscheme of X ×S Y
containing both, we have an S-morphism ε : ∆→ E such that π ◦∆ = id∆ which is equal to ε2
on X ×S 0Y and equal to ε1 on 0X ×S Y . Because π : E → X ×S Y is formally smooth, there
exists a section s : X×S Y → E of π which extends ε .

(2.2) The biextension structure can be made explicit in terms of cocycles as follows.

(2.2.1) DEFINITION. Let π : E → X ×S Y be a biextension of X ×S Y by Z as in 2.1, and let s :
X×S Y → E be a section of π which extends both ε1 and ε2 as in 2.1.3 (v). Define S-morphisms

τ : (X×S X)×S Y → Z and σ : X×S (Y ×S Y )→ Z

by the following formulas expressed in terms of T -valued points x,x1,x2,y,y1,y2 in X and Y for
formal schemes T over S:

s(x1,y)+1 s(x2,y) = τ(x1,x2;y)∗ s(x1 + x2,y)(a)
s(x,y1)+2 s(x,y2) = σ(x;y1,y2)∗ s(x,y1 + y2)(b)

(2.2.2) Cocycle identities. The S-morphisms τ and σ satisfy properties (1)–(5) below, for all for-
mal schemes T over S, all T -valued points x,x1,x2,x3 of X and all points y,y1,y2,y3 of Y . Identities
(1) and (2) are consequences of the fact that the section s of π extends ε1 and ε2. Identities (3)
and (4) hold because the two relative group laws +1 and +2 are commutative and associative. The
identity (5) follows from the compatibility of the two relative group laws.

(1) σ(x;0,y2) = 0 = σ(x;y1,0), τ(0,x2;y) = 0 = τ(x1,0;y).

(2) σ(0;y1,y2) = 0, τ(x1,x2;0) = 0.

(3) (symmetry)
σ(x;y1,y2) = σ(x;y2,y1), τ(x1,x2;y) = τ(x2,x1;y)
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(4) (associativity)

σ(x;y1,y2)+σ(x;y1 + y2,y3) = σ(x;y1,y2 + y3)+σ(x;y2,y3)

τ(x1,x2;y)+ τ(x1 + x2,x3;y) = τ(x1,x2 + x3;y)+ τ(x2,x3;y)

(5) (compatibility)

σ(x1 + x2;y1,y2)−σ(x1;y1,y2)−σ(x2;y1,y2)

= τ(x1,x2;y1 + y2)− τ(x1,x2;y1)− τ(x1,x2;y2)

(2.2.3) Coboundary. If we replace s(x,y) by a another section

(2.2.3.1) s′(x,y) = f (x,y)∗ s(x,y),

where f (x,y) : X ×S Y → Z is an S-morphism such that f (x,0) = 0 = f (0,y) (so that s′ extends ε1
and ε2), then the resulting maps τ ′ : (X×S X)×Y → Z and σ ′ : X×S (Y ×S Y )→ Z are related to the
maps σ and τ by

τ
′(x1,x2;y)− τ(x1,x2;y) = f (x1,y)+ f (x2,y)− f (x1 + x2,y),(2.2.3.2)

σ
′(x;y1,y2)−σ(x;y1,y2) = f (x,y1)+ f (x,y2)− f (x,y1 + y2).(2.2.3.3)

(2.2.4) Conversely given a pair (α,β ) of S-morphisms satisfying equations (1)–(5) in 2.2.2, there
exists a biextension of X ×S Y by Z naturally attached to the cocycle (α,β ). Moreover the biexten-
sions attached to two cocycles (α,β ), (α ′,β ′) are isomorphic as biextensions of X×S Y by Z in the
sense of 2.3.1 (c) below if and only if the two cocycles differ by a coboundary in the sense that there
exists an S-morphism f : X×S Y → Z such that 2.2.3.2 and 2.2.3.3 hold.

(2.3) Homomorphisms between biextensions

(2.3.1) DEFINITION. Let X ,Y,Z,X ′,Y ′,Z′ be p-divisible groups (resp. commutative smooth for-
mal groups) over S = Spf(R) as in 2.1. Let π : E → X ×S Y be a biextension of X ×S Y by Z, and
π ′ : E ′→ X ′×S Y ′ be a biextension of X ′×S Y ′ by Z′.

(a) An S-homomorphism of biextensions from the biextension E to the biextension E ′ is a quadru-
ple of S-morphisms

(ψ : E→ E ′,α : X → X ′,β : Y → Y ′,γ : Z→ Z′)

where α,β ,γ are S-homomorphisms of commutative formal groups, and ψ is compatible with
the biextension structure of E and E ′, in the sense that the following properties are satisfied.

(i) π ′ ◦ψ = (α×β )◦π ,

(ii) ψ ◦+1 =+′1 ◦ (ψ×Y ψ), ψ ◦+2 =+′2 ◦ (ψ×X ψ),

(iii) ψ ◦ ε1 = ε ′1 ◦β , ψ ◦ ε1 = ε ′2 ◦α .
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(b) A homomorphism of biextensions (ψ,α,β ,γ) is an isomorphism of biextensions if ψ,α,β
and γ are all isomorphism of formal schemes, in which case (ψ−1,α−1,β−1,γ−1) is a homo-
morphism of biextensions from E ′ to E.

(c) Suppose that X ′ = X , Y ′ =Y and Z′ = Z. We say that the E and E ′ are isomorphic as biexten-
sions of X×Y by Z if there exists a isomorphism (ψ, idX , idY , idZ) from E to E ′.

(d) An S-homomorphism (ψ,α,β ,γ) between biextensions of p-divisible groups (respectively
commutative smooth formal groups) is an isogeny if the homomorphism α , β and γ between
p-divisible groups are all isogenies.

Note that an isomorphism (ψ,α,β ,γ) from E to E ′ as in 2.3.1 (b) above induces an isomorphism
(ψ ′, idX , idY , idZ) from γ∗E to (α × β )∗E ′, so that the two biextensions γ∗E and (α × β )∗E ′ of
X×Y by Z′ are isomorphic in the sense of 2.3.1 (c).

(2.3.2) It is clear that for a homomorphism (ψ,α,β ,γ) from a biextension E to a biextension E ′ as
in 2.3.1, the homomorphisms of formal groups α,β and γ are uniquely determined by the morphism
ψ .

Conversely, it is easily seen that if (ψ1,α,β ,γ) and (ψ2,α,β ,γ) are two homomorphisms of
biextensions from E to E ′ with the same individual components α,β ,γ , then there exists an S-
morphism g : X×S Y → Z′ such that ψ2 = (g◦π ′)∗ψ ′. Moreover g : X×S Y → Z′ is a bihomomor-
phism in the sense that

g(x1 + x2,y) = g(x1,y)+g(x2,y), g(x,y1 + y2) = g(x,y1)+g(x,y2)

for all formal scheme T over S, all T -valued points x,x1,x2 of X and all T -valued points y,y1,y2 of
Y . In 2.3.3 below we will see that such a bihomomorphism g : X ×S Y → Z′ is necessarily equal to
the zero map if X and Y are both p-divisible groups over S. Therefore the natural map

Hombiext(E,E ′) −→ Hom(X ,X ′)×Hom(Y,Y ′)×Hom(Z,Z′)
(ψ,α,β ,γ) 7→ (α,β ,γ)

is injective when X and Y are both p-divisible groups over S.

(2.3.3) It is an easy formal fact that if X and Y are both p-divisible groups over S, then every
bihomomorphism g : X×S Y → Z from X×S Y to a sheaf of groups Z over S is identically zero:

(a) The bi-additivity of g implies that

g([pn]X(x1), [pn]Y (y1)) = [p2n]Z(g(x1,y1)) = 0

for all S-scheme T1, all x1 ∈ X [p2n](T1) and all y1 ∈ Y [p2n(T1).

(b) Recall that the morphisms [pn]X [p2n]→X [pn] : X [p2n]→ X [pn] and [pn]Y [p2n]→X [pn] : Y [p2n]→
Y [pn] induced by “multiplication by pn” are both faithfully flat. So for every S-scheme T ,
every x∈ X [pn](T ), and every y∈Y [pn](T ), there exists a faithfully flat morphism f : T1→ T ,
an element x1 ∈ X [p2n](T1) and an element y1 ∈ Y [p2n](T1) such that

x◦ f = [pn]X [p2n]→X [pn] ◦ x1 and y◦ f = [pn]Y [p2n]→Y [pn] ◦ y1.

The desired conclusion that g : X ×S Y → Z is equal to the zero map follows immediately from (a)
and (b).
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(2.3.4) Let E,E ′ be biextensions as in 2.3.1. Let s(x,y) be a section of π : E → X ×S Y extending
ε1 and ε2, and let τ,σ be defined as in 2.2. Similarly let s′(x′,y′) be a section of π : E ′→ X ′×S Y ′)
extending ε ′1 and ε ′2, and define τ ′ : (X ′×S X ′)×S Y ′ → Z′) and σ ′ : X ′×S (Y ′×S Y ′)→ Z′ in the
same way. Define an S-morphism

µ = µψ : X×S Y → Z′

by

(2.3.4.1) ψ(s(x,y)) = µ(x,y)∗ s′(α(x),β (y))

for all points x of X and all points y of Y with values in the same formal scheme over S. It is easy to
verify that

γ(τ(x1,x2;y))− τ
′(α(x1),α(x2);β (y)) = µ(x1,y)+µ(x2,y)−µ(x1 + x2,y)(2.3.4.2)

γ(σ(x;y1,y2))−σ
′(α(x);β (y1),β (y2)) = µ(x,y1)+µ(x,y2)−µ(x,y1 + y2)(2.3.4.3)

for all formal schemes T over S, all T -points x,x1,x2 of X and all T -points y,y1,y2 of Y .

Conversely it is easy to see that every S-morphism µ : X×S Y → Z′ satisfying the two displayed
equations above defines a homomorphism of biextensions from E to E ′.

(2.3.5) REMARK. Let E,E ′ be biextensions as in 2.3.1. The set Hombiext(E,E ′) of all biextension
homomorphisms from E to E ′ does not have a natural group structure. Instead there are two relative
group laws

Hombiext(E,E ′)×Hom(Y,Y ′) Hombiext(E,E ′)−→ Hombiext(E,E ′)

Hombiext(E,E ′)×Hom(X ,X ′) Hombiext(E,E ′)−→ Hombiext(E,E ′)

However even in the case when X ,Y,Z,X ′,Y ′,Z′ are all p-divisible, the natural map

Hombiext(E,E ′)→ Hom(X ,X ′)×Hom(Y,Y ′)

may not be surjective. So in general the set Hombiextn(E,E ′) does not have a natural structure as a
biextension of Hom(X ,X ′)×Hom(Y,Y ′) by Hom(Z,Z′).

(2.4) Let R be a noetherian complete local ring whose residue field R/m has characteristic p. Let
X ,Y,Z be p-divisible groups over S = Spf(R) as in 2.1.

(2.4.1) The trivial biextension of X ×S Y by Z is the natural biextension structure on X ×S Y ×Z,
where the two relative group laws are given by

(x1,y,z1)+1 (x2,y,z2) = (x1 + x2,y,z1 + z2), (x,y1,z1)+2 (x,y2,z2) = (x,y1 + y2,z1 + z2).

A biextension E → X ×S Y by Z is trivial if there is an biextension isomorphism ψ from the
trivial biextension to E which induces idX , idY , idZ on X ,Y,Z respectively. We know from 2.3.3 that
such an isomorphism is unique if one exists. The restriction of ψ to X ×S Y ×S 0Z is called the
canonical splitting of a trivial biextension of X×S Y by Z.

The uniqueness in the previous paragraph implies that for any faithfully flat morphism T → S
and any biextension E → X ×S Y by Z, the base change of the biextension E to T is trivial if and
only if E is trivial.
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(2.4.2) For every biextension E of X ×S Y by Z, there is an associated family θE = (θn,E)n∈N of
bilinear pairings

θn = θn,E : X [pn]×S Y [pn]→ Z[pn], n ∈ N

called the Weil pairing, attached to this biextension E → X ×S Y . A definition of the Weil pairing
and its basic properties will be reviewed in 2.7. The bilinear pairings θn are compatible in the sense
that

(2.4.2.1) θn([p]X(xn+1), [p]Y (yn+1)) = [p]Z (θn+1(xn+1,yn+1))

for all xn+1 ∈ X [pn+1], all yn+1 ∈ Y [pn+1] and all n ∈ N; or equivalently,

θn+1(xn,yn+1) = θn(xn, [p]Y (yn+1))(2.4.2.2)
θn+1(xn+1,yn) = θn([p]X(xn+1),yn)(2.4.2.3)

for all xn ∈ X [pn], xn+1 ∈ X [pn+1], yn ∈ Y [pn], yn+1 ∈ Y [pn+1] and all n ∈ N. See Exp. VIII of [5]
for details.

Denote by Biext1(X ,Y ;Z) the set of all biextensions of X ×S Y by Z up to isomorphisms which
induce idX , idY , idZ on X ,Y and Z; c.f. 2.3.1 (c). It is shown in [6, Prop. 4, p. 319] and also in
Exp. VIII of [5] that the map E 7→ θE establishes a bijection from Biext1(X ,Y ;Z) to the set of all
compatible families of bilinear pairings (θn : X [pn]×Y [pn]→ Z[pn])n∈N; see also 2.6.3.

REMARK. One knows from [5, VII 3.6.5] that for sheaves of abelian groups P,Q,G over a topos,
the set Biext1(P,Q;G) of isomorphism classes of biextensions of P×Q by G is naturally isomorphic
to Ext1(P⊗LQ,G). On the other hand, for p-divisible groups X , Y we have Tor1(X [pn],Y [pn]) ∼=
X [pn]⊗Y [pn]. The construction of the Weil pairing attached to a biextension reflects these two facts.

(2.4.3) The functoriality of the Weil pairing is as follows. Let X ,Y,Z,X ′,Y ′,Z′ be p-divisible groups
over S, let E be a biextension of X ×S Y by Z, and let E ′ be a biextension of X ′×S Y ′ by Z′. Let
(θn,E)n∈N and (θn,E ′)n∈N be the Weil pairings attached to E and E ′ respectively. Suppose that
(ψ,α,β ,γ) is a homomorphism of biextensions from E to E ′. Then

γ(θn,E(xn,yn)) = θn,E ′(α(xn),β (yn))

for all xn ∈ X [pn] and all yn ∈ Y [pn].

(2.4.4) Let E → X ×S Y be a biextension of X ×S Y by Z. For any p-divisible formal group Z′ over
S and any homomorphism ξ : Z→ Z′, the standard push-forward construction yields a biextension
ξ∗(E→ X ×S Y ) of X ×S Y by Z′, plus a homomorphism ψ1 from E→ X ×S Y to ξ∗(E→ X ×S Y ),
which induces idX , idY ,ξ on X ,Y,Z respectively. In addition ξ∗(E → X ×S Y ) satisfies the uni-
versal property that every biextension homomorphisms (ψ,α,β ,ξ ) from E to a biextension E ′ of
X ′×Y ′ by Z′ factors through ψ1. Similarly for any p-divisible groups X1, Y1 over S and any ho-
momorphisms ζ : X1 → X , η : Y1 → Y , the standard pull-back construction yields a biextension
(ζ ,η)∗(E → X ×S Y ) of X1×S Y1 by Z, which satisfies an obvious universal property among biex-
tension homomorphisms (ψ1,α1,β1,γ1) from biextensions E1 → X1×S Y1 to E with α1 = α and
β1 = β .
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It is clear from the consideration of associated Weil pairings that for any isogeny ξ : Z→ Z′, the
push-forward biextension ξ∗(E→ X ×S Y ) is trivial if and only if E→ X ×S Y is. Similarly for any
pair of isogenies ζ : X1→ X , η : Y1→ Y , the pull-back biextension (ζ ,η)∗(E → X ×S Y ) is trivial
if and only if E→ X×S Y is.

(2.4.5) LEMMA. Suppose that X ,Y,Z are p-divisible groups over a field k⊃Fp. Let E→X×Spec(k)
Y be a biextension of X×Spec(k)Y by Z. If we have λ +µ 6= ν for every slope λ of X, every slope µ

of Y and every slope ν of Z, then the biextension E is trivial.

PROOF. By the last paragraph of 2.4, we may assume that k is a perfect field. By 2.4.4, we may
assume that X , Y Z are all product of isoclinic p-divisible groups after suitable push-forward and
pull-back by isogenies. So we are reduced to the case when X , Y , Z are all isoclinic with slopes
λ , µ and ν respectively. The assumption that ν 6= λ +µ implies immediately that the Weil pairing
attached to E vanishes identically.

(2.5) The Weil pairing as descent data over torsion subgroup schemes
We review in 2.5.1

(a) the definition of the Weil pairing attached to a biextension E → X ×Y of p-divisible groups
X×Y by a p-divisible group Z, and

(b) how to construct a biextension En of X [pn]×Y [pn] by Z by descending the split biextension

Z×X [pn]×Y [p2n]→ X [pn]×Y [p2n]

along the faithfully flat morphism

1× pn : X [pn]×Y [p2n]→ X [pn]×Y [pn]

using the descent datum given by a bihomomorphism θn : X [pn]×Y [pn]→ Z[pn].

The descent construction reviewed in 2.5.1 (iii), (iv) has many applications. For instance it implies
that if the Weil pairings θn1,E , θn1,E ′ attached biextensions E, E ′ of p-divisible groups X ×Y by Z
at a fixed level [pn1] coincide, then there exists a canonical isomorphism between the restrictions
of the biextensions E and E ′ to X [pn1]×Y [pn1]; see 2.5.4 and its Dieudonné theory version 2.6.3,
2.6.4.

(2.5.1) We first recall the explicit construction of the Weil pairing θn : X [pn]×Y [pn]→ Z[pn] in [6,
pp. 320–321].

(i) Construct a natural map
ξn : X [pn]×Y [p2n]→ En

such that the diagram

X [pn]×Y [p2n]
ξn //

=
��

En

πn
��

X [pn]×Y [p2n]
1×pn

// X [pn]×Y [pn]

commutes.
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Given any S-scheme T , any x∈X [pn](T ), any y∈Y [p2n](T ), there exist a scheme T1 faithfully
flat and locally of finite presentation over T and an element z1 ∈ E(T1) which lies above (x,y)
such that when one multiplies z1 by pn with respect to the first partial group law +1, we have

[pn]+1(z1) = ε1(y).

Such an element z1 is not unique, but any two choices differ by an element of Z[pn]. Define
ξn(x,y) as pn times z1 with respect to the second group law +2:

ξn(x,y) := [pn]+2(z1).

Clearly the right hand size of the above equality is independent of the choice of the element z1,
where we have used the first group law +1 to produce a Z[pn]-torsor lying above the S-point
(x,y) of X [pn]×Y [p2n]. By descent we conclude that ξn(x,y) ∈ En(S). We have produced the
desired morphism ξn : X [pn]×Y [p2n]→ En.

(ii) Define a morphism αn : Z×X [pn]×Y [p2n]−→ En = π−1(X [pn]×Y [pn]) by

αn(z,x,y) := z∗ξn(x,y)

for all S-scheme T , all z ∈ Z(T ), all x ∈ X [pn](T ) and all y ∈ Y [p2n](T ). It is easy to see that
the following commutative diagram

Z×X [pn]×Y [p2n]
αn //

pr23
��

En

π|En
��

X [pn]×Y [p2n]
1×pn

//1×pn
// X [pn]×Y [pn]

is cartesian. So the biextension πn : En→ X [pn]×Y [pn] is descended along the faithfully flat
morphism

1× pn : X [pn]×Y [p2n]−→ X [pn]×Y [p2n]

from the trivial biextension pr23 : Z×X [pn]×Y [p2n]−→ X [pn]×Y [p2n].

(iii) Construct a bihomomorphism

θn : X [pn]×Y [pn]−→ Z[pn]

using the descent datum for αn.

The effect of translation by elements of Y [pn] to the isomorphism αn is recorded by a map
θ ′n : X [pn]×Y [p2n]×Y [pn]→ Z, defined by

αn(λ ,x,y) = αn(λ +θ
′
n(x,y,b),x,y+b)

for all S-scheme T , all λ ∈ Z(T ), all x ∈ X [pn](T ), all y ∈ Y [p2n](T ) and all b ∈ Y [pn](T ).
An easy calculation shows that θ ′n(x,y,b) is independent of y. In other words there exists an
S-morphism θn : X [pn]×Y [pn]→ Z such that the last displayed equation simplifies to

αn(λ ,x,y,b) = αn(λ +θn(x,b),x,y+b).

An easy calculation shows that θn is a bihomomorphism, hence it factors through the closed
subgroup scheme Z[pn] ↪→ Z.
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(iv) Reversing the construction, it is easy to see that θn encodes the descent datum from the trivial
biextension Z×X [pn]×Y [p2n] down to En: the bihomomorphism θn gives an X [pn]-action of
the base change to X [pn] of the group scheme Y [pn], on the X [pn]-scheme Z×X [pn]×Y [p2n].

(2.5.2) REMARK. The two partial group laws play different roles in the construction the mor-
phisms ξn and θn. If one interchanges the roles played by the two partial group laws, we get another
bihomomorphism ηn : X [pn]×Y [pn]→ Z[pn].

Claim. The bihomomorphism ηn : X [pn]×Y [pn]→ Z[pn] is equal to −θn.

Before proving the claim, it is convenient to rephrase the definition of θn as follows.

(a) The fiber product
Tn := π

−1(X [pn]×Y [pn])×([pn]+1 ,E,ε1)Y

has a natural structure as a biextension of X [pn]×Y [pn] by Z[pn], contained in the biextension
π−1(X [pn]×Y [pn]), of (X [pn]×Y [pn]) by Z.

(b) The bihomomorphism θ : X [pn]×Y [pn]→ Z[pn] is characterised by the property that

[pn]+2|Tn = (θn ◦π|Tn)∗ (ε2 ◦pr1)|Tn

We verify the above claim by descent. Suppose that R is a commutative algebra over the base
field k, and we are given elements x∈ X [pn](R), b∈Y [pn](R), and an element e∈ E(R) with π(e) =
(x,y) which satisfies the normalization condition [pn]+1(e) = ε1(b) with respect to the group law
+1. By definition θn(x,b) is the unique element in Z[pn](R) such that [pn]+2(e) = θn(x,b)∗ ε2(x).

Pick a finite faithfully flat R-algebra S such that there exists an element ξ ∈ Z[p2n](S) with
[pn]Z(ξ ) = −θn(x,b). Then we have [pn]+2(ξ ∗ e) = ε2(x), so the element ξ ∗ e ∈ E(S) over (x,b)
satisfies the normalization condition with respect to the group law +2. Moreover we have

[pn]+1(ξ ∗ e) = [pn]Z(ξ )∗ ε1(x).

So ηn(x,b) = [pn]Z(ξ ) according to the definition of ηn, i.e. ηn(x,b) =−θn(x,b).

(2.5.3) LEMMA. Let π : E→ X×Y be a biextension of p-divisible groups X×S Y by a p-divisible
group Z over a base scheme Y . For each positive integer n , let θn : X [pn]×S Y [pn]→ Z[pn] be the
canonical bihomomorphism as described in 2.5.1.

(1) Suppose that n1 is a positive integer and θn1 is equal to the trivial bihomomorphism from
X [pn1]×S Y [pn1] to Z[pn1]. Then the biextension π−1(X [pn1]×S Y [pn1]) of X [pn1]×S Y [pn1]
by Z splits canonically. In other words there exists a canonical isomorphism

ζ
can
n1

: π
−1(X [pn1 ]×S Y [pn1])

∼−→ Z×S X [pn1]×S Y [pn1].

(2) Suppose that n2 is a positive integer, n2 > n1 and θn2 is equal to the trivial bihomomorphism.
Then θn1 is also equal to the trivial bihomomorphism. Moreover the canonical trivializations
ζ can

n1
and ζ can

n2
are compatible, i.e. ζ can

n1
is equal to the restriction to π−1(X [pn1]×S Y [pn1]) of

ζ can
n2

.
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PROOF. We saw in 2.5.1 that the pull-back of π−1(X [pn1]×S Y [pn1]) to X [pn1]×S Y [p2n1] by the
faithfully flat morphism 1× pn1 : X [pn1]×S Y [p2n1]→ X [pn1]×S Y [pn1] is canonically trivial, and
the bihomomorphism θn1 corresponds to the descent data from the trivial biextension Z×X [pn1]×S
Y [p2n1] down to πn1 along the morphism 1× pn1 : X [pn1]×S Y [p2n1]→ X [pn1]×S Y [pn1]. So if θn1

is the trivial homomorphism, then this descent datum defines a canonical isomorphism between the
π−1(X [pn1]×S Y [pn1]) and the trivial biextension Z×X [pn1]×Y [pn1]). We have proved statement
(1).

The first part of (2) follows from the compatibility of Weil pairings 2.4.2.2 and 2.4.2.3. The
compatibility statement (2) follows from the same descent argument used in the proof of (1).

Proposition 2.5.4 and Corollary 2.5.5 below are applications of 2.5.1 (iv). It enables us to de-
termine the restriction of a homomorphism between two biextensions to torsion subgroups schemes
X [pn]×Y [pn].

(2.5.4) PROPOSITION. Let π : E→ X×SY and π ′ : E ′→ X×SY be two biextensions of p-divisible
groups X ×S Y by a p-divisible group Z over S. Let (θn,θ

′
n : X [pn]×Y [pn]→ Z[pn])n∈N be the

bihomomorphisms attached to the biextensions E and E ′ respectively.

(1) If n1 is a positive integer and θn1 = θ ′n1
, then there exists a canonical isomorphism

ζn : π
−1(X [pn1]×Y [pn1])

∼−→ (π ′)−1(X [pn1]×Y [pn1])

determined by θn and θ ′n.

(2) Suppose that n2 > n1 and θn2 = θ ′n2
. Then θn1 = θ ′n1

and the canonical isomorphism

ζn1 : π
−1(X [pn1]×Y [pn1 ])

∼−→ (π ′)−1(X [pn1]×Y [pn1])

is compatible with the canonical isomorphism

ζn2 : π
−1(X [pn2]×Y [pn2])

∼−→ (π ′)−1(X [pn2]×Y [pn2]).

(3) Suppose that θn = θ ′n for all n ∈ N. Then the collection of canonical isomorphisms

ζn : π
−n(X [pn]×Y [pn])

∼−→ (π ′)−n(X [pn]×Y [pn]), n ∈ N

defines an isomorphism from the biextension E to the biextension E ′ which induces idX , idY
and idZ on the p-divisible groups X, Y and Z.

(4) Suppose that ζ : E → E ′ is an isomorphism of biextensions which induces idX , idY and idZ
on the p-divisible groups X, Y and Z. Then θn = θ ′n for all n ∈ N, and the restriction of ζ to
π−1(X [pn]×Y [pn]) is equal to the canonical isomorphism

ζn : π
−1(X [pn1]×Y [pn1 ])

∼−→ (π ′)−1(X [pn1]×Y [pn1])

attached to θn and θ ′n, for all n ∈ N.
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PROOF. The biextension structures on E and E ′ endow the Z-torsor E ∧Z ([−1]Z)∗E ′ over X ×Y
a structure of a biextension of X ×Y by Z. The statements (1), (2) follow from 2.5.3 applied to
E ∧Z ([−1]Z)∗E ′. The statement (3) follows from (2).

To prove the statement (4), we observe first that the functoriality of the Weil pairings tell us that
θn = θ ′n for all n. By (3), the canonical isomorphisms ζn are compatible and defines an isomorphism
of biextensions ζ ′ : E→ E ′ over X×Y . There exists a unique morphism

b : X×S Y → Z

such that
ζ
′(e) = b(π(e))∗ζ (e)

for all S-scheme T and all e ∈ E(T ). Clearly b : X×S Y → Z is a bihomomorphism in the sense that

b(x1 + x2,y) = b(x1,y) and b(x,y1 + y2) = b(x,y1)+b(x,y2)

for all S-schemes T , all x,x1,x2 ∈ X(T ) and all y,y1,y2 ∈ Y (T ). We know from 2.3.3 that such a
bihomomorphism is necessarily zero. We have shown that ζ ′ = ζ .

(2.5.5) COROLLARY. Let X ,Y,Z,X ′,Y ′,Z′ be p-divisible groups over S. Let E be a biextension
of X ×S Y by Z, and let E ′ be a biextension of X ′×S Y ′ by Z′. There is a natural bijection from
the set Hombiext(E,E ′) of all S-bihomomorphisms from E to E ′, to the set of all triples (α,β ,γ) ∈
HomS(X ,X ′)×HomS(Y,Y ′)×HomS(Z,Z′) such that

γ(θn,E(xn,yn)) = θn,E ′(α(xn),β (yn))

for all n ∈ N, all schemes T over S, all xn ∈ X [pn](T ), and all yn ∈ Y [pn](T ).

(2.6) Dieudonné theory for biextensions
Suppose that k is a perfect field of characteristic p > 0. We review the covariant Dieudonné

theory for biextensions of p-divisible groups over k the associated Weil pairings. Let W =W (k) be
the ring of all p-adic Witt vectors with entries in k. It is well-known that W (k) is a complete discrete
valuation ring of mixed characteristics (0, p), pW (k) is the maximal ideal of W (k) and W (k)/pW (k)
is naturally isomorphic to k. Let σ : W (k)→W (k) be the map

x = (x0,x1,x2, . . .) 7→ σx = (xp
0 ,x

p
1 ,x

p, . . .),

and let V : W (k)→W (k) be the map

x = (x0,x1,x2, . . .) 7→ Vx = (0,x0,x1,x2, . . .)

on W (k). It is well-known that σ is a ring automorphism of W (k) (because the field k is assumed to
be perfect), V is an additive endomorphism of W (k), and

V(σx) = px = σ (Vx) ∀x ∈W (k).
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(2.6.1) The classical covariant Dieudonné theory attaches to every p-divisible formal group X over
k a free W (k)-module M∗(X) whose rank is equal to height(X), together with additive endomor-
phisms

F, V : M∗(X)−→M∗(X)

of M∗(X) such that

F(ax) = σaF(x), V (σax) = aV (x) and F(V (x)) = px =V (F(x))

for all a ∈W (k) and all x ∈M∗(X). A triple (M,F,V ), where M is a free W (k)-module of finite
rank, and F,V are additive endomorphisms of M satisfying the conditions in the above displayed
formula, is called a Dieudonné module for k.

The main theorem of the classical covariant Dieudonné theory asserts that the assignment

X 7→M∗(X)

establishes an equivalence of categories from the additive category of p-divisible groups over k to
the additive category of Dieudonné modules for the perfect base field k.

(2.6.2) Let X ,Y,Z,X ′,Y ′,Z′ be p-divisible groups and let M∗(X),M∗(Y ), . . . ,M∗(Z′) be their co-
variant Dieudonné modules.

We have seen in 2.5.4 and 2.5.5 that the map which to every biextension E of X ×Y associates
the compatible family of Weil pairing (θn,E)n∈N establishes an equivalence of categories, from the
category of biextensions of X×Y by Z, to the category of compatible families of bilinear pairings

(bn : X [pn]×Y [pn]→ Z[pn])n∈N .

Moreover the set of all bihomomorphisms ψ : E → E ′ from a biextension E of X ×Y by Z to a
biextension E ′ of X ′×Y ′ by Z′ is in natural bijection with the set of all triples

(α,β ,γ) ∈ Homk(X ,X ′)×Homk(Y,Y ′)×Homk(Z,Z′)

such that
γ(θn,E(xn,yn)) = θn,E ′(α(xn),β (yn))

for all k-schemes T , all xn ∈ X [pn](T ) and all yn ∈ Y [pn](T ). We explain how to express these
statements in terms of Dieudonné modules.

(2.6.3) PROPOSITION. Notation as above.

(i) To every biextension E of X×Y by F, there is an associated W (k)-bilinear map

ΘE : M∗(X)×M∗(Y )−→M∗(Z)

such that

ΘE(FM∗(X)(x),y) = FM∗(Z)
(
ΘE(x,VM∗(Y )(y))

)
, ΘE(x,FM∗(Y )(y)) = FM∗(Z)

(
ΘE(VM∗(X)x,y)

)
and

ΘE
(
VM∗(X)x,VM∗(Y )y

)
=VM∗(Z) (BE(x,y))

for all x ∈M∗(X) and all y ∈M∗(Y ).
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(ii) For every W (k)-bilinear map

Θ : M∗(X)×M∗(Y )−→M∗(Z)

satisfying the conditions that

Θ(FM∗(X)(x),y) = FM∗(Z)
(
Θ(x,VM∗(Y )(y))

)
, Θ(x,FM∗(Y )(y)) = FM∗(Z)

(
Θ(VM∗(X)x,y)

)
and

Θ
(
VM∗(X)x,VM∗(Y )y

)
=VM∗(Z) (B(x,y))

for all x ∈M∗(X) and all y ∈M∗(Y ), there exists a biextension E of X ×Y by Z such that
B = BE . Moreover such a biextension E is unique up to unique isomorphism.

(iii) Given a biextension E of X ×Y by Z and a biextension E ′ of X ′×Y ′ by Z′, the natural map
from the set of all homomorphisms of biextensions

(ψ : E→ E ′,α : X → X ′,β : Y → Y ′,γ : Z→ Z′) ∈ Hombiext(E,E ′)

to the set of all triples ( f ,g,h) satisfying the conditions

– f ∈ HomW (k),F,V (M∗(X),M∗(X ′)),

– g ∈ HomW (k),F,V (M∗(Y ),M∗(Y ′)),

– h ∈ HomW (k),F,V (M∗(Z),M∗(Z′)),

– h(ΘE(x,y)) = Θ′E( f (x),g(y)) ∀x ∈M∗(X), ∀y ∈M∗(y)

is a bijection.

(2.6.4) COROLLARY. Notation as in 2.6.3. In particular E → X ×Y is a biextension of X ×Y by
Z and ΘE is the W (k)-bilinear map from M∗(X)×M∗(Y ) to M∗(Z) attached to the biextension Z.

(1) The group Autbiext(E) of all automorphisms of the biextension E has a natural structure as a
compact p-adic Lie group. It is naturally isomorphic to the closed subgroup of

AutW,F,V (M∗(X))×AutW,F,V (M∗(Y ))×AutW (M∗(Z))

consisting of all triples

(α,β ,γ) ∈ AutW,F,V (M∗(X))×AutW,F,V (M∗(Y ))×AutW,F,V (M∗(Z))

such that
γ(ΘE(x,y)) = ΘE(α(x),β (y)) ∀x ∈M∗(X), ∀y ∈M∗(Y ).

Here AutW,F,V (M∗(X)) denotes the compact p-adic Lie group consisting of all W (k)-linear
automorphisms of M∗(X) which commute with FM∗(X)) and VM∗(X)); it is naturally isomorphic
to the group Aut(X) of all automorphisms of the p-divisible group X. The same notation
scheme is applied to AutW,F,V (M∗(Y )) and AutW,F,V (M∗(Z)).
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(2) The Lie algebra of the compact p-adic Lie group Autbiext(E) is naturally isomorphic to the
Lie subalgebra of EndK,F,V (M∗(X)Q)⊕EndK,F,V (M∗(Y )Q)⊕EndK,F,V (M∗(Z)Q) consisting
of all triples

(A,B,C) ∈ EndW,F,V (M∗(X))Q⊕EndK,F,V (M∗(Y ))Q⊕EndK,F,V (M∗(Z))Q

which satisfy the condition that

C(ΘE(x,y)) = ΘE(Ax,y)+ΘE(x,By) ∀x ∈M∗(X), ∀y ∈M∗(Y ).

Here K :=W (k)[1/p] =W (k)⊗ZQ, M∗(X)Q := M∗(X)[1/p] and EndK,F,V (M∗(X)) denotes
the set of all K-linear endomorphisms of M∗(X)Q which commute with F and V ; it is naturally
isomorphic to the Lie algebra of the compact p-adic Lie group AutW,F,V (M∗(X))∼= Aut(X).

(2.6.5) DEFINITION. Let G be a compact p-adic Lie group, which is closed subgroup of the group
of all Qp-points of a linear algebraic group over Qp. Let k ⊃ Fp be a perfect field of characteristic
p. Let W = W (k) be the ring of p-adic Witt vectors with entries in k, and let K = W [1/p] be the
fraction field of W .

(a) Let U be a p-divisible group over k, and let M(U) be the covariant Dieudonné module of
U ×Spec(k) Spec(k). Let ζ : G→ Aut(U) be a continuous homomorphism. We say that the
action of G on U is strongly non-trivial if there does not exist a pair N1 $ N2 of K-vector
subspaces of M⊗W K stable under the action of Lie(G) such that the induced action of Lie(G)
on N2/N1 is trivial.

(b) Let X ,Y,Z be p-divisible groups over k. Let E→ X×Spec(k)Y be a biextension of X×Spec(k)Y
by Z. Let ρ : G→Autbiext(E) be a continuous action of G on E which respects the biextension
structure of E. Let α : G→ Aut(X), β : G→ Aut(Y ), and γ : G→ Aut(Z) be the continuous
actions of G on X , Y and Z induced by ρ . We say that the action of G on E is strongly non-
trivial if the actions α , β γ of G on X , Y , Z are all strongly non-trivial, or equivalently if the
action of G on X×Y ×Z is strongly non-trivial.

REMARK. In the definition (a) above, if we require in addition that N1,N2 are both stable under F
and V , the resulting new definition of the notion “strongly non-trivial”, though apparently weaker,
is actually equivalent to the definition in (a). The proof is left as an exercise.

(2.7) Canonical trivializations over torsion subgroup schemes.
Let X ,Y,Z be p-divisible groups over a base scheme S. Let π : E → X ×S Y be a biextension of

X×SY by Z. Let En := π−1(X [pn]×SY [pn]) be the restriction of the biextension E to X [pn]×SY [pn];
it is a biextension of X [pn]×S Y [pn] by Z The push-forward ([pn]Z)∗En of En by the homomorphism
[pn]Z : Z→ Z is again a biextension of X [pn]×S Y [pn] by Z. In this subsection we will construct a
natural splitting of the biextension ([pn]Z)∗En.

(2.7.1) Definition of ηn : En→ Z Let ([pn]Z)∗(E) be the push-forward of the biextension π : E→
X×S Y by [pn]Z , and let fn : E→ ([pn]Z)∗(E) be the tautological map from E to its push-forword by
[pn]Z . Clearly bihomomorphism θn,([pn]Z)∗(E) : X [pn]×S Y [pn]→ Z[pn] attached to the biextension
([pn]Z)∗(E) is equal to 0, by the functoriality of the Weil pairings. Let

ζ
can
n,([pn]Z)∗(E) : ([pn]Z)∗(E)

∼−→ Z×S×X [pn]×S Y [pn]
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be the canonical splitting as in 2.5.3. Let pr1 : Z×S X [pn]×S Y [pn]→ Z be the projection to Z.
Define ηn : En→ Z to be the composition

ηn := pr1 ◦ζ
can
n,([pn]Z)∗(E) ◦ fn.

(2.7.2) ALTERNATIVE DEFINITION of ηn. One can also define ηn directly using the construction
of the biextension En→ X [pn]×S Y [pn] by descent in 2.5, with the descent datum given by the Weil
pairing θn of the biextension E. We will use the notation in 2.5.

Let
η
′
n := [pn]Z ◦pr1 : Z×S X [pn]×S Y [p2n]−→ Z

be the composition of the projection pr1 : Z×S X [pn]×S Y [p2n]→ Z with the endomorphism [pn]Z :
Z → Z of Z. Obviously η ′n((λ ,x,y)) = η ′n(λ + θ ′n(x,y,b),x,y + b) for all S-scheme T , all x ∈
X [pn](T ), all y ∈ Y [pn](T ) and all b ∈ Y [pn](T ). Therefore η ′n factors through the faithfully flat
morphism αn : Z×X [pn]×S Y [p2n] −→ En. Here αn is the faithfully flat morphism in 2.5 which
expresses the biextension En→ X [pn]×S Y [pn] as a descent of the trivial biextension Z×S X [pn]×S
Y [p2n], with the descent datum encoded by the Weil pairing θn. By descent there exists a unique
morphism ηn : En→ Z such that

η
′
n = ηn ◦αn .

An easy exercise shows that the morphism ηn defined above coincides with the morphism ηn defined
in 2.7.1.

(2.7.3) From the definitions of αn and ηn it is not difficulty to verify that the compatibility relation

[p]Z ◦ηn = ηn+1 ◦ (En ↪→ En+1)

holds for all n ∈ N.

§3. Complete restricted perfections in characteristics p, I
In §2.7 we defined a compatible sequence of morphisms

{
ηn : π−1E =: En→ Z

}
n∈N for any biex-

tension of E of p-divisible groups X ,Y by another p-divisible group Z, over an arbitrary base scheme
S. In this section we will consider the special case when S is the spectrum of a perfect field k ⊃ Fp.
An interesting phenomenon reveals itself in the special case described in 3.1, and the compatible
sequence of morphisms (ηn) lead us to families commutative rings, whose elements consists of
formal series of the form

∑
(i1,...,im)∈Z[1/p]m≥0

∈ Z[1/p]m≥0 ai1,...,im t i1
1 t i2

2 · · · t
im
m

with coefficients ai1,...,im ∈ k, subject to the condition roughly of the following form

|I|p ≤C · |I|E∞,max

for every I such that aI 6= 0, where C,E > 0 are parameters which define the ring. Here for any
multi-index I = (i1, . . . , im) ∈ Z[1/p]m≥0, |I|p is the p-adic norm of I and |I|∞,max is the archimedean
norm of I, defined by

|I|p := max(p−ordp(i1), . . . , p−ordp(i1)), and |I|∞,max := max(i1, i2, . . . , im).
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These rings do not seem to have appeared in the literature, but they hold the key to the local rigidity
for biextensions of p-divisible groups. In this section we give the motivation and definition of these
new rings.

(3.1) Assumptions. To focus on the key features in the proof of local rigidity of biextensions of
p-divisible formal groups, we make three additional assumptions.

(0) The base field k is algebraically closed.

(1) The p-divisible group Z has a slope µ1 which is strictly bigger than every slope of X and every
slope of Y .

(2) The p-divisible group Z is isomorphic to a product Z1×Z2 of two p-divisible formal groups,
such that Z1 is isoclinic of slope µ1.

(3) There exist positive integers a,r > 0 such that

µ1 =
a
r

and Ker([pa]Z1) = Frr
Z1/k ,

where Frr
Z1/k : Z1→ Z(pr)

1 is the r-th iterate of the relative Frobenius morphism for Z1/k.

It follows from assumptions (0) and (3) that there exists elements u1, . . . ,ub ∈ Γ(Z1,OZ1) such that
the affine coordinate ring of Z1 is the formal power series ring k[[u1, . . . ,ub]], and

[pa]∗Z1
(ui) = upr

i ∀ i = 1, . . . ,b.

REMARK. Suppose that E is a biextension of p-divisible formal groups X ×Y over k by a p-
divisible formal group Z′ over k such that the Z′ has a slope µ1 which is strictly bigger than all slopes
of X and Y . There exists an isogeny β : Z′→ Z of p-divisible groups such that the assumptions (2)
and (3) hold for Z and also for the push-forward β∗E ′ of E by β .

(3.2) Choose and fix a positive rational number µ0 < a
r such that µ0 is strictly bigger than every

slope of Z2×X×Y . Multiplying both a and r by a suitable positive integer, we may and do assume
that µ0 has the form

µ0 =
a
s
, s > r, s ∈ N>0

From the general properties of slopes we know that there exists a constant m0 such that

(3.2.1) X [pm]⊃ Ker(Frbm/µ0c
X/k ) and Y [pm]⊃ Ker(Frbm/µ0c

Y/k )

for all m≥ m0. Therefore

(3.2.2) X [pna]⊃ Ker(Frns
X/k) and Y [pna]⊃ Ker(Frns

Y/k)

for all n≥ n0 := dm0
a e. On the other hand, assumption (3) implies that

Ker([pna]Z1) = Ker(Frnr
Z1/k)

for all n ∈ N.
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REMARK. (a) In practice we will choose µ0 to be “just a tiny bit bigger than the maximum of the
slopes of X and Y ”.
(b) If we choose µ0 to be the maximum of the slopes of X and Y , then the estimate in 3.2.2 needs to
be changed to: there exists a constant e (depending on X and Y ) such that

(3.2.3) X [pna]⊃ Ker(Frns−e
X/k ), and Y [pna]⊃ Ker(Frns−e

Y/k )

for all n≥ n0 := dm0
a e.

(3.3) Let R = RE be the coordinate ring of E, let m=mE be the maximal ideal of R. Let φ = φR be
the absolute Frobenius endomorphism of R which sends every element x ∈ R to xp. For every n∈N,
let

m(pn) := φ
n(m) ·R

be the ideal of R generated by φ n(m). Clearly m(pn) ⊂ mpn
for all n ∈ N, where mpn

is the pn-th
power of the maximal ideal m. In other words mpn

is the ideal of R generated by all products of the
form ∏1≤ j≤pn x j, with x j ∈m for all j. If t1, . . . , tm is a regular system of parameters of the complete
regular local ring R, then m(pn) is the ideal (t pn

1 , . . . , t pn

m ) in R = k[[t1, . . . , tm]], while mpn
is the ideal

generated by all monomials of the form ∏1≤ j≤m t i j
j with i1, . . . , im ∈ N and i1 + · · ·+ im ≥ pn. It is

clear from the above that
mpn
⊆m(pn−a) if pa ≥ m,

because if a multi-index I = (i1, . . . , im)∈Nm has the property that ||I|| := ∑
m
j=1 i j ≥ pn, then at least

one of the indices i1, . . . , im is ≥ pn

m . Let

E[Fn] := Spec
(

R/m(pn)
)
= Spec(R/φ

n(m)R) , E modmpn
:= Spec

(
R/mpn

)
.

Similarly we have Artinian subschemes X [Fn], X modmpn

X ⊂ X , Z1[Fn], Z1 modmpn

Z1
⊂ Z1, etc.

(3.3.1) In 2.7 we constructed a family of morphisms ηn : En = π−1(X [pn]×Y [pn])→ Z such that
[p]Z ◦ηn = ηn+1|En for all n. From 3.2.2 we know that E[Fns] ⊂ Ena for all n ≥ n0, where a and
s are the positive integers chosen in 3.2 so that a

s is strictly bigger than every slope of X or Y
and both s and a are sufficiently divisible. The restriction of ηna to E[Fns] makes sense for all
n≥ n0 because E[Fns]⊂ Ena. This restriction is a morphism from E[Fns] to Z[Fns]. The projection
prZ1

: Z = Z1×Z2→ Z1 induces a morphism prZ1
: Z[Fns]→ Z1[Fns].

(3.3.2) DEFINITION. Define a morphism ρna by composing ηna with prZ1
:

ρna := prZ1
◦ηna|E[Fns] : E[Fns]−→ Z1[Fns] ∀n≥ n0

The morphisms
(
ρna
)

n≥n0
satisfy the following compatibility relations

[pa]Z1 ◦ρna = ρ(n+1)a|E[Fns] ∀n≥ n0

Let u1, . . . ,ub be a regular system of parameters of the coordinate ring of Z1 as in 3.1, so that
Z1 = Spf(k[[u1, . . . ,ub]]) and

[pa]∗Z1
(u j) = upr

j ∀ j = 1, . . . ,b.
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(3.3.3) DEFINITION. Define elements a j,n ∈ RE

/
m

(psn)
E for all j = 1, . . . ,b and all n≥ n0, by

a j,n = ρ
∗
na(u j) ∈ RE

/
m

(pns)
E .

The compatibility relations for the ρn’s in 3.3.2 and the fact that [pa]∗Z1
(u j) = upr

j imply that

(†) apr

j,n ≡ a j,n+1 (mod m
(pns+r)
E )

for all n≥ n0 and all j = 1, . . . ,b.

REMARK. (a) The Frobenius map φ r on RE induces injective ring homomorphisms

φ
r : RE/m

(psn)
E → RE/m

(psn+r)
E

for all n. In particular the element apr

j,n on the left hand side of (†) is an element of RE/m
(psn+r)
E

uniquely determined by the element a j,n ∈ RE/m
(psn)
E .

(b) The compatibility relation (†) makes the limit procedure in 3.4.2 a little neater than it would
have been, had we used the slightly coarser congruence

apr

j,n ≡ a j,n+1 (mod m
(pns)
E )

instead of (†).

(3.4) We saw in 3.3.3 that the compatible family of morphisms ρn : E[Fns]→ Z1[Fns] is given by b
sequences (

a j,n ∈ RE/m
(pns)
E

)
n≥n0

of elements in Artinian local rings RE/m
(pns)
E which satisfy the relation (†) in 3.3.3. Each of the

chosen coordinates u1, . . . ,ub of the p-divisible formal group Z1 gives rise to a compatible sequence
of elements in RE/m

(pns)
E .

It is natural to try to formulate a convenient version of the “limit” of a given compatible sequence
of elements in RE/m

(pns)
E (other than just the sequence itself). We record the definition of φ r-

compatibility in 3.4.1 (a) below, together with a variant coarser version in 3.4.1 (b).
The following notations will be used in 3.4.1. Let κ ⊃ Fp be a perfect field. Let n0 be a

natural number. Let r < s be positive integers. Let t1, . . . , tm be m variables. We adopt the notation
t := (t1, . . . , tm) and κ[[t]] := κ[[t1, . . . , tm]]. Let

(t pns
) = (t)(pns) := (t pns

1 , . . . , t pns

m ).

Let (t)pns
be the ideal of κ[[t]] generated by all monomials tI := t i1

1 · · · t im
m , where I = (i1, . . . , im) ∈

Nm ranges through all m-tuples in Nm with |I|σ := i1 + · · ·+ im = n. Let φ be the Frobenius map on
κ[[t]] which sends every element of κ[[t]] to its p-th power.

(3.4.1) DEFINITION. We follow the notation in the previous paragraph.
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(a) A sequence of elements (an)n≥n0 with an ∈ κ[[t]]/(t pns
) for all n is φ r-compatible if

apr

n ≡ an+1 (mod (t pns+r
)) ∀n≥ n0

(b) A sequence of elements (an)n≥n0 with an ∈ κ[[t]]/(t)pns
for all n is φ r-compatible if

apr

n ≡ an+1 (mod (t)pns+r
) ∀n≥ n0

REMARK. The version (b) is different from (a) in that the element an is in the congruence class
modulo the ideal (t)pns

, which is bigger than the ideal (t pns
). We will mostly use (a) because this

version provides more information. For the proof of local rigidity version (b) will also be adequate.

(3.4.2) Suppose we are given a φ r-compatible sequence (an)n≥n0 with an ∈ κ[[t]]/(t pns
) for all

n≥ n0. Formally the compatibility relation suggests that

φ
−nr(apr

n )≡ φ
−(n+1)r(an+1) (mod φ

−nr((t pns
)
)
) ∀n≥ n0.

Here we have used φ−nr((t pns
)
)

instead of φ−(n+1)r((t pns+r
)
)

to make the congruence relation look
better and more suggestive. Thus it seems reasonable to try to produce a “limit” of the sequence
φ−nran as n→ ∞ in some suitable way.

There is an obvious problem: an has representatives in κ[[t]], but in general none of the repre-
sentatives is in φ nr(κ[[t]]). We need to use at least some elements in the perfection

κ[[t]]perf =
⋃
n

κ[[t p−n
]] =

⋃
n

κ[[t p−n

1 , . . . , t p−n

m ]].

of κ[[t]]. Note that this perfection is not complete for the topology defined by the filtration by total
degree. For our purpose we don’t have to be concerned too much about κ[[t]]perf or its completion.
We will focus rather on what comes out of the limit procedure for φ r-compatible sequences in the
Artinian local rings κ[[t]]/(t pns

).

(3.4.3) Notation involving multi-indices.

(i) For each index I = (i1, . . . , im) ∈ Nm, let

tI := t i1
1 · · · t

im
m

be the corresponding monomial in the variables t1, . . . , tm.

(ii) Among the archimedean norms on Qm, we will use the following two: for J = ( j1, . . . , jm) ∈
Qm,

|J|∞ := max(| j1|, . . . , | jm|), |J|σ := | j1|+ · · ·+ | jm|.

Obviously
|J|∞ ≤ |J|σ ≤ m · |J|∞ ∀J ∈Qm
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(iii) There is also the following p-adic norm on Qm:

|J|p := max(| j1|p, . . . , | jm|p)

where | · |p is multiplicative p-adic absolute value on Q, defined by |x|p = p−ordp(x) for all
x ∈Q, so that |p|= 1

p and |x|p = 1 if both the numerator and denominator of x are prime to p.

Define
ordp(J) := Min(ordp( j1), . . .ordp( jm)) ,

hence
|J|p = p−ordp(J).

We will use the restriction of these norms to N[1/p]m := Z[1/p]m≥0, the additive semigroup of expo-
nents with p-power denominators.

(3.5) We will approach the limit problem in 3.4.2 in a lowbrow fashion first.

(3.5.1) Suppose we are given a φ r-compatible sequence (an)n≥n0 with an ∈ κ[[t]]/(t pns
) for all

n≥ n0. For each n≥ n0, write the element an ∈ κ[[t]]/(t pns
) as

an = ∑
J∈Nm, |J|∞<pns

an,J tJ mod (t pns
).

Clearly the coefficients an,J ∈ κ with |J|∞ are uniquely determined by an. The compatibility relation
apr

n ≡ an+1 (mod (t pns+r
)) means that an+1,J = an,p−rJ for all J ∈ Nm with |J|∞ < pns+r and all

n≥ n0. More precisely,

(‡) an+1,J =

{
0 if |J|∞ < pns+r, p−rJ 6∈ Nm

apr

n,p−rJ if |J|∞ < pns+r, p−rJ ∈ Nm

for all n≥ n0. Thus the among the coefficients an,J for a fixed natural number n≥ n0+1, those with
|J|∞ < p(n−1)s+r arises from coefficients an′,J′ with n′ < n. More precisely suppose that n≥ n0 +1,
then the following statements hold.

- If |J|∞ < p(n−1)s+r and J is not divisible by pr, then an,J = 0.

- If |J|∞ < p(n−1)s+r and J = p(n−n′)rJ′, where n′ < n and J′ is not divisible by pr, then an,J =

ap(n−n′)r

n′,J′ .

There is no constraint for those an,J’s with |J|∞ ≥ p(n−1)s+r; these coefficients will be propagated
to coefficients of an′′,J’s with n′′ > n.
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(3.5.2) Construction of the limit. For each multi-index I ∈ N[1/p]m, define bI ∈ κ by

bI := (an,pnrJ)
p−rn

= φ
−rn(an,pnrJ) ,

where n ∈N is sufficiently large such that pnrI ∈Nm and |pnrI|∞ < psn, so that an,pnrI makes sense.
The compatibility relation for the an,J’s immediately implies that the above definition does not
depend on the choice of n, as long as

n≥Max
(
−ordp(J)

r
,

logp(|J|∞)
s− r

)
.

The formal series
∑

I∈N[1/p]m
bI tI = ∑

(i1,...,im)∈N[1/p]m
bi1,...,im t i1

1 · · · t
im
m

attached to a given φ r-compatible sequence of elements
(
an ∈ κ[[t]]/(t psn

)
)

n≥n0
according to the

above construction will be called the limit of the φ r-compatible sequence (an)n≥n0 .

(3.5.3) PROPOSITION. The construction described in 3.5.2 establishes a bijection, from the set of
all φ r-compatible sequences of elements

(
an ∈ κ[[t]]/(t psn

)
)

n≥n0
, to the set of all formal series

∑
I∈N[1/p]m

bI tI

such that bI ∈ κ for all I ∈ N[1/p]m, and

(∗) −ordp(I)≤Max
{

n0, r ·
(⌊

logp(|I|∞)
s− r

⌋
+1
)}

for every I ∈ N[1/p]m with bI 6= 0.

PROOF. Although the estimate in the statement of 3.5.3 looks complicated, the proof is completely
straight-forward from the construction explained in 3.5.2.

Suppose that ∑I∈N[1/p]m bI tI is attached to a φ r-compatible sequence (an)n≥n0 , an ∈ κ[[t]]/(t pns)

for all n ≥ n0. Let I ∈ N[1/p]m be an index in the support of the above formal series, i.e. bI 6= 0.
We need to show that the inequality (∗) holds. Let n1 be the smallest natural number such that
pn1rI ∈ Nm. There is nothing to prove if n1 ≤ n0, so we may assume that n1 ≥ n0 +1. In particular
ordp(I)< 0, and n1 = d

−ordp(I)
r e.

From the definition of n1 we know that pn1I is not divisible by pr. If |pn1I|∞ < p(n1−1)s+r, we
get from 3.5.1 (‡) that bI = 0, a contradiction. We have shown that

|pn1I|∞ ≥ p(n1−1)s+r.

The last inequality is be equivalent to⌈
−ordp(I)

r

⌉
= n1 ≤

logp |I|∞
s− r

+1,

which is easily seen to be equivalent to the asserted inequality (∗).
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It remains to show that every formal series ∑I∈N[1/p]m bI tI whose support satisfies the inequality
(∗) arises from a φ r-compatible sequence (an)n≥n0 . This statement is not difficult to see: one verifies
using the inequality (∗) that for every natural number n≥ n0, the truncated series

cn := ∑
I∈N[1/p]m, |pnrI|∞<pns

bpnr

I t pnrI ∈ κ[[t]]

Let an := cn mod (t pns
). It is easily verified that (an)n≥n0 is a φ r-compatible sequence, whose limit

is the given formal series ∑I∈N[1/p]m bI tI .

REMARK. For φ r-compatible sequences of elements (an ∈ κ[[t]]/(t)psn
), the procedure 3.5.2 for

constructing limits also works if the norm | · |∞ for muliti-indices is replaced by the norm | · |σ . The
corresponding results are similar, so are the proofs: in the statements and proofs of 3.5.1, 3.5.2 and
3.5.3, we need to replace κ[[t]]/(t psn

) by κ[[t]]/(t)psn
and replace | · |∞ by | · |σ .

(3.5.4) DEFINITION. Let κ ⊃ Fp be a perfect field of characteristic p > 0, and let t = (t1, . . . , tm)
be m variables. Let r,s ∈ Z>0 be two positive integers with r < s, and let n0 be a natural number.

(a) Denote by κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0
the commutative κ-algebra consisting of all formal se-

ries
∑

I∈N[1/p]m
bI tI

such that bI ∈ κ for all I ∈ N[1/p]m, and

(∗) −ordp(I)≤Max
{

n0, r ·
(⌊

logp(|I|∞)
s− r

⌋
+1
)}

for every I ∈ N[1/p]m such that bI 6= 0.

(b) Denote by κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0
the commutative κ-algebra consisting of all formal se-

ries
∑

I∈N[1/p]m
bI tI

such that bI ∈ κ for all I ∈ N[1/p]m, and

(∗∗) −ordp(I)≤Max
{

n0, r ·
(⌊

logp(|I|σ )
s− r

⌋
+1
)}

for every I ∈ N[1/p]m such that bI 6= 0.

(c) Let supp
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0

)
be the subset of N[1/p]m consisting of all multi-indices

I ∈N[1/p]m such that the inequality (∗) holds. Similarly let supp
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0

)
be the subset of N[1/p]m consisting of all multi-indices I ∈ N[1/p]m such that the inequality
(∗∗) holds.
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REMARK. (i) The two support sets

supp
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0

)
and supp

(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0

)
are sub-semigroups of N[1/p]m. Moreover for every M > 0, there are only a finite number elements
I in either sub-semigroup such that |I|∞ ≤ M. The last property implies that for each I, there are
only a finite number of pairs (I1, I2) of elements in either sub-semigroup such that I1 + I2 = I.
Therefore the standard formula for multiplication of formal power series defines multiplication on
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0
and κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0
, making them augmented local domains

over κ .
(ii) Let m ≥ 1 be a positive integer. It is easy to see that the rings 〈〈t1, . . . , tm〉〉#s:φ r,≥n0

and

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0
are non-Neotherian local domains. In can be shown that neither of the

two local domains is normal. Moreover the integral closure of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0
(respec-

tively κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0
) in its own fraction field is not a finitely generated module over

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0
(respectively κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0
), because the fraction field of ei-

ther ring contains t j
i for any j ∈ N[1/p] and any i = 1, . . . ,m. However these integral closures can

be described explicitly.

Below is a slightly different version of the rings defined in 3.5.4.

(3.5.5) DEFINITION. Let κ ⊂ Fp be a perfect field. Let r < s be two positive integers, and let
i0 ∈ N be a natural number. The perfection of the formal power series κ[[t1, . . . , tm]] is naturally
isomorphic to ⋃

n∈N
κ[[t p−n

1 , . . . , t p−n

m ]].

Denote by φ the Frobenius automorphism of this perfect ring.

(a) Consider the following subring(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0]
)

fin := ∑
n∈N

φ
−nr((t)(pns−i0)

)
of the perfection of the formal power series ring κ[[t1, . . . , tm]], where our convention is
that (t)(pns−i0) = R if ns− i0 ≤ 0. Define a decreasing filtration

(
Fil#,p

•

s:φ r,[i0]

)
•∈Z

on the ring(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0]

)
#, fin by

Fil#,p
j

s:φ r,[i0]
:=
{

x ∈
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0]

∣∣∣ ∃n ∈ N>0 s. t. n+ j ≥ 0 and xpn
∈ (t)(pn+ j)

}
,

where ( t = (t1, . . . , tm) is the maximal ideal of κ[[t1, . . . , tm]]. Define

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0]

to be the completion of
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0]

)
fin with respect to the above decreasing

filtration.
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(b) Consider the following subring(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0]
)

fin := ∑
n∈N

φ
−nr((t)pns−i0)

of the perfection of the formal power series ring κ[[t1, . . . , tm]]. In the above our convention
is that (t)pns−i0 = R if ns− i0 ≤ 0. Define a decreasing filtration

(
Fil[,•s:φ r,[i0]

)
•∈Z[1/p]≥0

on the

ring
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0]

)
fin by

Fil[,us:φ r,[i0]
:=
{

x∈
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0]

∣∣∣ ∃n∈N>0 such that pnu ∈ N and xpn
∈ (t)u·pn

}
.

Define κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0]
to be the completion of

(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0]

)
fin with

respect to the above filtration.

(3.6) Definitions of complete restricted perfections
We will introduce in 3.6.1 two other families, κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E,#C;d and κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d
of complete restricted perfections of a given power series ring κ[[t1, . . . , tm]], related to the rings
defined in 3.5.4 and 3.5.5. We will also see in 3.6.3 and 3.6.4 that the notion of complete restricted
perfection in 3.5.4 and 3.5.5 can be extended to general complete Noetherian local domains of
equi-characteristic p > 0 with perfect residue fields.

(3.6.1) DEFINITION. Let κ ⊃ Fp be a perfect field and let t1, . . . , tm be variables. Let C > 0,d ≥
0,E > 0 be real numbers.

(a) Define a commutative κ-algebra

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E,#C;d

whose underlying abelian group is the set of all formal series ∑I bI tI with bI ∈ κ for all I,
where I runs through all elements in N[1/p]m such that

|I|p ≤Max
(
C · (|I|∞ +d)E ,1

)
.

The ring structure is given by the standard formula for product of power series.

(b) Define a commutative κ-algebra

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

whose underlying abelian group is the set of all formal series ∑I bI tI with bI ∈ κ for all I,
where I runs through all elements in N[1/p]m such that

([) |I|p ≤Max
(
C · (|I|σ +d)E ,1

)
.

The above condition on the support (of elements of this subset) shows that the standard for-
mula for multiplication makes sense and gives κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d a natural structure as an
augmented commutative algebra over κ .
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Denote by supp(m : E;C,d) = supp(m : [ : E;C,d) the subset of N[1/p]m consisting of all
elements I ∈ N[1/p]m satisfying the inequality ([) above.

(3.6.2) LEMMA. Denote by Fil•t.deg the decreasing filtration on κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d such that

Filut.deg
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

)
:=
{

∑
I∈supp(m:E;C,d), |I|σ≥u

bI tI : bI ∈ κ ∀ I
}

for every u ∈ R. Let

Filu+t.deg

(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

)
:=

⋃
ε>0

Filu+ε

t.deg(κ〈〈t
p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

)
(i) Both Filut.deg

(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

)
and Filu+t.deg

(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

)
are ideals of the ring

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d , for every u ∈ R.

(ii) Let gr•
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

)
be the graded ring attached to the filtration Fil•t.deg of the ring

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . This graded ring is naturally isomorphic to the graded subring⊕
I∈supp(m:E;C,d)

κ · tI

of the perfection
κ[t p−∞

1 , . . . , t p−∞

m ] =
⊕

I∈N[1/p]m
κ · tI

of the polynomial ring κ[t1, . . . , tm], where the latter is graded by the total degree |I|σ of
monomials tI .

The proof is easy/obvious, therefore omitted.

(3.6.3) DEFINITION. Let (R,m) be a complete Noetherian local domain of equi-characteristic
p > 0, with perfect residue field κ . Let Rperf be the perfection of R, and let φ be the Frobenius
automorphism on R. Let r,s,n0 be natural numbers, 0 < r < s, n0 ≥ 0.

(a) Consider the following subset(
(R,m)

perf,#
s:φ r;[i0]

)
fin := ∑

n≥0
φ
−nr(m(pns−i0)

)
of the perfect domain Rperf. In the above by convention m(pns−i0) = R if ns− i0 ≤ 0. It is easy
to see that this subset is a subring of Rperf . Define a decreasing filtration

(
Fil#,p

•

s:φ r;[i0]

)
j∈Z on(

(R,m)
perf,#
s:φ r;[i0]

)
fin by

Fil#,p
j

s:φ r;[i0]
:=
{

x ∈
(
(R,m)

perf,#
s:φ r;[i0]

)
fin

∣∣∣ ∃n ∈ N s.t. xpn
∈mpn+ j

}
.
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It is easy to see that each Filp j
is an ideal of

(
(R,m)

perf,#
s:φ r;[i0]

)
fin. Define

(R,m)
perf,#
s:φ r;[i0]

to be the completion of
(
(R,m)

perf,#
s:φ r;[i0]

)
fin with respect to the above filtration

(
Fil#,p

•

s:φ r;[i0]

)
j∈Z

(b) Consider the following subset(
(R,m)

perf, [
s:φ r;[i0]

)
fin := ∑

n≥0
φ
−nr(mpns−n0)

of the perfect domain Rperf. Here mpns−i0 = R if ns−n0 ≤ 0. It is easy to see that this subset
is a subring of Rperf . Define a decreasing filtration

(
Fil[,p

•

s:φ r;[i0]

)
j∈Z on

(
(R,m)

perf, [
s:φ r;[i0]

)
fin by

Fil[,p
j

s:φ r;[i0]
:=
{

x ∈
(
(R,m)

perf, [
s:φ r;[i0]

)
fin

∣∣∣ ∃n ∈ N s.t. xpn
∈mpn+ j

}
.

Define
(R,m)

perf, [
s:φ r;[i0]

to be the completion of
(
(R,m)

perf, [
s:φ r;[i0]

)
fin with respect to the above filtration

(
Fil[,p

•

s:φ r;[i0]

)
j∈Z.

(3.6.4) DEFINITION. Let (R,m) be a complete Noetherian local domain of equi-characteristic
p > 0 with perfect residue field κ . Let Rperf be the perfection of R, and let φ be the Frobenius
automorphism on R. Let A,b,d be real numbers, with A,b > 0 and d ≥ 0.

(i) Define a decreasing filtrations
(
Fil•Rperf,deg

)
u∈R0

on Rperf indexed by real numbers u by

FiluRperf,deg :=
{

x ∈ Rperf
∣∣∣ ∃ j ∈ N s.t. xp j

∈mdu·p
je
}

if u≥ 0

and
FiluRperf,deg := Rperf if u≤ 0

It is easy to see that FiluRperf,deg is an ideal of Rperf for every u ∈ R.

(ii) Define a subset
(
(R,m)

perf, [
A,b;d

)
fin of Rperf by(

(R,m)
perf, [
A,b;d

)
fin := ∑

n∈N
(φ−nR∩Filb·p

An−d
Rperf,deg)

It is not difficult to see that
(
(R,m)

perf, [
A,b;d

)
fin is a subring of Rperf.

(iii) Define
(R,m)

perf, [
A,b;d

to be the completion of
(
(R,m)

perf, [
A,b;d

)
fin with respect to the filtration induced by the filtration(

Fil•Rperf,deg

)
of Rperf:

(R,m)
perf, [
A,b;d = lim

u→∞

(
(R,m)

perf, [
A,b;d

)
fin

/(
FiluRperf,deg∩

(
(R,m)

perf, [
A,b;d

)
fin

)
.
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§4. Complete restricted perfections, II
(4.1) How various complete restricted perfections compare
In 3.6 we defined three families of rings. Each ring in these families consist of formal series of the
form ∑I∈N[1/p] bI tI , where bI ∈ κ ∀ I, subject uniform constraint (depending on parameters) on the
support of such series. The three families are:

(1) κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0
and κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0

(2) κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0]
and κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0]

(3) κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E,#C;d and κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

We have defined two additional family of rings, attached to any given equi-characteristic-p complete
Noetherian local domain (R,m):

(4) (R,m)
perf,#
s:φ r;[i0]

and (R,m)
perf, [
s:φ r;[i0]

(5) (R,m)
perf, [
A,b;d

(4.1.1) REMARK. (i) The family (1) above was motivated by the compatible sequence of mor-
phisms (ρn)n≥n0 defined in 3.3.2, based on the sequence of morphisms (ηn)n∈N constructed in 2.7.
There are two versions for family of rings. The #-version is directly tied with compatible families
(ηn)n≥n0’s. The primary parameters are the positive integers r < s. With r,s fixed, the ring increases
as the second parameter n0 increases. The [-version results from the # version when one replaces
congruences modulo (t pn

1 , . . . , t pn

m ) by the coarser congruences modulo (t1, . . . , tm)pn
.

(ii) The family (2) is a slight variant of the family (1). With the primary parameters r < s fixed,
the rings in the family (2) are closely related to the rings in the family (1); the rings in family
(2) increases as the parameter i0 increases. In some sense as i0 increases, the rings in family (2)
increases somewhat faster than the rings in family (1), to the extent that the rings in families (1)
and (2) with the same primary parameters r,s are not co-final with each other as their respective
secondary parameters n0 and i0 vary.

The family (2) is somewhat more convenient than the family (1). Generalization to complete
Noetherian local domains 3.6.4 is straight forward. When the primary parameter r,s are fixed while
the secondary parameter i0 varies, the #-version interlaces with the [-version; see 4.1.2 (1) below.

(iii) In the family (3) the parameters E,C > 0 and d ≥ 0 are real numbers. The most significant
parameter is the “exponent” E; it is written as a superscript in the notation, to indicate that it serves
as an exponent in the estimate of p-adic absolute value in terms of archimedean absolute value for
elements in the support of formal series in family (3).

The “multiplicative constant” C is secondary, while the parameter d is of least importance among
the three. When E is fixed while C and d vary, the #-version and the [-version are interlaced; see
4.1.3 (1). Rings in family (2) with primary parameters s > r > 0 are closely related to rings in family
(3) with E = r

s−r ; see 4.1.2 (3) and 4.1.3 (2).

(iv) Clearly the family (2) is a special case of the family (4). This is reflected in the notation for
(2) and (4).
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(v) The family (5) with real parameters A > 0,b > 0,d ≥ 0 generalizes the family (3). When
(R,m) =

(
κ[[t1, . . . , tm]],(t1, . . . , tm)

)
, the parameters (A1,b1,d1) corresponding to given parameters

(E,C,d) are:
A1 =

1
E , b1 =C1/E , d1 = d.

When the parameters are related as above, the rings κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d and (R,m)
perf, [
A1,b1;d1

are
quite close.

(4.1.2) LEMMA. Let s > r > 0 be positive integers. and let i0 ≥ 0 be a natural number. Let κ ⊃ Fp
be a perfect field, and let t1, . . . , tm be variables.

(1) Let i0 ≥ 0 be a natural number. We have inclusions

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0] ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0]

and
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0] ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0+dlogp me]

as sets of formal series.

(2) Let n0 be a natural number. If i1 is a natural number such that i1 ≥max
(
s− r,s · dn0

r e
)
, then

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r,≥n0
⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i1]

and
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r,≥n0
⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i1] .

(3) Let i0 be a natural number. We have

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i0] ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉r/(s−r),#
pi0 r/(s−r);0

and
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i0] ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉r/(s−r), [
pi0 r/(s−r);0

PROOF. The first inclusion in (1) is obvious. The second inclusion in (1) holds because

(t1, . . . , tm)p j+dlogp me
⊂ (t p j

1 , . . . , t p j

m )

for all j ∈ N. The statements (2), (3) are easy exercises.

(4.1.3) LEMMA. Let κ ⊃ Fp be a perfect field. Let E > 0,C > 0 be positive real numbers. Let
d ≥ 0 be a non-negative real number as in 3.6.1.

(1) We have natural inclusions

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E,#C;d ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d

and
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E,#C·mE ;d/m .
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(2) Let r < s be positive integers such that

E <
r

s− r
.

Suppose that i2 a sufficiently natural number such that

pdm/re·(s−r)−i2 ≤C−1/E · pm/E −d

for every integer m≥ r·i2
s−r . Note that such an integer i2 exists because s−r

r < 1
E . Then

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E,#C;d ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉#s:φ r;[i2]

and
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d ⊂ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i2] .

(4.1.4) LEMMA. Let (R,m) be an equi-characteristic p > 0 complete Noetherian local ring. Let
s > r > 0 be positive integers. Let i0 be a natural number. We have

(R,m)
perf,#
s:φ r;[i0]

⊂ (R,m)
perf, [
s:φ r;[i0]

.

Moreover if the maximal ideal m can be generated by n elements, then

(R,m)
perf, [
s:φ r;[i0]

⊂ (R,m)
perf,#
s:φ r;[i0+dlogp ne] .

(4.2) A local homomorphism h between two equi-characteristic-p complete Noetherian local do-
mains induces ring homomorphisms between their complete restricted perfections. We show that
injective local homomorphisms induce injections on complete restricted perfections.

(4.2.1) LEMMA. Let (R1,m1), (R2,m2) equi-characteristic-p complete Noetherian local domains
with perfect residue fields κ1 and κ2. Let h : R1→ R2 be a ring homomorphism such that h(m1) ⊆
m2.

(a) Let A,b,d be real numbers, A,b > 0, d ≥ 0. Let ι1 : R1→ (R1,m1)
perf, [
A,b;d be the natural ring

homomorphism from R1 to its complete restricted completion (R1,m1)
perf, [
A,b;d . Similarly we have

a natural ring homomorphism ι2 : R2→ (R2,m1)
perf, [
A,b;d . The ring homomorphism h induces a

homomorphism from
h̃ : (R1,m1)

perf, [
A,b;d → (R2,m2)

perf,#
A,b;d

such that h̃◦ ι1 = ι2 ◦h.

(b) Let r,s, i0 ∈N , r,s> 0, i0≥ 0 Let ι1 : R1→ (R1,m1)
perf,#
b:φ A;[d] be the natural ring homomorphism

from R1 to its complete restricted completion (R1,m1)
perf,#
s:φ r;[i0]

. Similarly we have a ring ho-

momorphism ι2 : R2→ (R2,m1)
perf,#
s:φ r;[i0]

. The ring homomorphism h induces a homomorphism
from

h# : (R1,m1)
perf,#
s:φ r;[i0]

→ (R2,m2)
perf,#
s:φ r;[i0]

such that h# : ◦ι1 = ι2 ◦h. Similarly h extends naturally to a ring homomorphism

h[ : (R1,m1)
perf, [
s:φ r;[i0]

→ (R1,m1)
perf, [
s:φ r;[i0]

.
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The proof is easy, therefore omitted.

(4.2.2) PROPOSITION. Let (R,m) be a Noetherian local domain. Assume that the integral closure
S of R in the field of fraction of R is a finite R-module. There exists a natural number n0 such that
such that

{x ∈ R | xa ∈mn} ⊂mb
n
a−n0c ∀a ∈ N>0, ∀n≥ a ·n0.

PROOF. Let Blm(R) = Spec
(
⊕ j∈Nm

j) be the blow-up of Spec(R/m) ⊂ Spec(R), and let Y be
the normalization of Blm(R). The Noetherian normal domain S is semi-local; let m̃1, . . . ,m̃s be the
maximal ideals of S. The natural morphism π : Y → Spec(R) factors through a unique morphism
f : Y → Spec(S): π = g◦ f , where g : Spec(S)→ Spec(R) corresponds to the inclusion R ↪→ S. We
know that Γ(Y,OY ) = S because S is normal.

Let L = π∗m = m ·OYi be the pull-back to Y of the maximal ideal m ⊂ R; it is an invertible
sheaf of OY -ideals on Y and is an ample invertible OY -module. The closed subset SpecY (OY/mOY )
of Y is the union of irreducible Weil divisors E1, . . . ,Er, where r is a positive integer. There exist
positive integers e1, . . . ,er ∈ N>0 such that

L = OY
(
− (e1E1 + · · ·+ erEr)

)
.

Define for each n ∈ N an ideal Jn ⊂ S by

Jn := Γ(Y,L n)⊆ Γ(Y,OY ) = S.

It is clear that J1 ⊂ m̃1∩·· ·∩ m̃s, and mnS⊆ Jn for all n ∈ N.

Claims.

1. There exist a positive natural number n1 ∈ N such that Jn+1 =mJn for all integers n≥ n1. In
particular Jn ⊆mn−n1S for all n≥ n1

2. There exists a natural number n2 ∈ N such that R∩ (mn+n2S)⊂mn for all n ∈ N.

3. We have Jn+n1+n2 ∩R⊆mn for all n ∈ N, with the constants n1,n2 in claims 1 and 2 respec-
tively.

4. If y ∈ S, a ∈ N>0, n ∈ N and ya ∈ Jn, then y ∈ Jbn/ac.

5. If x ∈ R, a ∈ N>0, n ∈ N, and xa ∈mn, then x ∈mbn/ac−n1−n2 for all n≥ a(n1 +n2).

Obviously proposition 4.2.2 follows from claim 5, with n0 = n1 + n2. J1 ⊂ m̃1 ∩ ·· · ∩ m̃s and S is
Noetherian.

Claim 1 is a consequence of the fact L = mOY and the general finiteness property for proper
morphism [EGA III, §5, Cor. 3.3.2] applied to the proper morphism Y → Spec(R): we see that the
graded ⊕i≥0m

i -module
⊕i≥0 Γ(Y,miOY ) =⊕i≥0 Ji

is a finitely generated as a graded module, and claim 1 follows.
Claim 2 is the Artin–Rees lemma applied to the finite R-module S. Claim 3 is a formal conse-

quence of claims 1 and 2, while claim 5 is a formal consequence of claims 3 and 4.
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It remains to prove claim 4. Given an element y ∈ S such that ya ∈ Jn. For each i = 1, . . . ,s, let
Si be the localization of S at the generic point of the exceptional divisor Ei. Each Ei is a discrete
valuation ring; let ordEi(·) be associated normalized valuation with value group Z. The assumption
that ya ∈ Jn implies that ordEi(y

a)≥ n · ei for all i, therefore

ordEi(y)≥
nei
a ≥ b

n
acei

for i = 1, . . . ,s. Therefore there exists an open subset U ⊂ Y which contains Y r (E1∪·· ·∪Es) and

also the generic point of Ei for i = 1, . . . ,s, such that y defines a section of L bn
a c over U . Because Y

is normal and the codimension of U in Y is at least 2, y extends uniquely to a section of L bn
a c over

Y . We have proved claim 4 and proposition 4.2.2.

(4.2.3) COROLLARY. Let (R,m) be a complete Noetherian local domain of equi-characteristic
p > 0, with perfect residue field κ .

(i) Let A,b > 0, d ≥ 0 be real numbers. The linear topology on the ring
(
(R,m)

perf, [
A,b;d

)
fin defined

by the filtration on
(
(R,m)

perf, [
A,b;d

)
fin induced by the filtration

(
FiluRperf,deg

)
of Rperf is separated.

Therefore the natural ring homomorphism(
(R,m)

perf, [
A,b;d

)
fin −→ (R,m)

perf, [
A,b;d

from
(
(R,m)

perf, [
A,b;d

)
fin to its completion (R,m)

perf, [
A,b;d is an injection.

(ii) Let r,s,n0 be natural numbers, 0 < r < s. The natural ring homomorphism(
(R,m)

perf,#
s:φ r;[i0]

)
fin −→ (R,m)

perf,#
s:φ r;[i0]

and (
(R,m)

perf, [
s:φ r;[i0]

)
fin −→ (R,m)

perf, [
s:φ r;[i0]

are injections.

PROOF. The statements (i) and (ii) are easy consequences of 4.2.2. We note that the statements (i)
and (ii) are in fact equivalent.

(4.2.4) COROLLARY. Notation as in 4.2.1. In particular h : (R1,m1)→ (R2,m2) is a ring homo-
morphism between equi-characteristic-p complete Noetherian local domains. Suppose that h is an
injection. Then the induced homomorphisms h̃, h# and h[ in 4.2.1 are also injections.

PROOF. This statement is a corollary of 4.2.3. We explain the proof for h̃. The same argument in
general topology also proves the statement for h# and h[.

The injective ring homomorphism h : R1→ R2 induces a injective ring homomorphism

h′ :
(
(R1,m1)

perf, [
A,b;d

)
fin −→

(
(R2,m2)

perf, [
A,b;d

)
fin.

According to 4.2.3, we can identify
(
(R2,m2)

perf, [
A,b;d

)
fin as a subring of (R2,m2)

perf, [
A,b;d . The injec-

tion h′ identifies
(
(R1,m1)

perf, [
A,b;d

)
fin also as a subring of (R2,m2)

perf, [
A,b;d . (It is actually contained in

35



(
(R2,m2)

perf, [
A,b;d

)
fin.) Let

(
(R2,m2)

perf, [
A,b;d

)∧
fin be the closure of

(
(R2,m2)

perf, [
A,b;d

)
fin in the topological

ring (R2,m2)
perf, [
A,b;d .

The topology on
(
(R1,m1)

perf, [
A,b;d

)
fin induced by the filtration

(
Filu

Rperf
1 ,deg

)
is stronger than the

topology (R2,m2)
perf, [
A,b;d . The closure of

(
(R1,m1)

perf, [
A,b;d

)
fin with respect to this stronger topology is

naturally identified with a subset of
(
(R2,m2)

perf, [
A,b;d

)∧
fin. We have shown that h̃ is an injection.

(4.3) Let κ be a perfect field. Denote by σ the Frobenius automorphism on κ , which sends every
element x∈ κ to xp. Let u1, . . . ,ua and t1, . . . , tm be variables. Let κ[up−∞

1 , . . . ,up−∞

a ] be the perfection

of the polynomial ring κ[u1, . . . ,um]. Elements of κ[up−∞

1 , . . . ,up−∞

a ] are finite sums of the form

∑
J∈N[1/p]a

bJ uJ,

where bJ ∈ κ for all J ∈ N[1/p]a, and all bJ = 0 for all J outside of a finite subset of N[1/p]a.
We observe that for each element i ∈ N[1/p], the i-th power of an element

∑
J∈N[1/p]a

bJ uJ ∈ κ[up−∞

1 , . . . ,up−∞

a ]

is well-defined: write i = r
ps with r ∈ Z and s ∈ N, and define(

∑
J∈N[1/p]a

bJ uJ
)r/ps

:=
(

∑
J∈N[1/p]a

bσ−s

J ·up−sJ
)r
.

Therefore if f ∈ κ[up−∞

1 , . . . ,up−∞

a ] and g1, . . . ,ga ∈ κ[t p−∞

1 , . . . , t p−∞

m ], the composition f (g1, . . . ,ga)

is a well-defined element of κ[t p−∞

1 , . . . , t p−∞

m ]. It is not difficult to show that the operation of com-
position extends to complete restricted perfection of power series rings.

(4.3.1) LEMMA. Let κ ⊃ Fp be a perfect field. Let u1, . . . ,ua and t1, . . . , tm be variables. Suppose

that f ∈ κ〈〈up−∞

1 , . . . ,up−∞

a 〉〉E1, [
C1;d1

, and gi ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E2, [
C2;d2

for i = 1, . . . ,a. Assume for
simplicity that C1,C2,d1,d2 ≥ 1. There exists a positive real number d3 such that

f (g1(t), . . . ,ga(t)) ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E3, [
C3;d3

where

• E3 = E1 ·E2 +E1 +E2,

• C3 =C2 ·C1+E2
1 · ( 1

e2
)E1(1+E2), and

• e2 := Min
{
|J|σ : J 6= 0 and tJ ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E2, [
C2;d2

}
.

A trivial lower bound for e2 is
e2 ≥C−1

2 (1+d2)
−E2.
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PROOF. Let S2 ⊂ N[1/p]m be the set of supports of all formal series in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E2, [
C2;d2

whose constant terms are 0. Similarly let S1 ⊂ N[1/p]a be the set of supports of all formal series in
κ〈〈up−∞

1 , . . . ,up−∞

a 〉〉E1, [
C1;d1

whose constant terms are 0. By definition e2 = Min{|J|σ : J ∈ S2}. Every
non-zero element K in the support of f (g1(t), . . . ,ga(t)) can be written in the following form

K = p−r (J1,1 + · · ·+ J1,i1 + · · ·+ Ja,i + · · ·+ Ja,ia) ,

where

• (i1, . . . , ia) ∈ Na, r = max(−ordp(i1), . . . ,−ordp(i1),0),

• I := p−r(i1, . . . , ia) ∈ S1, and

• Jν ,µ ∈ S2 for all ν = 1, . . . ,a and all µ = 1, . . . , ia.

Clearly the following inequalities hold.

(4.3.1.1) |K|σ ≥ e2 · p−r(i1 e+ · · ·+ is e) = e2 · |I|σ

(4.3.1.2) Mσ := Max
{
|Jν ,µ |σ : 1≤ µ ≤ iν , 1≤ ν ≤ a

}
≤ pr · |K|σ

(4.3.1.3) p−r · |K|p ≤Max
{
|Jν ,µ |p : 1≤ µ ≤ iν ,1≤ ν ≤ a

}
=: Mp

From the definitions of the rings κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E2, [
C2;d2

and κ〈〈up−∞

1 , . . . ,up−∞

a 〉〉E1, [
C1;d1

we know that

(4.3.1.4) pr ≤C1(|I|σ +d1)
E1 ≤C1 · ( 1

e2
|K|σ +d1)

E1

(4.3.1.5) Mp ≤C2(Mσ +d2)
E2

Combining the above inequalities, we see that

|K|p ≤ pr ·C2 · (pr |K|σ +d2)
E2 ≤C1(e−1

2 · |K|σ +d1)
E1 ·C2

(
C1(e−1

2 · |K|σ +d1)
E1|K|σ +d2

)E2

The last term in the above displayed inequality is a polynomial in |K|σ of degree

E3 := E1 +E2 +E1 ·E2

whose leading term is
C3 :=C1+E2

1 ·C2 · ( 1
e2
)E1(1+E2).

Hence for a sufficiently large constant d3 it is bounded above by C3(|K|σ +d3)
E3 for all |K|σ ≥ 0.

We have proved the main assertion of lemma 4.3.1.

To see the trivial lower bound for e2, we only have to observe that if J ∈ S2 and |J|σ ≤ 1 and
J 6= Nm, then

|J|σ ≥ |J|−1
p ≥

(
C2(1+d2)

E2
)−1

.

REMARK. Composition can be formulated for complete restricted perfections of general equi-
characteristic-p complete Noetherian local rings.
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(4.4) Let κ ⊃ Fp be a perfect field. We will generalize the Weierstrass preparation theorem to
complete restricted perfections κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d of power series rings.

(4.4.1) DEFINITION. Let κ ⊃ Fp be a perfect field of characteristic p > 0.

(i) Let κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉 be the set of all formal series of the form

∑
i1,...,im∈N[1/p]

bi1,...,im t i1
1 · · · t

im
m

where bi1,...,im ∈ κ for all (i1, . . . , im) ∈ N[1/p]m. Note that κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉 has a natural

structure as a module over the perfection κ[t p−∞

1 , . . . , t p−∞

m ] of the polynomial ring κ[t1, . . . , tm].

(ii) Let e ∈ Z[1/p]>0 be a positive rational number whose denominator is a powere of p. An non-
zero element F(t1, . . . , tm) in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉 is regular of order e in the variable tm if the
formal series F(0, . . . ,0, tm) in one variable tm has order e. In other words when F(t1, . . . , tm)
is expanded in powers of tm with coefficients in formal series of t1, . . . , tm−1,

F(t1, . . . , tm) = ∑
j∈N[1/p]

Fj(t1, . . . , tm−1) t j
m

we have
Fj(0, . . . ,0) = 0 ∀ j < e, and Fe(0, . . . ,0) ∈ κ

×.

(4.4.2) PROPOSITION. Let F(t1, . . . , tm) be a non-zero element of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d which is
regular of order e > 0 in the variable tm.

(1) There exist constants C′ > 0,d′ > 0 depending only on the parameters C,d,E,m such that for
every element G ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d , there exists elements U,R ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′;d′
such that

G =U ·F +R

and for every element I = (i1, . . . , im) ∈ N[1/p]m ∈ supp(R) in the support of R, the inequali-
ties

im < e, i1 + · · ·+ im−1 > 0

hold. Moreover the quotient U and the remainder R are uniquely determined by G and F. The
constants C′ and d′ can be taken to be

C′ =C · (1+ ε
−1
0 )E , d′ = d+e

1+ε
−1
0
,

where ε0 is defined in 4.4.6.

(2) Suppose that e = Min
{
|I|σ : I ∈ supp(F)

}
. Then U,R ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+2e.
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(4.4.3) The uniqueness part 4.4.2 (1) is easy: suppose that

G =U ′ ·F +R′

with U ′,R′ ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′;d′ and R′ satisfies the same condition as R. Then (U ′−U) ·F =

R−R′. Examine the degree in tm of monomials appearing on both sides, we see that R′−R = 0.
Therefore (U ′−U) ·F = 0. Hence U ′−U = 0 because κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′;d′ is an integral domain.

Our proof of the existence part of 4.4.2 is a generalization of the constructive proof of the
Weierstrass preparation theorem in [7, p. 139]. The actual proof is in 4.4.5–4.4.8 below; the
crucial estimates are in lemma 4.4.7. We will review the argument in [7, p. 139] after recalling the
definition of the linear operators used in [7, p. 139].

(4.4.4) DEFINITION. Let κ ⊃ Fp be a perfect field of characteristic p. Let t1, . . . , tm be variables.
Let e > 0 be a positive rational number in N[1/p]. Let F ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉 be a formal series
which is regular of order e in the variable tm.

(i) Define κ-linear operators

η ,ρ : κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉 −→ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉

depending on e, by
f = te

m ·η( f )+ρ( f )

for every element f ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉 . Clearly every monomial t i1
1 · · · t im

m with exponent
(i1, . . . , im) ∈ N[1/p]m, η(t i1

1 · · · t im
m ) and ρ(t i1

1 · · · t im
m ) are given by

η(t i1
1 · · · t

im
m ) =

{
t i1
1 · · · t

im−1
m−1 · t im−e

m if im ≥ e
0 if im < e

(1)

ρ(t i1
1 · · · t

im
m ) =

{
0 if im ≥ e
t i1
1 · · · t im

m if im < e
.(2)

For a general element f = ∑i1,...,im∈N[1/p] bi1,...,im t i1
1 · · · t im

m ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉, we have

η( f ) = ∑
i1,...,im∈N[1/p]

bi1,...,im η(t i1
1 · · · t

im
m )(3)

ρ( f ) = ∑
i1,...,im∈N[1/p]

bi1,...,im ρ(t i1
1 · · · t

im
m )).(4)

Note that if f ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d for some parameter E,C > 0 and d ≥ 0, then ρ( f ) ∈
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d and η( f ) ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e.

(ii) Suppose that formal series F is in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d for some constants E > 0, C > 0,
d ≥ 0. Define a κ-linear operator

µ :
⋃

C′′,d′′>0

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′′;d′′ −→ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉
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depending on e and F , by

µ( f ) := η(−η(F)−1 ·ρ(F) · f )

for all C′′,d′′ > 0 and every element f ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′′;d′′ . Note that η(F) is a for-

mal series whose contant term is in κ×, therefore η(F)−1 ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e because

η(F) ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e. The product η(F)−1 ·ρ(F) · f on the right hand side of the
above displayed formula makes sense because both formal series ρ(F) is also an element of
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e.

(4.4.5) The proof in [7, p. 139] is a fixed-point-theorem argument. Suppose that the equation

(4.4.5.1) V = η(G)+µ(V )

has a solution V in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′′;d′′ , and the parameters C′′,d′′ are such that η(F) and ρ(G)

are also elements of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′′;d′′ . Let

(4.4.5.2) U := η(F)−1 ·V.

Then we have

(4.4.5.3) U ·η(F) =V = η(G)−η
(
η(F)−1 ·ρ(F) ·V

)
= η(G)−η

(
U ·ρ(F)

)
.

By the definition of the operators η and ρ , we know that

U ·F = te
m ·U ·η(F)+U ·ρ(F),

hence

(4.4.5.4) U ·η(F) = η(U ·F)−η
(
U ·ρ(F)

)
.

From 4.4.5.3 and 4.4.5.4, we see that

(4.4.5.5) η(G) = η(U ·F),

hence

(4.4.5.6) G−ρ(G) =U ·F−ρ(U ·F).

In other words
G =U ·F +R,

where
R = ρ(G)−ρ(U ·F).

Note that U = η(F)−1 ·V and R are both in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′′;d′′ because we have assumed that

η(F) and ρ(G) are both in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′′;d′′ .
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(4.4.6) DEFINITION. Suppose we are given parameters e ∈ N[1/p]>0, E,C ∈ R>0, and d ∈ R≥0.
Let T = T (m : e : E;C,d) be the subset of N[1/p]m consisting of all m-tuples (i1, . . . , im) in the
support set supp(m : E;C,d + e) for κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e such that (i1, . . . , im−1) 6= (0, . . . ,0)
N[1/p]m−1 and im < e. Define a positive constant ε0 depending on parameters m,e,E;C,d by

ε0 = ε0(m : e : E;C,d) := min
{

i1+...+im−1
e

∣∣∣ (i1, . . . , im) ∈ T (m : e : E;C,d)
}
.

Note that this minimum is attained at some element of T (m : e : E;C,d).

(4.4.7) LEMMA. Let N ∈ N be a positive integer. Consider the κ-linear operator

µ
n : κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e −→ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+(N+1)·e.

defined in 4.4.4. Let h be an element of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e. Let J = ( j1, . . . , jm−1, jm) be an
exponent in the support supp(µN(h)) of the formal series µN(h).

(i) j1 + · · ·+ jm−1 ≥ N · ε0 · e.

(ii) |J|p ≤C · (1+ ε0
−1)E ·

(
|J|σ + d+e

1+ε
−1
0

)E

(iii) Suppose that e = Min
{
|I|σ : I ∈ supp(F)

}
. Then

|J|p ≤C · (|J|σ +d +2e)E .

PROOF. The statement (i) is obvious from the definition of the linear operator µ in 4.4.4. For
statement (ii), we know that

|J|p ≤C ·
(
|J|σ +d +(N +1)e

)E

because µN(〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e

)
⊆ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+(N+1)e. We know from (i) that

N e≤ ε
−1
0 · ( j1 + · · ·+ jm−1)≤ ε

−1
0 · |J|σ ,

hence

|J|p ≤C ·
(
(1+ ε0)

−1) · |J|σ +d + e
)E ≤C · (1+ ε

−1
0 )E ·

(
|J|σ + d+e

1+ε
−1
0

)E

.

It remains to prove (iii). The assumption that e=Min
{
|I|σ : I ∈ supp(F)

}
implies that |I′|σ ≥ e

for every exponent I′ ∈ supp(−η(F)−1 · ρ(F)). By the definition of the linear operator η , there
exists exponents I0, . . . , IN with I0 ∈ supp(h) and I j ∈ supp(−η(F)−1 ·ρ(F)) for j = 1, . . . ,N such
that

J = I0 + I1 + . . .+ IN− (0, . . . ,0,Ne).

So we have
|J|p ≤Max

{
|I0|p, |I1|p, . . . , |IN |p, |e|p

}

41



Because (0, . . . ,0,e) ∈ supp(F), we have

|e|p ≤C · (d + e)E <C · (|J|σ +d +2e)E .

The assumption on e tells us that |I j|σ ≥ e for j = 1, . . . ,N, hence

|I j|σ ≤ |J|σ + e for j = 0,1, . . . ,N.

From I0, I1, . . . , I j ∈ supp
(
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+e

)
, we get

|I j|p ≤C · (|I j|σ +d + e)E ≤C · (|J|σ +d +2e)E for j = 0,1, . . . ,N.

It follows that
|J|p ≤C · (|J|σ +d +2e)E .

We have proved statement (iii).

(4.4.8) PROOF OF 4.4.2. The uniqueness part of 4.4.2 (1) has been settled. We will prove the
existence part of 4.4.2 (1) with

C′ =C · (1+ ε
−1
0 )E and d′ = d+e

1+ε
−1
0
.

As explained in 4.4.5, it suffices to show that there exists an element V κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′;d′ such
that

V = η(G)+µ(V ).

By lemma 4.4.7 (i), (ii), the limit of

lim
N→∞

η(G)+µ(η(G))+µ
2(η(G))+ · · ·+µ

N(η(G)) =: V

exists in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C′;d′ . Clearly the element V given by the above limit satisfies V =
η(G)+µ(V ). We have proved 4.4.2 (1).

Under the assumption that e = Min
{
|I|σ : I ∈ supp(F)

}
, lemma 4.4.7 (iii) tells us that

η(G)+µ(η(G))+µ
2(η(G))+ · · ·+µ

N(η(G)) ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+2e

for all N ∈ N, and the limit V exists in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+2e. We have proved 4.4.2 (2).

(4.5) PROPOSITION. Suppose that E > 0, C ≥ 1 and d ≥ 1. The integral closure of the local
domain κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d in its own field of fractions is

⋃
d′>0

κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d′.
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(4.5.1) LEMMA. Suppose that κ ⊃ Fp is an infinite field of characteristic p. Let E,C > 0 and d ≥ 0
be real parameters. Let F(t1, . . . , tm) be an element of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d whose constant term

is 0; i.e. F is not a unit in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . Let e := Min{|I|σ : I ∈ supp(F)}. There exists an

element L ∈ GLm(κ) such that the automorphism L∗ of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d induced by L sends

F to an tm-regular element of order e in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

PROOF. The usual/standard argument works; see the first paragraph of the proof of Lemma 3 on
p. 147 of [7].

(4.5.2) LEMMA. Let κ ⊃ Fp be a field of characteristic p, and let κ̃ be an extension field of κ .

Let G,F 6= 0 be element of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d , let H be an element of κ̃〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

Suppose that G = F ·H. Then H ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

PROOF. Define a well ordering on supp(m : E;C,d) by

(i1, . . . , im)� ( j1, . . . , jm)⇐⇒
either i1 + · · ·+ im < j1 + · · ·+ jm, or i1 + · · ·+ im = j1 + · · ·+ jm
and ∃a, 1≤ a≤ m, s.t. iλ = jλ for λ = 1, . . . ,a−1 and ia < ja.

Write H = ∑i1,...,im∈supp(m:E;C,d) bi1,...,im t i1
1 · · · t im

m . An easy induction on (i1, . . . , im) with respect to
the above well ordering shows that bi1,...,im ∈ κ for all (i1, . . . , im) ∈ supp(m : E;C,d).

(4.5.3) DEFINITION. Let κ ⊃ Fp be a field of characteristic p > 0. Let E,C > 0, d ≥ 0 be real
numbers. Let t1, . . . , tm be variables. Define an [0,∞]-valued function

otm : κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d −→ [0,∞]

by
otm( f ) := inf{im |(i1, . . . , im) ∈ supp( f )

for every formal series f in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . We call otm the order of f in the variable tm. By
definition otm(0) = ∞.

(4.5.4) LEMMA. The function f 7→ otm( f ) defined in 4.5.3 satisfies the following properties.

(i) otm( f +g)≥min{otm( f ),otm(g)} for all f ,g ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

(ii) otm( f ·g)≥ otm( f )+otm(g) for all f ,g ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

(iii) otm( f n) = n ·o( f ) for all n ∈ N and all non-zero formal series f in κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

PROOF. The statements (i) and (ii) are immediate from the definition. To prove (iii), note first
that otm( f n) ≥ n · otm( f ) by (ii). Again by (ii), if otm( f n) > n · otm( f ), then otm( f n′) > n′ · otm( f )
for all integers n′ ≥ n. It is clear that otm( f pi

) = pi · otm( f ) for every natural number i, because
supp( f pi

) = pi · supp( f ). The statement (iii) follow.
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REMARK. We do not know whether the function otm is a valuation on κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d , i.e.

whether the equality otm( f ·g) = otm( f )+otm(g) holds for all f ,g ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

A related question is the following. Let I be the ideal of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d consisting of all

elements f ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d such that otm( f )> 0. This ideal I is equal to its own radical, but
we do not know whether it a prime ideal.

(4.5.5) PROOF OF 4.5.
1. Suppose that f ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d′ for some d′ > 0. We show that f is in the fraction field

L of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d and is integral over κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

Pick a natural number N ≥ d′−d. Then tN
1 · f ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d , hence f is an element L.
Consider a power f pn

of f , where n is a natural number. The support subset of f pn
consists of all

elements of the form pn · J, where J is an exponent in the support subset of f . We have

|pnJ|p = p−n|J|p ≤ p−n ·C · (|J|σ +d′)E = p−n ·C · (p−n|pnJ|σ +d′)E .

Let δ := Min{|J|σ : J ∈ supp( f ), J 6= 0}. Clearly δ > 0. Choose n1 sufficiently large so that
(1− p−n1). · pn1 ·δ > d′−d. Then

|I|p ≤C · (|I|σ +d)E

for all I ∈ supp( f pn1 ), which implies that f pn1 is an element of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . Therefore f

is integral over the ring κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d .

2. By lemma 4.5.2, we may and do assume that κ is an infinite field. Let f = G
F be an element of

the fraction field L which is integral over the ring κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . If the constant term of F

is a non-zero element of κ , then F is a unit of the ring κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d and there is nothing to
prove. So we may and do assume that the constant term of F is zero.

Let e := Min
{
|I|σ : I ∈ supp(F)

}
. By lemma 4.5.1, after making a suitable linear change of

coordinates, we may and do assume that F is tm-regular of order e. By 4.4.2 (2), there exist elements
U,R ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+2e such that G = U · F + R and every exponent I = (i1, . . . , im) of
the support subset supp(R) of R has the property that im < e. Because f = F/G is integral over
κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d , the element R/F is also integral over κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . In other words

there exist a positive integer n1 > 0 and elements H1, . . . ,Hn ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d such that

(∗) Rn1 +H1 ·Rn1−1 ·F + · · ·+Hn1−1 ·R ·Fn1−1 +Hn1 ·F
n1 = 0

We may and do assume that R 6= 0. Let e′ := otm(R). Clearly e′ < e. By 4.5.4, we know that
otmH1 · Rn1−1 · F + · · ·+Hn1−1 · R · Fn1−1 +Hn1 · Fn1 ≥ (n1− 1)e′+ e, while otm(R

n1) = n1 · e′ <
(n1−1)+e. This contradiction shows that R = 0. In other words f ∈ κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d+2e. We

have proved that the integral closure of κ〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d in its fraction field L is contained in⋃
d′ κ〈〈t

p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d′
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§5. Action of a one-parameter subgroup on a biextension
In this section k ⊃ Fp is a perfect field, X ,Y,Z are p-divisible formal groups over k, and π : E →
X×Y is a biextension of X×Y by Z.

(5.1) Suppose we have a one-dimensional p-adic Lie group Γ acting on a biextension E of X×Y by
Z. We will extract from such an action a collection of congruence relations; see proposition 3.5.3.
This collection of congruence relations comes from the “leading term” of the action of a sequence
(γm) in Γ with limm→∞ γm = 1, and can be regarded as a substitute for the “derivative” of the action
of Γ on E.2

We will need the following congruence estimate for the morphisms ηn : π−1(X [pn]×Y [pn])→ Z
attached to a biextension π : E→ X×Y of p-divisible formal groups X×Y by Z.

(5.2) PROPOSITION. Let m = mE be the maximal ideal of the coordinate ring R = RE of the
smooth formal scheme E over k. Let

(
ηn : π−1(X [pn]×Y [pn]→ Z

)
n∈N be the compatible family

of morphisms defined in 2.7.1. Let µ = µZ,min be the maximum among the slopes of Z. There exist
positive integers n2,c2 such that

ηn ≡ 0
(

modm(pbn/µe−c2)
)

for all n≥ n2.

(5.2.1) LEMMA. Let R1,R2,S1,S2 be Noetherian local rings with maximal ideals m1,m2,n1,n2
respectively. Let h1 : R1→ S1 and h2 : R2→ S2 be injective local homomorphisms such that Si is a
finitely generated Ri-module via hi for i = 1,2. There exist positive integers C,d with the following
property:

Let f ,g : R1→R2 and f ′,g′ : S1→ S2 be local homomorphisms such that h2◦ f = f ′◦h1
and h2 ◦ g = g′ ◦ h1. If n ∈ N and f ′(y)− g′(y) ≡ 0 (mod nCn+d

2 ) for all y ∈ S1, then
f (x)−g(x)≡ 0 (mod nn

1) for all x ∈ R1.

PROOF. There exists a positive integer a > 0 such that nC
2 ⊂ n1S2. By the Artin–Rees lemma, there

exists a natural number e such that

S1∩nm+e
1 S2 ⊆ nm

1 ∀n ∈ N.

Lemma 5.2.1 holds for C = a and d = ae.

2The challenge of finding a good notion of “derivative” can be seen in a simple example: the standard action of
Zp
× on the formal completion Ĝm = Spf(Fp[[t]]) of Gm over Fp. The action of an element a ∈ Zp

× on Ĝm sends the
coordinate t to (1+ t)a−1.
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(5.2.2) REDUCTION STEPS FOR THE PROOF OF PROPOSITION 5.2.

0. We may and do assume that the base field k ⊃ Fp is algebraically closed.

1. Suppose that there exists a biextension E ′ of p-divisible formal groups X ′×Y ′ by Z′ and an
homomorphism (ψ,α,β ,γ) from E to E ′ such that α : X → X ′, β : Y → Y ′ and γ : Z → Z′

are isogenies of p-divisible groups. It is easy to see from 2.6.3 that there exist isogenies α ′ :
X ′→ X , β ′ : Y ′→Y , γ ′ : Z′→ Z and a homomorphism (ψ ′,α ′,β ′,γ ′) from E ′ to E. By 5.2.1,
proposition 5.2 holds for E if and only if it holds for E ′. It suffices to prove 5.2 for a push-
forward of the given biextension E by an isogeny E → E ′ of p-divisible groups. Therefore
we may and do assume that the p-divisible group X is isomorphic to a product X1×·· ·×Xa
of isoclinic p-divisibles with distinct slopes, Y is isomorphic to a product Y1× ·· · ×Yb os
isoclinice p-divisibles with distinct slopes, and Z is isomorphic to a product Z1× ·· ·Zc of
isoclinic p-divisible groups with distinct slopes.

2. In the situation at the end of step 1, the biextension E is decomposed into a product of biexten-
sions Elmn, l = 1, . . . ,a, m = 1, . . . ,b, n = 1, . . . ,c, where each Elmn is a biextension of Xl×Ym
by Zn. If 5.2 holds for all biextensions Elmn, then it holds for E. Therefore we may and do
assume that X , Y , Z are all isoclinic.

3. If slope(X) + slope(Y ) 6= slope(Z), then the bilinear pairing ΘE : M∗(X)×M(Y )→ M(Z)
is zero and the biextension E splits canonically. In this case 5.2 holds for trivial reason.
Therefore we may and do assume that slope(X)+ slope(Y ) = slope(Z).

4. Modifying Z by an isogeny if necessary, we may and do assume that there exist positive
integers a,r,s,n0 such that

– slope(X) = a
r ,

– Z[pa] = Ker(Frr
Z/k),

– X [pna]⊃ Ker(Frns
X/k) and Y [pna]⊃ Ker(Frns

Y/k) for all n≥ n0,

5. Let u1, . . . ,ub be a regular system of parameters of the coordinate ring of Z such that

[pa]∗(u j) = upr

j , j = 1, . . . ,b.

We have to show that there exist positive integers n2,c2 such that

η
∗
na(u j) ∈m(pbn/µe−c2) ∀n≥ n2, j = 1, . . . ,b.

6. It suffices to show that there exist positive integers n3,c3 such that

η
∗
na(u j) ∈m(prn−c3) ∀n≥ n2, j = 1, . . . ,b.
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(5.2.3) PROOF OF 5.2. We are in a position to apply results in 3.5. For each j = 1, . . . ,b and each
n≥ n0, define

a j,n = η
∗
na(u j) modm(pns) .

The sequence
(
a j,n
)

n≥n0
is φ r-compatible.

Pick a regular system of parameters t1, . . . , tm of the coordinate ring of E. By 3.5.3, there exists
a formal sequence

B j = ∑
I∈N[1/p]m

b j,I tI

such that the inequality (ast) in 3.5.3 whenever b j,I 6= 0, and

η
∗
na(u j)≡ Bpn

j

(
mod

{
∑

|I|∞≥psn

rI tI
})

for all n≥ n0. The above congruence is modulo terms of max-degree at least psn, i.e. modulo formal
series of the form ∑|I|∞≥psn rI tI . It is easily seen from the definition of the morphisms ηn that none
of the a j,n’s is a unit in k[[t]]/m(pns). So the constant term of B j is zero for all j = 1, . . . ,b. The
desired estimate for the η∗na(u j)’s follows immediately.

(5.3) Recall from 2.6.4 that the Lie algebra of the compact p-adic Lie group Autbiext(E)) consists
of all triples (A,B,C) which kill the bilinear form ΘE as in 2.6.4 (2).

(5.3.1) LEMMA. Let v = (A,B,C) be an element of the Lie algebra of Autbiext(E)). Suppose
that A ∈ End(X), B ∈ End(Y ) and C ∈ End(Z). Then exp(p2t A) ∈ Aut(X), exp(p2t B) ∈ Aut(Y ),
exp(p2t C) ∈ Aut(Z) and exp(p2t v) ∈ Autbiext(E) for all t ∈ Zp.

PROOF. The Taylor series for exp(p2t A) ∈ Aut(X) converges p-adically and defines an element of
Aut(X). Similarly exp(p2t B) ∈ Aut(Y ) and exp(p2t C) ∈ Aut(Z). That exp(p2t v) ∈ Autbiext(E)
follows from 2.6.4.

(5.3.2) PROPOSITION. Let v = (A,B,C) be an element of the Lie algebra of Autbiext(E)) such that
A ∈ End(X), B ∈ End(Y ) and C ∈ End(Z).

(i) For every integer n≥ 2, the infinite series

∑
j≥2

pn( j−1)

j!
C j

converges to an element of End(Z).

(ii) The restriction of the automorphism exp(pnt v) to En = π−1(X [pn]×Y [pn]) is equal to(
C ◦ηn + ∑

j≥2

pn( j−1)

j!
C j ◦ηn

)
∗ idEn
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PROOF. The statement (i) follows from the easy estimate

ordp( j!)<
j

p−1
≤ j,

which implies that

ordp

( p2( j−1)

j!

)
≥ (n−1)( j−1)−1.

Clearly (n−1)( j−1)−1≥ 0 for all j ≥ 2 and (n−1)( j−1)−1→ 0 as j→ ∞. The statement (i)
follows.

For (ii), we note that the automorphism exp(pnC)×exp(pnA)×exp(pnB) of Z×X [pn]×Y [p2n]
descents to the restriction to En of the automorphism exp(pnv) of E, according to 2.5.1 (iv) and
2.5.4. The statement (ii) follows from the definition of ηn in 2.7.1 and the Taylor expansion of
exp(pnC).

(5.4) We adopt the following assumptions and notation. They are compatible with the assumptions
and notation in 2.7.

(i) Let v = (A,B,C) be an element of the Lie algebra of Autbiext(E)). Assume that A ∈ End(X),
B ∈ End(Y ) and C ∈ End(Z).

(ii) Assume that a,s,r are three positive integers such that

– 0 < r < s, and a
r is the largest slope of Z

– a
s is strictly bigger than every slope of X and every slope of Y .

From general properties of slopes of p-divisible groups we know that there exist natural num-
bers n0,c0 ∈ N with n0 ≥min(2,c0/r) such that

X [pna]⊃ Ker(Frns
X ) and Y [pna]⊃ Ker(Frns

Y )

and
Z[pna]⊃ Ker(Frnr−c0

Z )

for all n ≥ n0, where Frns
X : X → X (pns) (respectively Frns

Y ) is the (ns)-th iterate of the relative
Frobenius for X (respectively Y ). Similarly for Frnr−c0

Z .

(iii) Let R = RE be the affine coordinate ring of the smooth formal scheme E, so that E = Spf(R)
and R is non-canonically isomorphic to a formal power series ring in d variables, where
d = dim(E). Let m = mE be the maximal ideal of R. Let φ = φR be the absolute Frobenius
endomorphism of R, which sends every element x ∈ R to xp.

For every natural number j, define an ideal of R by

m(p j) := φ
j(m)R.

Note that
mdp

j/de ⊆m(p j) ⊆mp j
.
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Denote by E modm( j) the Artinian scheme

E modm( j) := Spec(R/m( j))

(5.5) PROPOSITION. We use the notation and assumption in 5.4 and 5.3.2. There exist positive
integers n3,c3 such that the congruence

ψ(exp(pnav))≡ (C ◦ηna)∗ idEna (mod m(pmin(ns,2nr−c3)))

for the action ψ(exp(pnav)) of the element exp(pnav)∈G on E holds for all integers n≥ n3. In other
words, the restrictions to the Artinian scheme E modm(pdn) of the two automorphisms ψ(exp(pnav))
and (C ◦ηna)∗ idEna of the formal scheme E coincide. Here Ena = π−1(X [pna]×Y [pna]) as before.

PROOF. This proposition is a straight-forward consequence of 5.2 and 5.3.2.

1. The assumption 5.4 (ii) tells us that. Ena ⊃ Spec
(
R/m(pns)

)
for all n≥ n0.

2. We know from 5.3.2 that the restriction of ψ(exp(pna v)) to Ena is equal to(
C ◦ηna + ∑

j≥2

pna( j−1)

j!
C j ◦ηna

)
∗ idEna.

3. We know from 5.2 that there exist positive integers n2,c2 such that

ηna ≡ 0
(

mod m(pnr−c2)
)

for all n≥ n2
a .

4. An elementary calculation shows that

ordp
pna( j−1)

j! > na( j−1)− j
p−1 ≥ na−2 ∀ j ≥ 2

Let n3 := Min(n0,dn2/ae). Combining 3 and 4 above we get an estimate of the typical “error term”
pna( j−1)

j! C j ◦ηna:

pna( j−1)

j!
C j ◦ηna ≡ 0

(
mod m(p2nr−c3)

)
where c3 := 2c0 + c2, for all n≥ n3 and all j ≥ 2.

(5.6) The following corollary 5.7 is a variant of 5.5 and will be convenient for our purpose. We will
follow the general notation scheme in 5.4 and 5.5: X ,Y,Z are p-divisible groups over a perfect field
k⊃ Fp, π : E→ X×Y is a biextension of X×Y by Z. Let (R,m) = (RE ,mE) be the coordinate ring
of E.

(i) Assume that X ,Y,Z are p-divisible formal groups, i.e. every slope of X ,Y,Z is strictly positive.
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(ii) Let ν = (A,B,C) be an element of the Lie algebra of Autbiext(E → X ×Y ), A ∈ End(X),
B ∈ End(Y ) and C ∈ End(Z).

(iii) Assume that Z is a product of isoclinic p-divisible groups; write Z as a product of isoclinic
p-divisible subgroups with distinct slopes: Z = ∏Zl , where each Zl is isoclinic, the slopes of
the Zl are mutually distinct, and the slope of Zl is the biggest among slopes of Z. Assume that
the slope of Z1 is strictly bigger than every slope of X×Y .

(iv) Choose positive integers a,r,s,n3 with r < s such that the following conditions hold.

– slope(Z1) =
a
r

– X [pna]⊃ Ker(Frns
X ) and for all n≥ n3.

– Zl[pna]⊃ Ker(Frns
Zl
) for all l 6= 1 and all n≥ n3.

(v) For every n≥ n3, define a morphism

ρna : π
−1(Ker(Frns

X )×Ker(Frns
Y )
)
−→ Z1

to be the restriction to π−1(Ker(Frns
X )×Ker(Frns

Y
)

of the composition of ηna with the projec-
tion prZl

: Z→ Zl from Z to its l-th factor:

ρna =
(
prZl
◦ηna

)∣∣
π−1(Ker(Frns

X ×Ker(Frns
Y ))

.

(5.7) COROLLARY. Notation and assumptions as in 5.6. In particular a,r,s are positive integers,
r < s, a

r is the largest slope of Z, a
s is strictly bigger than any slope of X×Y and any other slope of

Z, Z1 is the maximal p-divisible subgroup of Z with slope a
r , and Z1[pa] = Ker(Frr

Z1/k). There exist
positive integers n4,c4 such that

ψ(exp(pnav))≡ (C|Z1 ◦ρna)∗ idE modm (mod m(pmin(ns,2nr−c4)))

for all n ≥ n4, where C|Z1 ∈ End(Z1) is the restriction to the factor Z1 of Z of the endomorphism
C ∈ End(Z).

Corollary 5.7 is an easy consequence of 5.5.

§6. How to prove identities using powers of Frobenius
(6.1) The main technical tool for proving local rigidity for p-divisible formal groups with respect to
non-trivial actions of compact p-adic Lie groups is the statement [3, Prop. 3.1], about power series,
which looks like a mess at first sight. A slightly different form, stated in [3, 3.1.1], is reproduced
in 6.1.1 below for the convenience of the readers. A weak rigidity statement 6.2 for a section of a
biextension stable under the action of a p-adic Lie group is presented as an application of 6.1.1.

(6.1.1) PROPOSITION. Let k ⊃ Fp be a field. Let u = (u1, . . . ,ua), v = (v1, . . . ,vb) be two tuples
of variables. Let f (u,v) ∈ k[[u,v]] be a formal power series in the variables u1, . . . ,ua,v1, . . . ,vb
with coefficients in k. Let x = (x1, . . . ,xm), y = (y1, . . . ,ym) be two new sets of variables. Let
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(g1(x), . . . ,ga(x)) be an a-tuple of power series such that gi(x) ∈ (x)k[[x]] for i = 1, . . . ,a. Let
(h1(y), . . . ,hb(y)) be a b-tuple of power series with h j(y) ∈ (y)k[[y]] for j = 1, . . . ,b. Let q = pr

be a power of p for some positive integer r. Let n0 ∈ N be a natural number. Let (dn)n∈N,n≥n0

be a sequence of natural numbers such that limn→∞
qn

dn
= 0. Suppose we are given power series

φ j,n(v) ∈ k[[v]] for all j = 1, . . . ,b and all n≥ n0 such that

R j,n(v) := φ j,n− vqn

j ≡ 0 (mod (v)dn) ∀ j = 1, . . . ,b, ∀n≥ n0.

and
f
(
g1(x), . . . ,ga(x),φ1,n(h(x)), . . . ,φb,n(h(x))

)
≡ 0 (mod (x)dn)

in k[[x]], for all n≥ n0. Then

f (g1(x), . . . ,ga(x),h1(y), . . . ,hb(y)) = 0 in k[[x,y]].

(6.1.2) REMARK. As noted in [3, 3.1.1], the proof of [3, 3.1] also proves 6.1.1. We will not
reproduce the proof of 6.1.1 here. However we would like to remark here that the argument in [3]
also works if the power series rings in the statement of 6.1.1 are replaced by complete restricted
perfections of power series rings. This “easy exercise” will be carried out in 6.4.

(6.1.3) REMARK. Readers who looked up [3, 3.1.1] may find it somewhat different from the state-
ment of 6.1.1. There it is assumed that there exists an natural number b′ with 0 ≤ b′ ≤ b such that
φ j,n−vqn

j ≡ 0 (mod (v)dn) ∀ j = 1, . . . ,b′, ∀n≥ n0, and φ j,n≡ 0 (mod (v)dn) ∀ j = b′+1, . . . , ∀n≥
n0. So the condition in [3, 3.1.1] that

f
(
g1(x), . . . ,ga(x),φ1,n(h(x)), . . . ,φb,n(h(x))

)
≡ 0 (mod (x)dn) ∀n≥ n0

is equivalent to the assumption that

f ′
(
g1(x), . . . ,ga(x),φ1,n(h(x)), . . . ,φb′,n(h(x))

)
≡ 0 (mod (x)dn) ∀n≥ n0,

where f ′(u1, . . . ,ua,v1, . . .vb′) := f (u1, . . . ,ua,v1, . . . ,vb′,0, . . . ,0). The conclusion of [3, 3.1.1] is
that f ′(g1(x), . . . ,ga(x),h1(y), . . . ,hb′(y)) = 0, which is the conclusion of 6.1.1 (with b replaced by
b′ and f replaced by b′). So the statements of 6.1.1 is really the same as that of [3, 3.1].

Proposition 6.2 can be reformulated as follows. We will use the following notation.

• Let k ⊃ Fp be a field.

• Let U,V and X be local formal schemes over k which are isomorphic to the formal spectrum
of a power seriers ring over k in a finite number of variables.

• For each positive integer m, let Um,Vm,Xm be the m-th infinitesimal neighborhood of the local
formal schemes U,V,X respectively.

• Let U×V be the fiber product of U and V over k in the category of formal schemes over k.

• Let q = pr be a positive power of p.
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• Let Frq
Y/k : V →V (q) be the r-th iterate of the relative Frobenius for V/k.

• Let δ : V (q) ∼−→V be an isomorphism over k and let Φ = δ ◦Frq
V/k.

• For each n ∈ N, let
(g,Φn ◦h) : X →U×V

be the morphism from X to the fiber product U ×V with components g and Φn ◦h. For each
m ∈ N, let

(g,Φn ◦h)m : Xm→ (U×V )m

be the morphism from the m-th infinitesimal neighborhood of X to the m-th infinitesimal
neighborhood of U×V induced by (g,Φn ◦h) .

(6.1.4) PROPOSITION. We use notations in the preceding paragraph. Let (dn)n≥n0 be a sequence
of positive integers such that

lim
n→∞

qn

dn
= 0.

Let f ∈ Γ(U×V,OUxV ) be a regular function on the formal scheme U×V . Suppose for each n≥ n0 ,
the function f ◦ (g,Φn ◦ h)Xdn

on the dn-th infinitesimal neighborhood Xdn of the closed point of X
induced by the morphism (g,Φn ◦ h)dn : Xdn −→ (U ×V )dn and f is zero. Then the composition of
f with g× h : X ×X →U ×V is zero. In other words f vanishes on the schematic closure of the
morphism g×h : X×X →U×V .

(6.1.5) REMARK. Suppose that the base field k ⊃ Fp in is algebraically closed field. Then the
schematic closure of g× h : X ×X → U ×V is equal to the product of the schematic closures of
g : X →U and h : X →V . So 6.1.4 simplifies to: the schematic closure of (the union of) the family
of morphisms

(g,Φn ◦h)dn : Xdn → (U×V )dn ↪→U×V

contains the product of the schematic closure of g : X→U with the schematic closure of h : X→V .
The universal case of the last statment is when U = V = X and g,h are both equal to idX , and the
family of morphisms in the statement is induced by the family of Frobenius-twisted diagonal maps

(idXdn
,Φn ◦ idXdn

) : Xdn → Xdn×Xdn.

Note that (X ×X)dn is naturally identified with (Xdn×Xdn)dn , the dn-th infinitesimal neighborhood
of the closed point of Xdn×Xdn .

(6.2) PROPOSITION. Let k ⊃ Fp be a field. Let X ,Y,Z be p-divisible formal groups over k. Let
π : E→ X×Spec(k)Y be a biextension of X×Spec(k)Y by Z. Let s : X×Spec(k)Y → E be a section of π ,
i.e. π ◦ s = idX×Spec(k)Y . Let G be a compact p-adic Lie group action on the biextension E→ X×Y .

(i) Suppose that Z is isoclinic, and the slope of Z is strictly bigger than every slope of X and
every slope of Y .

(ii) Assume that the induced action of G on Z is strongly non-trivial.

(iii) Assume moreover that the graph of the section s is stable under the action of G on E.
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Then the biextension π : E→ X×Spec(k)Y is trivial, and the section s is its canonical splitting.

PROOF. There are two preliminary reduction steps before the main argument

REDUCTION STEP 1. According to the last paragraph of 2.4.1, it suffice to verify the assertion in
the last sentence of 6.2 after extending the base field from k to an algebraic closure of k. So we may
and do assume that k is algebraically closed.

REDUCTION STEP 2. Let ν be the slope of Z. We know that there exists an isogeny ξ : Z → Z1
such that Z1 is completely slope divisible in the sense that there exist positive integers a1,r1 with
a1 = r1 ·ν such that the kernel of the N-th iterate

Fr(pa1)
Z/k : Z→ Z(pN)

of the relative Frobenius is equal to Z[pa1]. Let E1 → X ×Spec(k) Y be the push forward by ξ of
the biextension E, and let ξ̃ : E → E1 be the canonical biextension homomorphism from E to E1.
For each element g ∈ G, let α(g), β (g) and γ(g) be the automorphism of X , Y and Z induced by
the action of g on the biextension E. There exists an open subgroup G1 of G such that the isogeny
ξ ◦α(g)◦ξ−1 is an automorphism of Z. One verifies without difficulty that there exists a continuous
homomorphism ρ1 : G1→ Autbiext(E1) such that ρ1(g) ◦ ξ̃ = ξ̃ ◦ρ(g) for every g ∈ G1. From the
last paragraph of 2.4.4, to show that the biextension E of X ×Spec(k)Y by Z is trivial, it suffices to
show that the biextension E1 of X ×Spec(k): Y by Z1 is trivial. In this case the composition of the
canonical splitting of E1 is the unique section of E → X ×Spec(k) Y whose composition with ξ̃ is
equal to the canonical splitting of the biextension E1→ X×Spec(k)Y . So we may and do assume that
Z[pa1] = Ker(Frr1

Z ).

By [3, Thm. 4.3], the graph of the restriction of s to X×0Y is a p-divisible subgroup of π−1(X×
0Y ) ∼= X ×Spec(k) Z, meaning that the restriction of s to X × 0Y is a group homomorphism from
X → π−1(X ×0Y ). Because X and Z does not have common slope, s coincides with ε2 on X ×0Y .
Similarly s coincides with ε1 on 0X ×Y . Let τ : (X ×X)×Y → Z and σ : X × (Y ×Y )→ Z be
defined by formulas (a), (b) in 2.2.1. To prove 6.2, it suffices to show that both τ and σ are zero, in
the sense that each is equal to the composition of the zero section 0Z of Z with the projection of its
source to Spec(k).

The assumption that the graph of the section s is stable under the action of G means that the map
µρ(g) : X×Y → Z in 2.3.4 is identically 0 for each g ∈ G. Therefore

γ(g)(τ(x1,x2;y))− τ(α(g)(x1),α(g)(x2);β (g)(y)) = 0(6.2.1)
γ(g)(σ(x;y1,y2))−σ(α(g)(x);β (g)(y1),β (g)(y2)) = 0(6.2.2)

for all x,x1,x2 ∈ X and all y,y1,y2 ∈ Y .

The key observation here is that equations (1), (2) above for elements g ∈G close to the identity
element of G, under the assumption that the slope of Z is strictly bigger than all slopes of X and Y ,
produces a large number of identities which are increasingly close to equations of the form

dγ(C) · τ = 0Z = dγ(C) ·σ
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in the sensse specified in 6.1.1, so that the identity principle with Frobenius powers 6.1.1 is ap-
plicable. Here C is any element of Lie(G) such that dγ(C), a priori an element of End(Z)⊗ZQ,
is actually an endomorphism of Z. The limit equations resulting from the identity principle is the
following.

(∗) If v is an element of Lie(G) such that the image of v under the representation

(dα,dβ ,dγ) : Lie(G)→ End(Z)⊗ZQ

lies in End(X)⊕End(Y )⊕End(Z), then dγ(v) kills both Z-valued functions τ and σ

from X×Y to Z.

Since the action of G on Z is assumed to be strongly non-trivial, the statement (∗) above implies
that the maps τ : (X×X)×Y → Z and σ : X×(Y×Y )→ Z are both identically zero and 6.2 follows.

It remains to prove (∗). Let µ = slope(Z). After extending the base field k, we may and do
assume that k is algebraically closed. Changing Z by an isogeny, we may and do assume that there
exist positive integers a1,r1 such that Z[pa1] = Ker(Frr1

Z/k).
Let v be an element of Lie(G) such that A = dα(v) is an endomorphism of Z, B = dβ (v) is

an endomorphism of Y and C = dγ(v) is an endomorphism of Z. There exists positive integers
a,r,s,c,n0 such that (i)–(iv) below hold for all integers n≥ n0.

(i) a,r are multiples of a1,r1 respectively, r < s, and a/s is strictly bigger than every slope of X
and every slope of Y ,

(ii) γ(exp(pnaC))≡ idZ + pnaC (mod Ker(Frns−c
Z/k )),

(iii) α(exp(pnaA)) ∈ End(X), β (exp(pnaB)) ∈ End(Y ),

(iv) α(exp(pnaA))≡ idX (mod Ker(Fras−c
X/k )), and β (exp(pnaB))≡ idY (mod Ker(Fras−c

Y/k )).

The equations (6.2.1), (6.2.2 with g = exp(pnaA and the congruences (ii) and (iv) above implies that

(pnaC) · τ(x1,x2;y)≡ 0 (mod Ker(Fras−c
Y/k ))

and
(pnaC) ·σ(x;y1,y2)≡ 0 (mod Ker(Fras−c

Y/k ))

for all n≥ n0. Applying proposition 6.1.1, we conclude that

C · τ(x1,x2;y) = 0 and C ·σ(x;y1,y2) = 0 .

We have proved the statement (∗) and proposition 6.2.
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(6.3) We make some preparations before stating proposition 6.4. The latter is a generalization of
6.1.1 to the context of complete restricted perfections of power series rings.

(6.3.1) DEFINITION. Let E > 0, C,d ≥ 1 be real numbers. Define the support subset

supp(m : E;C,d)⊂ N[1/p]m

with parameters (E;C,d) by

supp(m : E;C,d) =
{

I ∈ N[1/p]m : |I|p ≤C · (|I|σ +d)E}
(6.3.2) DEFINITION. Let x = (x1, . . . ,xm) be a tuple of variables,

(i) The total degree of monomials in x gives rise to a decreasing filtration

Fil≥•t.deg

on k〈〈x1, . . . ,xm〉〉E, [C;d , indexed by real numbers:

Fil≥u
t.deg

(
k〈〈x1, . . . ,xm〉〉E, [C;d) :=

{
∑

I∈supp(m:E;C,d)
aI · xI

∣∣∣ aJ ∈ k ∀I, aI = 0 if |I|σ < u

}
for every u ∈ R.

(ii) For every real number u, define Fil>u
t.deg by

Fil>u
t.deg
(
k〈〈x1, . . . ,xm〉〉E, [C;d) :=

{
∑

I∈supp(m:E;C,d)
aI · xI

∣∣∣ aJ ∈ k ∀I, aI = 0 if |I|σ ≤ u

}
.

The following lemma deals with the perfection k[xp−∞

1 , . . . ,xp−∞

m ] = ∪n∈N k[xp−n

1 , . . . ,xp−n

m ] of the
polynomial ring k[x1, . . . ,xm] over the perfect base field k. Notice that one can evaluate any element
of k[xp−∞

1 , . . . ,xp−∞

m ] at any m-tuple (c1, . . . ,cm) ∈ km. Lemma 6.3.3 provides a dichotomy when an

element F(x1, . . . ,xm) ∈ k[xp−∞

1 , . . . ,xp−∞

m ] is evaluated at all Frq-powers

{(cqn

1 , . . . ,cqn

m ) : n ∈ N

of a gien m-tuple (c1, . . . ,cm), where q = pr is a power of p, r ∈ N>0:

- either F(cqn

1 , . . . ,cqn

m ) = 0 for infinitely many natural numbers,

- or F(cqn

1 , . . . ,cqn

m ) = 0 for all n ∈ Z.

(6.3.3) LEMMA. Let r be a positive integer, and let q = pr. Let F(x1, . . . ,xm) be an element of
k[xp−∞

1 , . . . ,xp−∞

m ]. Suppose that (c1, . . . ,cm) ∈ km is an element of km and n0 is a natural number
such that

F(cqn

1 , . . . ,cqn

n ) = 0

for all integers n≥ n0. Then F(cqn

1 , . . . ,cqn

n ) = 0 for all n ∈ Z. In particular F(c1, . . . ,cn) = 0.

PROOF. When F(x1, . . . ,xn) ∈ k[x1, . . . ,xn], this statement was proved in [3, 2.2]. The general case
follows because there exists a positive integer i such that F(x1, . . . ,xm)

pi ∈ k[x1, . . . ,xm].
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(6.4) PROPOSITION. Let x = (x1, . . . ,xm), y = (y1, . . . ,ym), u = (u1, . . . ,a) and v = (v1, . . . ,vb)
be four tuples of variables. Let (E1;C1,d1) and (E2;C2,d2) be two triples of real parameters with
E1,E2 > 0 and C1,C2,d1,d2 ≥ 1. Let

f (u,v) ∈ k〈〈up−∞

1 , . . . ,up−∞

a ,vp−∞

1 , . . . ,vp−∞

b 〉〉E1, [
C1;d1

be an element of k〈〈up−∞

1 , . . . ,up−∞

a ,vp−∞

1 , . . . ,vp−∞

b 〉〉E1, [
C1;d1

such that the support set supp( f ) of f is
contained in the product supp(a : E1;C1,d1)× supp(b : E1;C1,d1):

(6.4.1) supp( f )⊆ supp(a : E1;C1,d1)× supp(b : E1;C1,d1).

In other words f lies in the closure in k〈〈up−∞

1 , . . . ,up−∞

a ,vp−∞

1 , . . . ,vp−∞

b 〉〉E1, [
C1;d1

of the subring

k〈〈up−∞

1 , . . . ,up−∞

a 〉〉E1, [
C1;d1
⊗k k〈〈vp−∞

1 , . . . ,vp−∞

b 〉〉E1, [
C1;d1

.

Let
(g1(x), . . . ,ga(x)) ∈

(
Fil>0

t.degk〈〈xp−∞

1 , . . . ,xp−∞

m 〉〉E2, [
C2;d2

)a

be an a-tuple of elements in k〈〈xp−∞

1 , . . . ,xp−∞

m 〉〉E2, [
C2;d2

whose constant terms are 0. Let

(h1(y), . . . ,hb(y)) ∈
(
Fil>0

t.degk〈〈yp−∞

1 , . . . ,yp−∞

m 〉〉E2, [
C2;d2

)b

be a b-tuple of elements in k〈〈yp−∞

1 , . . . ,yp−∞

m 〉〉E2, [
C2;d2

whose constant terms are 0. Let q = pr be a
power of p, where r > 0 is a positive integer. Let n0 be a natural number. Suppose that there exists
a sequence (dn)n≥n0 of natural numbers such that

(6.4.2) lim
n→∞

qn

dn
= 0

and

(6.4.3) f (g1(x), . . . ,ga(x),h1(x)qn
, . . . ,hb(x)qn

)≡ 0 (mod Fildn
t.deg) ∀n≥ n0.

Then

(6.4.4) f (g1(x), . . . ,ga(x),h1(y), . . . ,hb(y)) = 0.

In the above the congruence relation 6.4.3 takes place in k〈〈xp−∞

1 , . . . ,xp−∞

m 〉〉E3, [
C3;d3

, and the equation

6.4.4 holds in the ring k〈〈xp−∞

1 , . . . ,xp−∞

m ,yp−∞

1 , . . . ,yp−∞

m 〉〉E3, [
C3;d3

, where

• E3 = E1 +E2 +E1E2,

• C3 =C1+E2
1 ·C1+E1+E1E2

2 · (1+d)E1E2(1+E2), and

• d3 is a sufficiently large constant depending on (E1;C1,d1) and (E2;C2,d2).

See 4.3.1 and the trivial lower bound for e2 there.

REMARK. For application to rigidity of biextensions of p-divisible formal groups, we will need
only the special case of 6.4 when f (u,v) ∈∈ k[[u1, . . . ,ua,v1, . . . ,vb]], i.e. f (u,v) is a usual power
series. It is interesting to know whether 6.4 holds without the assumption 6.4.1 on f (u,v). We do
not know the answer.
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(6.5) PROOF OF PROPOSITION 6.4. Let

t =
(
ti, j
)
(i, j)∈{1,...,b}×(supp(m:E2;C2,d2)r0)

be an infinite array of variables indexed by {1, . . . ,b}×
(
supp(m : E2;C2,d2)r {0}

)
, where 0 is

the zero element of the support subset supp(m : E2;C2,d2) ⊂ N[1/p]m defined in 6.3.1. For each
i = 1, . . . ,b,

hi(y) = ∑
06=K∈supp(m:E2;C2,d2)

ci,K yJ

with ci,K ∈ k for all J ∈ S(m : E2;C2,d2)r{0}. Let

Hi(t;y) := ∑
0 6=K∈supp(m:E2;C2,d2)

t i,K yK

The assumption 6.4.1 implies that the composition

f
(
g1(x), . . . ,ga(x),H1(t;y), . . . ,H1(t;y)

)
is a well-defined formal series k〈〈xp−∞

1 , . . . ,xp−∞

m ,yp−∞

1 , . . . ,yp−∞

m 〉〉E3, [
C3;d3

whose support is contained
in the product supp(m : E3;C3,d3)× supp(m : E3;C3,d3):

(6.5.1) f
(
g(x),H(t;y)

)
= ∑

(I,J)∈supp(m:E3;C3,d3)×supp(m:E3;C3,d3)

AI,J(t) xIyJ

Moreover each coefficient AI,J(t) is an element in the perfection

k[t p∞

] = k
[
t p−∞

i,K
]

i∈{1,...,b},K∈supp(m:E2;C2,d2)r{0}

of the polynomial ring

k[t p−∞

] = k[ti,K]i∈{1,...,b},K∈supp(m:E2;C2,d2)r{0}

in infinitely many variables ti,K . Clearly For every n ∈ N, we have

(6.5.2) f
(
g1(x), . . . ,ga(x),h1(x)

qn
, . . . ,hb(x)

qn)
= ∑

I,J
AI,J(cqn

) xI+qnJ .

In particular

(6.5.3) f
(
g1(x), . . . ,ga(x),h1(x), . . . ,hb(x)

)
= ∑

I,J
AI,J(c) xI+J .

By assumption 6.4.2, we get

(6.5.4) ∑
(I,J) s.t. |I+qnJ|σ<dn

AI,J(cqn
) xI+qnJ = 0 ∀n≥ n0 .

We want to show that AI,J(c) = 0 for all (I,J)∈ supp(m : E3;C3,d3)×supp(m : E3;C3,d3). Sup-
pose to the contrary that AI0,J0(c) 6= 0 for some (I0,J0) ∈ supp(m : E3;C3,d3)× supp(m : E3;C3,d3).
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By lemma 6.3.3, there exists infinitely many natural numbers n such that AI0,J0(c
qn
) 6= 0. Define a

subset T ⊆ supp(m : E3;C3,d3)× supp(m : E3;C3,d3) by

T :=
{
(I,J) : I,J ∈ supp(m : E3;C3,d3), AI,J(cqn

) 6= 0 for infinitely many n ∈ N
}
.

This set T is non-empty because it contains (I0,J0). Again by lemma 6.3.3 we know that

AI,J(cqn
) = 0 ∀n ∈ Z if (I,J) 6∈ T ,

and equation 6.5.5 becomes

(6.5.5) ∑
(I,J)∈T s.t. |I+qnJ|σ<dn

AI,J(cqn
) xI+qnJ = 0 ∀n≥ n0 .

Let
M2 := min{|J|σ : (I,J) ∈ T}

and let
M1 := min{|I|σ : (I,J) ∈ T and |J|σ = M2} .

The minimum defining M2 (respectively M1) exists because every subset supp(m : E3;C3,d3) whose
archimedean norm is bounded above is a finite set. This finiteness property for supp(m : E3;C3,d3)
also implies that there exists a positive number ε2 > 0 such that

(6.5.6) J ∈ supp(m : E3;C3,d3) and |J|σ > M2 =⇒ |J|σ > M2 + ε2.

The subset
T1 := {(I,J) ∈ T : |J|σ = M2, |I|σ = M1}

is a non-empty finite set. There exists a natural number n1 ≥ n0 such that properties 6.5.7–6.5.9
below hold.

(6.5.7) M1 +qnM2 < dn−2 ∀ n≥ n1, n ∈ N

(6.5.8) qn · ε2 > M1 ∀n≥ n1, n ∈ N

(6.5.9) (I1,J1),(I2,J2) ∈ T1, I1 +qnJ1 = I2 +qnJ2 and n≥ n1 =⇒ (I1,J1) = (I2,J2)

Consider the set
Sn :=

{
(I,J) ∈ T : |I +qnJ|σ = M1 +qnM2

}
.

The property 6.5.8 and the inequality 6.5.6 implies that Sn = T1 for all n ≥ n1. Because Sn = T1,
when we examine terms of total degree M1 +qnM2 in equation 6.5.5, we find that

(6.5.10) ∑
(I,J)∈T1

AI,J(cqn
) xI+qnJ = 0 ∀n≥ n1 .

By property 6.5.9 and equation 6.5.9, we see that

AI,J(cqn
) = 0

for all (I,J) ∈ T1 and all n ≥ n1, therefore T1 is the empty set. This is a contradiction. We have
proved proposition 6.4.
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REMARK. (a) The assumption 6.4.1 on the support of f (u,v) implies the uniform bound 6.5.1 on
the support of the composition f

(
g1(x), . . . ,ga(x),H1(t;y), . . . ,Hb(t;y)

)
. This observation allows us

to take advantage of the finiteness property of the support set supp(m;E3;C3,d3). The rest of the
argument in the proof of 6.4 is identical with the proof of [3, 3.1].

(b) Our proof is not strong enough to show that 6.4 holds for every element f in k〈〈up−∞

,up−∞〉〉E1, [
C1;d1

.
But we don’t have a counter-example either. It will be interesting if one can find a larger class of
formal series f (u,v) in k〈〈up−∞

,up−∞〉〉E1, [
C1;d1

for which the statement 6.4 holds.

§7. Rigidity results for biextensions
(7.1) Notation and basic setup. In this section k is a perfect field of characteristic p > 0.

(i) Let X ,Y,Z be p-divisible formal groups, and π : E→X×Spec(k)Y is a biextension of X×Spec(k)
Y by Z.

(ii) Let G be a compact p-adic Lie group. Let (ρ,α,β ,γ) be an action of G on the biextension
E→ X×Y , where ρ : G→Autbiext(E→ X×Y ) is a continuous homomorphism, and α : G→
Aut(X) (respectively β : G→ Aut(Y ), γ : G→ Aut(Z)) is the action of G on X (respectively
Y , Z) underlying ρ . We know from 2.6.4 that the group homomorphism

(α,β ,γ) : G−→ Aut(X)×Aut(Y )×Aut(Z)

is a closed embedding of compact p-adic Lie groups, and the induced map

(dα,dβ ,dγ) : −→ Lie(G)End(X)Q⊕End(Y )Q⊕End(Z)Q

is an injection of finite dimensional vector spaces over Qp. We often use the map (α,β ,γ) to
G with a subgroup of Aut(X)×Aut(Y )×Aut(Z), and regard Lie(G) as a Qp-vector subspace
of Lie(G)End(X)Q⊕End(Y )Q⊕End(Z)Q.

(iii) Let W ⊂ E be a formal subvariety of E, in the sense that there exists a prime ideal IW of the
coordinate ring RE of E such that W = Spf(RE/IW ). Assume that W is stable under the action
of G.

(iv) The formal subvariety V = Spf
(
RX×Spec(k)Y/(IW ∩RX×Y )

)
⊆ X×Spec(k)Y will be said to be the

image of W in X×Spec(k)Y .

(7.2) THEOREM. Let W be a formal subvariety of E stable under the action of G. Let µ1 be the
largest slope of Z. Let Z1 be the maximal p-divisible subgroup of Z which is isoclinic of slope
µ1. Let Z2 be the largest among all isoclinic p-divisible subgroups of Z with slope µ1 which are
contained in W. Let ϒZ2 : Z2×E→ E be the morphism

ϒ : Z2×E→ E (z2,e) 7→ z2 ∗ e ,

corresponding to the restriction to Z2 of the action of Z on E. Let v = (A,B,C) ∈ Lie(G) be an
element of the Lie algebra of G such that A ∈ End(X), B ∈ End(Y ) and C ∈ End(Z).
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(1) Assume that µ1 is strictly bigger than every slope of X and every slope of Y . Then(
ϒ◦ (C|Z2× idW )

)
(Z2×W )⊆W.

In other words the formal subvariety W ⊂ E is stable under translation by the p-divisible
subgroup C(Z2) of Z.

(2) Assume in addition that the action of G on Z2 is strongly non-trivial. Then

ϒ(Z2×W )⊆W .

(7.2.1) 7.2 (1) =⇒ 7.2 (2).
The assumption that the action of G on Z2 is strongly non-trivial implies that there exists ele-

ments vi j = (Ai j,Bi j,Ci j) ∈ Lie(G), indexed by a finite subset{
(i, j) ∈ N2 : i ∈ {1, . . . ,m}, j ∈ {1, . . . ,ni}

}
,

where ni ∈ N≥1 for each i = 1, . . . ,m, such that

∑
1≤i≤m

Ci,1|Z2 ◦ · · · ◦Ci,ni|Z2 ∈ End(Z2)
×
Q.

Here Ci, j ∈End(Z2)Q stands for the restriction to Z2 of the element Ci, j ∈End(Z)Q=End(Z)⊗ZQ.
See [3, 4.1.1] for this lemma on representation theory. The statement (2) follows from statement (1)
and the above linear algebra consequence of the assumption that G operates strongly non-trivially
on Z2. The statement (1) will be proved in 7.2.3.

(7.2.2) The main ingredients in the proof of the statement (1) have been developed in previous
sections. Here is a brief summary of how these ingredients come into the proof

(i) The analysis of the action on E of ψ(exp(pnav) for elements exp(pnav) ∈ G close to the
identity element of G in 5.7, where v = (A,B,C) = (dα(v),dβ (v),dγ(v)) is an element of
the Lie algebra Lie(G) of G. This analysis says that the difference between ψ(exp(pnav)) is
represented modulo mpns

by a linearized “main term”

C|Z1 ◦ρna (mod mpns

E )

for natural numbers n� 0. The map

ρna : E modmpns

E → Z1 modmpns

E

comes from the composition of the map

ηna modmpns

E : E modmpns

E → Z modmpns

Z

defined in 2.7 with the projection prZ1
: Z→ Z1 from Z to its factor Z1. The phenomenon is

that the main term shows up already at the level of mc·pnr

E , where a
r = µ1 and s > r, while the

error term lies in mpns

E . Thus the error term goes to 0 at a rate much faster than the rate at
which the main term does. It is tempting to replace “much faster” by “doubly exponential”
in the preceding sentence in order to better convey the comparison. At any rate, this family
of congruences relations for ψ(exp(pnav)) can be regarded as a reasonable substitute in the
attempt to differentiate the function t 7→ ψ(exp(tv)) for t in a small neighborhood of 0 in Zp.
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(ii) In order to analyse the compatible family of maps ρn defined in 3.3.2, one is naturally led
to the notion of complete restricted perfection of equi-characteristic-p complete Noetherian
local domains in §3. When applied to the coordinate ring (RE ,mE) of a biextension E, this
procedure produces many of mutually related of rings, depending on parameters; each one is
a completion of some suitable subring of the perfection of RE . After picking a good regular
system of parameters (z1, . . . ,zd) for the coordinate ring of Z1, the compatible family of maps
ρn’s is controlled by a b-tuple h1, . . . ,hb of elements of a suitable complete restricted perfec-
tion R̃E of RE , so that ρna is represented by (hpnr

1 , . . . ,hpnr

b ) for all large n’s. Restricting to
a formal subvariety W of E, one gets a d-tuple of elements of R̃W , where R̃W is a complete
restricted perfection of the coordinate ring RW of W .

(iii) Let ∆2 : RE → RZ2⊗̂RE be the ring homomorphism corresponding to the translation action
Z2×E→ E of Z2 on E, and let C|∗Z2

: RZ2 → RZ2 be the ring endomorphism corresponding to
the restriction to Z2 of C ∈ End(Z).

To show that a G-invariant formal subvariety W is stable under translation by C|∗Z2
(Z2), one

needs to show that every element f in the prime ideal IW for W is sent to an element of
RZ2 · IW under (C|∗Z2

⊗1RE )◦∆2, or equivalently, the element (C|∗Z2
⊗1RE )(∆2( f )) is mapped

to 0 under the natural surjection RZ2⊗̂RE � RZ1⊗̂RE . Following [3], our strategy is to try to
show that a suitable element f̃ ∈ R̃W ⊗̂R̃W attached to ∆( f1) is zero.

(iv) To simplify the algebra involved, one deploys an easy form of local uniformization and em-
bed RW in a formal power series ring S. The situation then is that we have an element
f (u1, . . . ,ua,v1, . . . ,vb) ∈ S̃⊗̂S̃ attached to f1, and all we have going for us is a family of
congruences of the form

f
(
g1(x), . . . ,ga(x),h1(x)prn

, . . . ,hb(x)prn)
≡ 0 (mod (x)pn(s−ε)−c)

for all n� 0, with integer constants s > r > 0, c > 0, where x = (x1, . . . ,xm) are variables for
the power series ring S. These congruences are consequences of the analysis of ψ(exp(pnav))
in (i) above.

At this point the identity principle 6.4 comes to the rescue. It says that the above family
of congruences implies that the function f

(
g1(x), . . . ,ga(x),h1(y), . . . ,hb(y) in two sets of

variables x1, . . . ,xm,y1, . . . ,ym is identically equal to 0.

(7.2.3) PROOF OF THEOREM 7.2.
1. Preliminary reduction steps.

(a) It suffices to verify the statement of 7.2 after extending the base field k to an algebraic closure
of k. So we may and do assume that k is algebraically closed.

(b) If E→ E ′ is an isogeny of biextensions, the statement of 7.2 holds for E if and only if it holds
for E ′. Modifying E by suitable isogenies, we may and do assume that X , Y , Z are product of
isoclinic p-divisible groups. Moreover may and do assume that there exist positive integers
a,r such that µ1 =

a
r and Z1[pa] = Frr

Z1
.
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(c) Choose a suitable regular system of parameters (u1, . . . ,ub) for the coordinate ring Z1 such
that Z1 = Spf(k[[u1, . . . ,ub]]) and

[pa]∗(ui) = upr

i

for i = 1, . . . ,b.

(d) The largest slope µ1 of Z is assumed to be bigger than every slope appearing in X ×Y . Mul-
tiplying a,r by a suitable positive integer, we may and do assume that there exists positive
intergers s,n0 such that s > r and a

s is strictly bigger than every slope of X×Y , and

X [pna]⊃ Ker(Frns
X/k) and Y [pna]⊃ Ker(Frns

Y/k)

for all n≥ n0.

(e) Let RW =RE/IW be the coordinate ring of W , where IW is the prime ideal of RE corresponding
to W . By [3, 2.1], there exists a k-linear injective local homomorphism

ι : RW = RE/IW ↪→ k[[t1, . . . , tm]]

from RW to a formal power series ring in m variables, where m = dim(RW ).

2. By 5.7, there exist positive integers n4 ≥ n0 and c4 such that

(7.2.3.1) ψ(exp(pnav))≡ (C|Z1 ◦ρna)∗ idE modm (mod m(pmin(ns,2nr−c4)))

for all n≥ n4, where

ρna =
(
prZl
◦ηna

)∣∣
π−1(Ker(Frns

X ×Ker(Frns
Y ))

: π
−1(Ker(Frns

X )×Ker(Frns
Y )
)
−→ Z1

is the restriction to π−1(Ker(Frns
X )×Ker(Frns

Y )
)

of the composition of ηna with the projection

prZl
: Z→ Zl.

For each j = 1, . . . ,b, defined a φ r-compatible sequence (a j,n)n≥n4 by

a j,n := ρ
∗
na(u j) ∈ RE/m

(pns)
E

for all n≥ n4. Let i1 := max
(
s− r,dn4

r e
)
. For each j = 1, . . . ,b, let

ã j ∈ (RE ,mE)
perf,#
s:φ r;[i1]

be the formal series corresponding to the φ r compatible sequence (a j,n)n≥n4 .

Although (RE ,mE)
perf,#
s:φ r;[i1]

is more tightly related to φ r-compatible sequences through the con-

struction in 3.5, we will pass to the larger ring (RE ,mE)
perf, [
s:φ r;[i1]

, and consider the ã j’s as elements of

(RE ,mE)
perf, [
s:φ r;[i1]

in the rest of the proof.
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3. The elements ã1, . . . , ãb ∈ (RE ,mE)
perf,#
s:φ r;[i1]

defines a ring homomorphism

η̃ : RZ1 = k[[u1, . . . ,ub]]−→ (RE ,mE)
perf,#
s:φ r;[i1]

.

Let
ω1 : (RE ,mE)

perf, [
s:φ r;[i1]

−→ (RZ1,mZ1)
perf, [
s:φ r;[i1]

be the ring homomorphism induced by the inclusion Z1 ↪→ E. Because the restriction to Z of the
morphism ηn : π−1(X [pn]×Y [pn])→ Z is equal to [pn]Z for every n ∈ N, We see that

(7.2.3.2) ω1 ◦ η̃ = jRZ1

where jRZ1
: RZ1 ↪→ (RZ1,mZ1)

perf, [
s:φ r;[i1]

is the natural injection from RZ1 to its complete restricted

perfection (RZ1,mZ1)
perf, [
s:φ r;[i1]

.

5. We also have the following ring homomorphisms.

(a) The canonical homomorphism RE → RE/IW = RW gives rise to a homomorphism

τ : (RE ,mE)
perf, [
s:φ r;[i1]

−→ (RW ,mW )
perf, [
s:φ r;[i1]

.

(b) The injective local homomorphism ι : RW → k[[t1, . . . , tm]] induces a injective continuous ho-
momorphism

ι̃ : (RW ,mW )
perf, [
s:φ r;[i1]

−→ k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i1] .

(c) Continuous ring homomorphisms

∆1 : RE → RZ1⊗̂RE and ∆2 : RE → RZ2⊗̂RE

corresponding to the actions Z1×E→ E and Z2×E→ E of Z1 and Z2 on E.

(d) The ring homomorphism

ω2 : (RW ,mW )
perf, [
s:φ r;[i1]

−→ (RZ2,mZ2)
perf, [
s:φ r;[i1]

.

induced by the surjective ring homomorphism RW � RZ2 which corresponds to the inclusion
Z2 ↪→W .

(e) The ring endomorphisms C|∗Z1
: RZ1 → RZ1 and C|∗Z2

: RZ2 → RZ2 corresponding to the
endomorphisms C|Z1 (respectively C|Z2 ) of the p-divisible group Z1 (respectively Z2).

(f) The ring homomorphism

q̃ : (RZ1,mZ1)
perf, [
s:φ r;[i1]

−→ (RZ2,mZ2)
perf, [
s:φ r;[i1]

induced by the canonical surjection q : RZ1 � RZ2
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Clearly we have

(7.2.3.3) ω2 ◦ τ = q̃◦ω1 and C|∗Z2
◦q = q◦C|∗Z1

The following diagram

(7.2.3.4) RZ1

η̃ //

=

��

(RE ,mE)
perf, [
s:φ r;[i1]

ω1
��

τ // (RW ,mW )
perf, [
s:φ r;[i1]

ω2
��

RZ1 jRZ1

// (RZ1,mZ1)
perf, [
s:φ r;[i1] q̃

// (RZ2,mZ2)
perf, [
s:φ r;[i1]

commutes by 7.2.3.2. It follows that the diagram

(7.2.3.5)
RE

= //

∆1
��

RE

∆2
��

RZ1⊗̂RE
q⊗1 //

C|∗Z1
⊗1
��

RZ2⊗̂RW

C|∗Z2
⊗1
��

RZ1⊗̂RE
q⊗1 //

η̃⊗1
��

RZ2⊗̂RW

jRZ2
⊗ jRW// (RZ2,mZ2)

perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

(RE ,mE)
perf, [
s:φ r;[i1]

⊗̂(RE ,mE)
perf, [
s:φ r;[i1]

ω1⊗τ //

τ⊗τ

��

(RZ1,mZ1)
perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

q̃⊗1

OO

q̃⊗1
��

(RW ,mW )
perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

ω2⊗1 // (RZ2,mZ2)
perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

also commutes.

6. Recall that IW is the prime ideal of the coordinate ring of E consisting of all functions on E which
vanishes on the G-invariant formal subvariety W ⊂ E. We want to show that

(A) (C|∗Z2
×1RE )◦∆2( f ) = 0 ∀ f ∈ IW

We know from 7.2.3.5 that

(C|∗Z2
×1RE )◦∆2( f ) =

(
(q⊗1)◦ (C|∗Z1

×1RE )◦∆1
)
( f ).

Because jRZ2
and jRW are both injective, our goal 6A is to equivalent to

(B)
(
( jRZ2

⊗ jRW )◦ (q⊗1)◦ (C|∗Z1
×1RE )◦∆1

)
( f ) = 0 ∀ f ∈ IW

What we will show is a stronger statement

(C)
(
(τ⊗ τ)(η̃⊗)◦ (C|∗Z1

×1RE )◦∆1
)
( f ) = 0 ∀ f ∈ IW
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In other words, the composition of the four vertical arrows at the left edge of the diagram 7.2.3.5
kills every element of the prime ideal IW . It follows immediately from the commutative diagram
7.2.3.5 that

(C) =⇒ (B) ⇐⇒ (A) .

It remains to prove (C).

7. Suppose that f is an element of IW . Define an element f̃ ∈ (RW ,mW )
perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

by
f̃ :=

(
( jRZ2

⊗ jRW )◦ (q⊗1)◦ (C|∗Z1
×1RE )◦∆1

)
( f ) .

Let φ be the Frobenius endomorphism x 7→ xp on (RW ,mW )
perf, [
s:φ r;[i1]

, Let

νW : (RW ,mW )
perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

−→ (RW ,mW )
perf, [
s:φ r;[i1]

be map which defines multiplication for the ring (RW ,mW )
perf, [
s:φ r;[i1]

. Geometrically νW corresponds

to the diagonal morphism from Spec((RW ,mW )
perf, [
s:φ r;[i1]

to its self-product.
Because the formal subvariety W ⊂ E is assumed to be stable under G, therefore stable under

ψ(exp pnav for all n≥ n4. Hence the congruence property 7.2.3.1 implies that under the homomor-
phism

φ
nr⊗1: (RW ,mW )

perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

−→ (RW ,mW )
perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

, ;

we have

(7.2.3.6) (φ nr⊗1)( f̃ )≡ 0 (mod Filns−i1
[ ) ∀n≥ n4 .

8. We claim that the family of congruence conditions 7.2.3.6 satisfied by f̃ implies that f̃ = 0.
By 4.2.4, the homomorphism ι̃ : (RW ,mW )

perf, [
s:φ r;[i1]

→ k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i1]
induced by ι : RW ↪→

k[[t1, . . . , tm]] is also an injection. Therefore it suffices to show that the injective map

ι̃⊗ ι̃ : (RW ,mW )
perf, [
s:φ r;[i1]

⊗̂(RW ,mW )
perf, [
s:φ r;[i1]

−→ k[[t1, . . . , tm]]⊗̂k[[t1, . . . , tm]]

sends f̃ to 0. Under the ring homomorphism ι̃ ⊗ ι̃ the family of congruence conditions 7.2.3.6
for f̃ is transformed into a similar family of congruence conditions for the element (ι̃ ⊗ ι̃)( f̃ ) ∈
k[[t1, . . . , tm]]⊗̂k[[t1, . . . , tm]]. Let E = r

s−r , choose suitable parameters C > 1, d ≥ 0 so that the ring

k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉[s:φ r;[i1]
is contained in k〈〈t p−∞

1 , . . . , t p−∞

m 〉〉E, [C;d . Apply the identity principle 6.4, we
conclude that (ι̃ ⊗ ι̃)( f̃ ) = 0. Hence f̃ = 0. We have proved the claim and concludes the proof of
the statement (C). We have seen the (C) implies (A), which is exactly the statement of 7.2.

(7.2.4) COROLLARY. Let W be a formal subvariety of E stable under the action of G. Let Z1 be
the largest p-divisible subgroup of Z contained in W. Let

ϒZ1 : Z1×Spec(k) E→ E

be the translation action of Z1 on E. Assume that every slople of Z1 is strictly larger then every
slope of X×Y and the action of G on Z1 is strongly non-trivial. Then

ϒZ1(Z×Spec(k)W )⊂W .
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PROOF. We may and do assume that X1 = X and Y1 =Y . We prove 7.2.4 by induction on dim(Z1).
If Z1 is isoclinic, then Z2 = Z1 and 7.2.4 follows immediate from 7.2. Let ζ : Z � Z/Z2 be the
canonical map from Z to the quotient p-divisible group Z/Z2. Let ζ̃ : E → ζ∗E =: E be the
canonical map from E to its push-forward by ζ , which is naturally identified with the map “quotient
by the p-divisible group Z2”. Let W be the image of W in E under ζ̃ . By induction, the formal
subvariety W in E is stable under the natural action of Z1/Z2. It follows that W is stable under the
action of Z1.

(7.3) PROPOSITION. Let W be a formal subvariety of E stable under the action of G. Let Z1 be
the largest p-divisible subgroup of Z contained in W We make the following assumptions.

(i) The p-divisible groups X and Y have no slope in common.

(ii) Every slope of the p-divisible group Z1 is strictly bigger every slope of X×Y .

(iii) The action of G on E is strictly non-trivial.

Then W is a sub-biextension of E. In other words there exists a p-divisible subgroup X1 of X, a
p-divisible subgroup Y1 of Y , a p-divisible subgroup Z1 of Z, such that

• π(W )⊂ X1×Y1,

• W is stable under the two relative group laws +1 and +2,

• W is stable under translation by Z1,

• the morphism π|W : W → X1×Y1 is formally smooth,

• π|W : W → X1× gives W a natural structure as a Z1-torsor over X1×Y1.

PROOF. The image V of W in X×Spec(k)Y is a p-divisible subgroup of X×Spec(k), by local rigidity
for p-divisible groups [3, Thm. 4.3]. Because the p-divisible formal groups X and Y do not have
common slopes, there exists p-divisible subgroups X1 ⊂ X and Y1 ⊂ Y such that V = X1×Spec(k)Y1.
Again by local rigidity for p-divisible groups, the intersection (W ∩Z) with reduced structure is a
p-divisible subgroup Z3 of Z. We also know that

dim(Z3)≥ dim(W )−dim(X1)−dim(Y1)

from basic commutative algebra.
By 7.2.4, W is stable under the action of Z3. The quotient E := E/Z3 has a natural structure as

a biextension of X ×Spec(k)Y by Z := Z/Z3. The quotient W := W/Z3 is a formal subvariety of E,
stable under the action of G. Its dimension dim(W ) is equal to dim(W )−dim(Z3). The image over
W in X×Spec(k)Y is X1×Spec(k)Y1, hence dim(W )≥ dimX1 +dim(Y1). Combined with the displayed
inequality in the previous paragraph, we see that dim(W ) = dim(X1×Y1). On the other hand the
closed fiber of the morphism q : W → X1×Y1 is zero-dimensional with exactly one point. Hence
the morphism q of formal schemes, which corresponds to a local homomorphism between complete
noetherian k-algebras, is finite and purely inseparable.
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Let π1 : E1→ X1×Y1 be the restriction to X1×Y1 of the biextension E → X ×Y . Because X1
and Y1 are both p-divisible formal groups, the purely inseparable map q̄ is dominated by suitable
isogenies: There exists an isogeny u : X2→ X1, an isogeny v : Y2→Y1 and a morphism ξ : X2×Y2→
W such that q◦ξ = u× v.

Consider the pull-back
E2 := (u× v)∗E1 −→ X2×Y2

of the biextension π1 : E1→ X1×Y1. We know that the compact p-adic Lie group G operates on the
biextension E1, and W is stable under the action of G. There exists a compact open subgroup G2⊂G
which operates on the biextension E2, and the natural map h : E2→ E1 is equivariant with respect
to the inclusion G2 ↪→ G. The morphism ξ : X2×Y2→W defines a morphism ξ2 : X2×Y2→ E2
such that h◦ξ2 = ξ1. It follows that

(u× v)◦π2 ◦ξ2 = π1 ◦h◦ξ2 = π1 ◦ξ1 = u× v .

Therefore
π2 ◦ξ2 = idX2×Y2 .

In other words ξ2 is a section of the biextension E2 of X2×Y2 by Z. Moreover ξ2 is equivariant
with respect to the action of G2 on E2.

Because every slope of Z is strictly bigger than every slope of X2×Y2, we know by 6.2 that the
biextension E2 splits, and ξ2 is its canonical splitting. So the biextension E1 also splits. The inverse
image of the canonical splitting of E1 in π−1(X1×Y1) is a biextension E ′ of X1×Y1 by Z1, which
is a sub-biextension of E. This sub-biextension E ′ is contained in W and has the same dimension as
W , hence W is equal to E ′.

(7.4) PROPOSITION. Let W be a formal subvariety of E stable under the action of G. Assume that
the slope of X, Y are mutually distinct, Z is isoclinic, and the slope of Z is strictly bigger than every
slope of X ×Y . Assume also that the action of G on E is strongly non-trivial in the sense of 2.6.5.
Then W is a sub-biextension of E.

PROOF. We will first perform some reduction steps.
Reduction step 1. Being a sub-biextension means that W is stable under the two relative group
laws +1 and +2, which can be verified after extending the base field k to an algebraic closure of k.
So we may and do assume that k is algebraically closed.

Reduction step 2. It is easy to see that the statement 7.4 does not change under isogeny: if E ′→ E
and E→ E ′′ are isogenies of biextensions, then the statement 7.4 for E is equivalent to the statement
for E ′ and also equivalent to the statement for E ′′. Changing X , Y , Z by isogeny if necessary, we
may and do assume that both X and Y are product of isoclinic p-divisible subgroups. Moreover if U
is the maximal isoclinic p-divisible subgroup for a given slope in one of the three p-divisible groups
X , Y , or Z, then there exists positive integers c,d > 0 such that U [pc] = Ker[Frd

U/k].

Reduction step 3. We may and do assume that the image of W in X×Y is equal to X×Y .

Claim. The statement 7.4 holds under the additional assumptions in reduction steps 1–3.
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We have seen that 7.4 follows from the claim. We will prove the claim by induction on the
number of slopes of X×Y . Denote this number by #slopes(X×Y )

THE CASE WHEN #slopes(X×Y ) = 2, namely both X and Y are isoclinic. This is the initial step of
the induction.

Suppose first that slope(X)+ slope(Y ) 6= slope(Z), then the W (k)-bilinear pairing

ΘE : M∗(X)×M∗(Y )→M∗(Z)

is identically zero. Then the biextension E → X ×Y splits by 2.6.3, and the canonical splitting
of E induces a natural isomorphism h from E to the trivial biextension X ×Y × Z. The trivial
biextension X ×Y × Z has a natural structure as a p-divisible group, and every automorphism of
this trivial biextension is also an automorphism for the p-divisible group structure. Apply the local
rigidity for p-divisible formal groups [3, 4.3], we conclude that the G-stable formal subvariety W
of E ∼= X ×Y × Z is of the form Z1×X ×Y for a p-divisible subgroup of Z. Therefore W is a
sub-biextension of E.

Assume now that slope(X) + slope(Y ) = slope(Z). Recall that both X and Y are p-divisible
formal groups, hence slope(X) > 0 and slope = 0 and 7.2.4 applies. We have proved the claim
when both X and Y are isoclinic.

THE INDUCTION STEP. Suppose that #slopes(X×Y ) = m0, m0 ≥ 3, and that the claim holds when-
ever #slopes(X ×Y ) ≤ m0−1. By symmetry may assume that the largest slope of X , µ1, is bigger
than the largest slope of Y . Let X1 be the largest p-divisible subgroup of X with slope µ1. According
to the assumption in reduction step 2, the p-divisible group X is isomorphic to a product X1×X2,
where X2 is a p-divisible subgroup such that every slope of X2 is strictly smaller than µ1.

There are two cases to consider. If µ1 < slope(Z), then the claim holds for the biextension E by
7.2.4. It remains to treat the case when µ1 > slope(Z).

Suppose now that µ1 > slope(Z). Let E1 := π−1(X1×Y ) and E2 := π−1(X2×Y ). We have

E ∼−→ (+Z : Z×Z→ Z)∗(E1×Y E2) ,

where +Z : Z×Z→ Z is the group law for Z, and the push-out by +Z of the fiber product E1×Y
E2 is an analog of the familiar Baer sum construction for extensions of commutative groups; we
will call it the Y -Baer sum of E1 and E2 Notice that the Y -Baer sum (+Z)∗(E1 ×Y E2) of two
biextensions of X ×Y by the same p-divisible group Z has a natural structure as a biextension, and
the above isomorphism is compatible with the biextension structures on both sides of the arrow. The
biextension E1→ X1×Y of X1×Y1 by Z splits, and we have a canonical G-equivariant isomorphism
υ : E1

∼−→ X1×Y ×Z. Let prX1
: E → X1 be the composition of π : E → X ×Y = X1×X2×Y with

the projection prX1
: X1×X2×Y → X1. The splitting of the biextension E1 and the partial group law

+1 defines a natural translation action

T : X1×Spec(k) E→ E (x1,e) 7→ x1 ∗X1 e := T (x1,e) x1 ∈ X1, e ∈ E

of X1 on E, which is compatible with the composition prX2×Y ◦π , where π : E→X×Y =X1×X2×Y
is the structural map of the biextension E and prX2×Y is the projection prX2×Y : X1×X2×Y →X2×Y .
By local rigidity of p-divisible formal groups, we know that W ⊃ υ−1(X1).
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It is important to obverse that because the slope of X1 is strictly bigger than every slope appearing
in Z, X2 or Y , for every element v = (A,B,C) ∈ Lie(G) such that A ∈ End(X), B ∈ End(Y ), and
C ∈ End(Z), the action of exp(pnv) on E is essentially translation by pnC ◦prX1

for all sufficiently
large natural numbers n ∈ N. More precisely, there exist positive integers r1,s2,a1,n1 such that

• 0 < r1 < s1, a1 > 0, n1 ≥ 2,

• slope(X1) =
a1
r1

, and X1[pa1] = Ker(Frr1
X1/k),

• ψ(exp(pna1v))≡
(

pna1C ◦prX1

)
∗X1 idE (mod mpns1

E ) for all n≥ n1.

The above properties allows us to apply the identity principle 6.1.1 as in the proof of 7.2 to conclude
that for the morphism

TX1 ◦
(
(C ◦prX1

) × idE
)

: E×E −→ E, (e1,e2) 7→ TX1

(
C ◦prX1

(e1),e2
)
, e1, e2 ∈ E

we have (
TX1 ◦

(
(C ◦prX1

)× idE
))

(W ×W ) ⊆ W .

Note that the above proof that the formal variety W is stable under translation by (C ◦ prX1
) is the

same as the argument in step 1 of the proof of [3, 4.3]; complete restricted perfection of power series
rings are not used.

The rest of the proof is quite formal. Because the action of G on X is strongly non-trivial, we
deduce that (

TX1 ◦
(
prX1
× idE

))
(W ×W ) ⊆ W .

In particular W is stable under translation by X1. The quotient of E by X1 is canonically isomorphic
to E2. Under this canonical isomorphism W/X1 becomes a formal subvariety of E2. By induction
W/X1 is sub-biextension of E2, which is a biextension of X2×Y by the p-divisible subgroup W ∩Z⊆
Z of Z. It follows that W itself is a sub-biextension of E.

(7.5) THEOREM. Let W be a formal subvariety of E stable under the action of G. Assume that the
slope of X, Y , Z are mutually distint, i.e. no two of the p-divisible formal groups X, Y , Z share any
common slope. Assume also that the action of G on E is strongly non-trivial in the sense of 2.6.5.
Then W is a sub-biextension of E.

PROOF. As in the proof of 7.4, we may and do assume that the assumption in the reduction steps
1–3 in the proof of 7.4 hold. We will use induction on the pair

invE := (#slopes(Z),#slopes(X×Y ))

under the lexicographic ordering. The case when #slopes(Z) = 1 has been treated in 7.4.
Suppose that #slopes(Z) = m2 ≥ 2, #slopes(X ×Y ) = m3 ≥ 2, and assume that the statement

of 7.5 holds whenever invE < (m2,m3) in the lexicographic order. Let ν2 be the largest slope of
Z, and let ν3 be the largest slope of X ×Y . We may and do assume that ν3 is a slope of X . Write
X = X3×X4, where X3 is isoclinic of slope ν3, and ν3 is not a slope of X4. Similarly Z = Z2×Z4,
where Z is isoclinic of slope ν2, and ν2 is not a slope of Z4.

69



There are two cases to consider.
CASE 1. Suppose first that ν2 > ν3.

Let E2 := (prZ2
: Z→ Z2)∗E, E4 := (prZ2

: Z→ Z4)∗E. We have a natural isomorphism

E ∼−→ E2×(X×Y ) E4

over X ×Y . Let W2 be the image of W in E2, and let W4 be the image of W in E4. By induction,
we know that W2 is an sub-biextension E ′2 of X ×Y by a p-divisible subgroup Z′2 of Z2. Clearly
Z′2 = Z2∩W , where we have regarded Z2 as a formal subvariety of Z = π−1(0,0) ⊂ E. Again by
induction we know that W4 is a sub-biextension E ′4 of X×Y by a p-divisible subgroup Z′4 of Z4.

Modifying Z by an isogeny, we may and do assume that there exists a p-divisible subgroup Z′′

of Z such that Z ∼= Z′2×Z′′2 . Let E ′2 and E ′′2 be the push-out of the biextension E2 by the projections
from E2 to E ′2 and E ′′2 respectively. We have a natural isomorphism

E2
∼−→ E ′1×(X×Y ) E ′′2 .

Clearly the formal subvariety W of E is contained in the sub-biextenion E ′2×(X×Y ) E4 of E. If
Z′′ 6= (0), we are done by induction. So we may and do assume that Z′2 = Z.

By 7.2 we know that W is stable under translation by Z2. Under the natural isomorphism
E/Z2

∼−→ E4 the quotient W/Z2 corresponds to a G-invariant formal subvariety of the biextension
E4→ X ×Y . By induction, this G-invariant formal subvariety W/Z2 of E4 is a sub-biextension of
E4 ∼= E/Z2. It follows that W itself is a sub-biextension of E. We have finished the case when the
largest slope ν2 of Z is bigger then every slope of X×Y .

CASE 2. ν2 < ν3. There exists a p-divisible subgroups X3,X4 of X such that X3 is isoclinic of
slope ν3, and every slope of X4 is strictly smaller than ν3. Let E3,E4 be the pull-back of E to
X3×Y and X4×Y respectively. The biextension E is naturally isomorphic to the “Y -Baer sum”
(+Z : Z×Z→ Z)∗(E3×Y E4) of the biextensions E3 and E4:

E ∼−→ (+Z : Z×Z→ Z)∗(E3×Y E4)

Because the slope ν3 of X3 is strictly bigger than every slope of Z, the biextension E3→ X3×Y of
X3×Y by Z splits:

E3
∼−→ X3×Y ×Z .

As in the proof of 7.4, the condition that ν3 > ν2 implies that for every element v = (A,B,C) ∈
Lie(G) such that A ∈ End(X), B ∈ End(Y ) and C ∈ End(Z), the action of ψ(exp(pm)v) on E has
a “main term” corresponding to translation by the composition of the endomorphism pnC|X3 of X3
with the projection prX3

: E → X3. More precisely the automorphism ψ(exp(pm)v) of E satisfies a
congruence relation (

pmC ◦prX3

)
∗X3 idE modmpbm/(ν2+ε2)c

for a suitably small real number ε2 < ν3− ν2, and for all natural numbers m ≥ m0, where m0 is a
natural number which depends on the biextension E→X×Y and ε2. Applying the identity principle
6.1.1 for power series, we deduce that(

TX3 ◦
(
(C ◦prX3

)× idE
))

(W ×W )⊆W,

where
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• prX3
: E → X3 is the composition of π : E → X ×Y = X3×X4×Y with the projection X3×

X4×Y → X3,

• TX3 : X3×E → E is the translation action of X3 on E induced by the action of X3 on the
trivial biextension E3

∼−→ X3×Y × Z and the trivial action of X3 on E4, through the natural
isomorphism E ∼= (+Z : Z×Z→ Z)∗E3×(X×Y ) E4.

Because the action of G on X is strictly non-trivial, it follows that W is stable under translation by
X3 in the following sense: (

TX3 ◦ (prX3
× idE)

)
(W ×W )⊆W.

The quotient W/X3 is a formal subvariety of E/X3
∼−→ E4. The induction hypothesis implies that

W/X3 is a sub-biextension of E4, which in turn implies that W is a sub-biextension of E. We have
finished the induction step.
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