Expected Value - Revisited

▶ An experiment is a **Bernoulli Trial** if:
 ▶ there are two outcomes (success and failure),
 ▶ the probability of success, p, is always the same,
 ▶ the trials are independent.

▶ The probability of failure is $1 - p$.

▶ Suppose we repeat a Bernoulli trial n times.
 ▶ How many successes do we expect to get? (what is the expected value, μ?)
 ▶ How much variance is there (σ^2), in the expected number of successes?
Expected Value - Revisited

- An experiment is a **Bernoulli Trial** if:
 - there are two outcomes (success and failure),
 - the probability of success, p, is always the same,
 - the trials are independent.

- The probability of failure is $1 - p$.

- Suppose we repeat a Bernoulli trial n times.
 - How many successes do we expect to get? (What is the expected value, μ?)
 - How much variance is there (σ^2), in the expected number of successes?
Expected Value - Revisited

- An experiment is a **Bernoulli Trial** if:
 - there are two outcomes (success and failure),
 - the probability of success, p, is always the same,
 - the trials are independent.
- The probability of failure is $1 - p$.
- Suppose we repeat a Bernoulli trial n times.
Expected Value - Revisited

- An experiment is a **Bernoulli Trial** if:
 - there are two outcomes (success and failure),
 - the probability of success, \(p \), is always the same,
 - the trials are independent.

- The probability of failure is \(1 - p \).

- Suppose we repeat a Bernoulli trial \(n \) times.
 - How many successes do we expect to get? (what is the expected value, \(\mu \)?)
An experiment is a **Bernoulli Trial** if:
- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.

The probability of failure is $1 - p$.

Suppose we repeat a Bernoulli trial n times.
- How many successes do we expect to get? (what is the expected value, μ?)
- How much variance is there (σ^2), in the expected number of successes?
Flipping a Coin

- Toss a coin 6 times, and count the number of heads.
Flipping a Coin

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.
Toss a coin 6 times, and count the number of heads.

We are repeating a Bernoulli trial 6 times.

<table>
<thead>
<tr>
<th># of heads</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td></td>
</tr>
</tbody>
</table>

The expected value is:

$$\mu = \frac{1}{64} \cdot 0 + \frac{6}{64} \cdot 1 + \frac{15}{64} \cdot 2 + \frac{20}{64} \cdot 3 + \frac{15}{64} \cdot 4 + \frac{6}{64} \cdot 5 + \frac{1}{64} \cdot 6 = 3.$$

The variance is:

$$\sigma^2 = (0 - 3)^2 \cdot \frac{1}{64} + (1 - 3)^2 \cdot \frac{6}{64} + \cdots + (6 - 1)^2 \cdot \frac{1}{64} = 3.$$
Toss a coin 6 times, and count the number of heads.

We are repeating a Bernoulli trial 6 times.

<table>
<thead>
<tr>
<th># of heads</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>1/64</td>
<td>6/64</td>
<td>15/64</td>
<td>20/64</td>
<td>15/64</td>
<td>6/64</td>
<td>1/64</td>
</tr>
</tbody>
</table>

The expected value is:

\[\mu = 0 \cdot \frac{1}{64} + 1 \cdot \frac{6}{64} + \cdots + 6 \cdot \frac{1}{64} = 3. \]
Flipping a Coin

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

<table>
<thead>
<tr>
<th># of heads</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>$\frac{1}{64}$</td>
<td>$\frac{6}{64}$</td>
<td>$\frac{15}{64}$</td>
<td>$\frac{20}{64}$</td>
<td>$\frac{15}{64}$</td>
<td>$\frac{6}{64}$</td>
<td>$\frac{1}{64}$</td>
</tr>
</tbody>
</table>

- The expected value is:

$$
\mu = 0 \cdot \frac{1}{64} + 1 \cdot \frac{6}{64} + \cdots + 6 \cdot \frac{1}{64} = 3.
$$

- The variance is:

$$
\sigma^2 = (0 - 3)^2 \cdot \frac{1}{64} + (1 - 3)^2 \cdot \frac{1}{64} + \cdots + (6 - 1)^2 \cdot \frac{1}{64} = \frac{3}{2}.
$$
Expected Value and Variance

- We want better formulas.

In n Bernoulli trials with success probability p, we have:

\[\mu = np \]

\[\sigma^2 = np(1-p) \]
Expected Value and Variance

- We want better formulas.
- In \(n \) Bernoulli trials with success probability \(p \), we have:

\[
\mu = np \\
\sigma^2 = np(1-p)
\]
Expected Value and Variance

- We want better formulas.
- In n Bernoulli trials with success probability p, we have:
 - $\mu = np$.
Expected Value and Variance

- We want better formulas.
- In \(n \) Bernoulli trials with success probability \(p \), we have:
 - \(\mu = np \).
 - \(\sigma^2 = np(1-p) \).
The Drake Equation

- How many civilizations do we expect in the galaxy?
The Drake Equation

- How many civilizations do we expect in the galaxy?
- We can view this as a Bernoulli trial, by looking at each star.
The Drake Equation

- How many civilizations do we expect in the galaxy?
- We can view this as a Bernoulli trial, by looking at each star.
 - n is 300 billion.
How many civilizations do we expect in the galaxy?

We can view this as a Bernoulli trial, by looking at each star.

- n is 300 billion.
- Want p.
The Drake Equation

The Drake Equation is roughly:

\[P = p_{\text{planet}} \cdot p_{\text{life}} \cdot p_{\text{intelligence}} \cdot p_{\text{civilization}}. \]
The Drake Equation

- The Drake Equation is roughly:

\[p = p_{\text{planet}} \cdot p_{\text{life}} \cdot p_{\text{intelligence}} \cdot p_{\text{civilization}}. \]

- \(p_{\text{planet}} \) is the probability that a star has an orbiting planet.
The Drake Equation

The Drake Equation is roughly:

\[P = p_{\text{planet}} \cdot p_{\text{life}} \cdot p_{\text{intelligence}} \cdot p_{\text{civilization}}. \]

- \(p_{\text{planet}} \) is the probability that a star has an orbiting planet.
- \(p_{\text{life}} \) is the probability that a planet is capable of sustaining life.
The Drake Equation

- The Drake Equation is roughly:

\[P = P_{\text{planet}} \cdot P_{\text{life}} \cdot P_{\text{intelligence}} \cdot P_{\text{civilization}}. \]

- \(P_{\text{planet}} \) is the probability that a star has an orbiting planet.
- \(P_{\text{life}} \) is the probability that a planet is capable of sustaining life.
- \(P_{\text{intelligence}} \) is the probability that the planet sustains intelligent life.
The Drake Equation

- The Drake Equation is roughly:

\[P = p_{\text{planet}} \cdot p_{\text{life}} \cdot p_{\text{intelligence}} \cdot p_{\text{civilization}}. \]

- \(p_{\text{planet}} \) is the probability that a star has an orbiting planet.
- \(p_{\text{life}} \) is the probability that a planet is capable of sustaining life.
- \(p_{\text{intelligence}} \) is the probability that the planet sustains intelligent life.
- \(p_{\text{civilization}} \) is the probability that an intelligent species develops a civilization.
The Drake Equation

- We know $p_{\text{planet}} \approx 1$.
The Drake Equation

- We know $p_{\text{planet}} \approx 1$.
- Have to make educated guesses for the other probabilities.
The Drake Equation

- We know \(p_{\text{planet}} \approx 1 \).
- Have to make educated guesses for the other probabilities.
- Estimates are:
 - \(p_{\text{life}} = 0.13 \)
 - \(p_{\text{intelligence}} = 1 \)
 - \(p_{\text{civilization}} = 0.2 \)

\[\mu \approx 7.8 \text{ billion} \]
The Drake Equation

- We know $p_{\text{planet}} \approx 1$.
- Have to make educated guesses for the other probabilities.
- Estimates are:
 - $p_{\text{life}} = .13$
 - $p_{\text{intellige}}nc e = 1$
 - $p_{\text{civilization}} = .2$
- So $p = .026$.
We know $p_{planet} \approx 1$.

Have to make educated guesses for the other probabilities.

Estimates are:

- $p_{life} = .13$
- $p_{intelligence} = 1$
- $p_{civilization} = .2$

So $p = .026$.

So μ is approximately 7.8 billion.
Complaints?

- Criticisms:

Civilizations don't last forever (need more complicated equation).

Multiplying probabilities, we don't really know \(p_{\text{life}} \), \(p_{\text{intelligence}} \), and \(p_{\text{civilization}} \).
Complaints?

- Criticisms:
 - Civilizations don’t last forever
 (need more complicated equation).
Complaints?

- Criticisms:
 - Civilizations don’t last forever (need more complicated equation).
 - Multiplying probabilities
Complaints?

- Criticisms:
 - Civilizations don’t last forever (need more complicated equation).
 - Multiplying probabilities
 - We don’t really know p_{life}, $p_{\text{intelligence}}$, and $p_{\text{civilization}}$.
Flipping a Coin

- Going back to flipping a coin 6 times.
Flipping a Coin

- Going back to flipping a coin 6 times.
- Plot the probabilities of getting k heads,
Going back to flipping a coin 6 times.

Plot the probabilities of getting \(k \) heads, and

\[
\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
Flipping a Coin
Flipping a Coin

- Now flip a coin 20 times.
Flipping a Coin

- Now flip a coin 20 times.
 - What is μ?
Flipping a Coin

- Now flip a coin 20 times.
 - What is μ?
 - What is σ^2?
Now flip a coin 20 times.

- What is μ?
- What is σ^2?

Plot the probabilities of getting k heads, and

$$
\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$
Flipping a Coin
Flipping a Coin

► Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.
Flipping a Coin

- Moral: when n gets large, the *distribution* of the number of successes looks like a bell-shaped curve.
- Where is the curve centered at?
Moral: when n gets large, the *distribution* of the number of successes looks like a bell-shaped curve.

Where is the curve centered at?

The standard deviation/variance measures how wide the curve is.
Flipping a Coin

- Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.
- Where is the curve centered at?
- The standard deviation/variance measures how wide the curve is.
- The area under the curve is always 1.
If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.
Normal Distributions

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a **normal distribution**.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...
Normal Distributions

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a **normal distribution**.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...
- We need to know 2 numbers to describe the normal distribution:
Normal Distributions

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a **normal distribution**.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...
- We need to know 2 numbers to describe the normal distribution:
 - μ: the mean, where the curve is centered.
 - σ: the standard deviation, which specifies how spread out the bell is.