Recall the Candidate-Voter Model:

- Have a political spectrum (0 – 100)
The Candidate-Voter Model

Recall the Candidate-Voter Model:

- Have a political spectrum (0 – 100)
- Any voter can become a candidate
Recall the Candidate-Voter Model:

- Have a political spectrum (0 – 100)
- Any voter can become a candidate
- Voter’s place on the spectrum is fixed
The Candidate-Voter Model

Recall the Candidate-Voter Model:
- Have a political spectrum (0 − 100)
- Any voter can become a candidate
- Voter’s place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views
- Win by random draw if candidates tie
- Payoffs:
 - Utility of 200 for winning
 - Cost of 100 to run
 - Cost of $|x - y|$ for y winning (for x)
Recall the Candidate-Voter Model:

- Have a political spectrum (0 – 100)
- Any voter can become a candidate
- Voter’s place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views
- Win by random draw if candidates tie
Recall the Candidate-Voter Model:

- Have a political spectrum (0 – 100)
- Any voter can become a candidate
- Voter’s place on the spectrum is fixed
- Voters will vote for the candidate who holds the closest views
- Win by random draw if candidates tie

Payoffs:
- Utility of 200 for winning
- Cost of 100 to run
- Cost of $|x – y|$ for y winning (for x)
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
The Candidate-Voter Model

If 50 is the only person running, is this a Nash equilibrium?
- If 49 and 51 choose to run, 50 will lose. Is this a problem?
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy

- If 30 and 70 run, is this a Nash equilibrium?
 - Yes
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 - Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy
 - If 30 and 70 run, is this a Nash equilibrium?
 - Yes
- If 10 and 90 run, is this a Nash equilibrium?
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 - Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
 - Yes
- If 10 and 90 run, is this a Nash equilibrium?
 - No
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 - Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
 - Yes
- If 10 and 90 run, is this a Nash equilibrium?
 - No
- So a Nash equilibrium occurs when:
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 - Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
 - Yes
- If 10 and 90 run, is this a Nash equilibrium?
 - No
- So a Nash equilibrium occurs when:
 - All candidates who run tie
The Candidate-Voter Model

- If 50 is the only person running, is this a Nash equilibrium?
 - If 49 and 51 choose to run, 50 will lose
 Is this a problem?
 - No. Nash equilibria only considers if one player changes their strategy
- If 30 and 70 run, is this a Nash equilibrium?
 - Yes
- If 10 and 90 run, is this a Nash equilibrium?
 - No
- So a Nash equilibrium occurs when:
 - All candidates who run tie
 - No one can opt to run and tie or win
The Candidate-Voter Model

- Properties of this model:
 - There are many Nash equilibria
 - Not all equilibria have candidates crowded at the median
 - If candidates become too extreme, more central candidates will jump in
 - If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

- Problems?
 - Everyone decides whether or not to run at once
 - Not everyone can practically run
 - Still assumes that politics lie on a single spectrum
The Candidate-Voter Model

- Properties of this model:
 - There are many Nash equilibria

- Problems?
 - Everyone decides whether not to run at once
 - Not everyone can practically run
 - Still assumes that politics lie on a single spectrum
The Candidate-Voter Model

- Properties of this model:
 - There are many Nash equilibria
 - Not all equilibria have candidates crowded at the median
 - If candidates become too extreme, more central candidates will jump in
 - If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

- Problems?
 - Everyone decides whether or not to run at once
 - Not everyone can practically run
 - Still assumes that politics lie on a single spectrum
The Candidate-Voter Model

- Properties of this model:
 - There are many Nash equilibria
 - Not all equilibria have candidates crowded at the median
 - If candidates become too extreme, more central candidates will jump in
The Candidate-Voter Model

- Properties of this model:
 - There are many Nash equilibria
 - Not all equilibria have candidates crowded at the median
 - If candidates become too extreme, more central candidates will jump in
 - If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)
The Candidate-Voter Model

- Properties of this model:
 - There are many Nash equilibria
 - Not all equilibria have candidates crowded at the median
 - If candidates become too extreme, more central candidates will jump in
 - If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

- Problems?
The Candidate-Voter Model

Properties of this model:

- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

Problems?

- Everyone decides whether or not to run at once
The Candidate-Voter Model

Properties of this model:
- There are many Nash equilibria
- Not all equilibria have candidates crowded at the median
- If candidates become too extreme, more central candidates will jump in
- If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

Problems?
- Everyone decides whether or not to run at once
- Not everyone can practically run
The Candidate-Voter Model

- Properties of this model:
 - There are many Nash equilibria
 - Not all equilibria have candidates crowded at the median
 - If candidates become too extreme, more central candidates will jump in
 - If you enter on the left, you make it more likely that someone on the right wins (splitting the vote)

- Problems?
 - Everyone decides whether or not to run at once
 - Not everyone can practically run
 - Still assumes that politics lie on a single spectrum
Another Game:

Consider the following outcome matrix:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

What's the name of this game?

Rock Paper Scissors

Are there any Nash equilibria?

No

What is the best strategy?

Should be to pick each of rock, paper, and scissors randomly with probability of \(\frac{1}{3}\) (Denote this as \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\)).

This is an example of a mixed strategy.
Another Game:

- Consider the following outcome matrix:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What’s the name of this game?

- Rock Paper Scissors

- Are there any Nash equilibria?

- No

- What is the best strategy?

- Should be to pick each of rock, paper, and scissors randomly with probability of \(\frac{1}{3} \) (Denote this as \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \))

- This is an example of a mixed strategy
Another Game:

Consider the following outcome matrix:

```
<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
```

What’s the name of this game?

Rock Paper Scissors

Are there any Nash equilibria?

No

What is the best strategy?

Should be to pick each of rock, paper, and scissors randomly with probability of \(\frac{1}{3} \). (Denote this as \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \)).

This is an example of a mixed strategy.
Another Game:

- Consider the following outcome matrix:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What’s the name of this game?
 - Rock Paper Scissors
- Are there any Nash equilibria?
 - No

- What is the best strategy?
 - Should be to pick each of rock, paper, and scissors randomly with probability of $\frac{1}{3}$ (Denote this as (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}))
Another Game:

- Consider the following outcome matrix:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What’s the name of this game?
 - Rock Paper Scissors

- Are there any Nash equilibria?
 - No

- What is the best strategy?
 - Should be to pick each of rock, paper, and scissors randomly with probability of $\frac{1}{3}$ (Denote this as $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$)

- This is an example of a mixed strategy
Another Game:

- Consider the following outcome matrix:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What’s the name of this game?
 - Rock Paper Scissors

- Are there any Nash equilibria?
 - No

- What is the best strategy?
 - Should be to pick each of rock, paper, and scissors randomly with probability of $\frac{1}{3}$ (Denote this as $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$)
 - This is an example of a mixed strategy
Another Game:

- Consider the following outcome matrix:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What’s the name of this game?
 - Rock Paper Scissors
- Are there any Nash equilibria?
 - No
- What is the best strategy?
 - Should be to pick each of rock, paper, and scissors randomly with probability of $\frac{1}{3}$ (Denote this as $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$)
Another Game:

- Consider the following outcome matrix:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What’s the name of this game?
 - Rock Paper Scissors

- Are there any Nash equilibria?
 - No

- What is the best strategy?
 - Should be to pick each of rock, paper, and scissors randomly with probability of $\frac{1}{3}$ (Denote this as $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$).
 - This is an example of a **mixed strategy**.
What is the expected payout of \((1/3, 1/3, 1/3)\) against \((1, 0, 0)\)?

\(u((1/3, 1/3, 1/3), (1, 0, 0)))\)
Expected Payout

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>P</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What is the expected payout of \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \) against \((1, 0, 0) \)?
 \(u((\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (1, 0, 0)) \)
 - 0
What is the expected payout of \((\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\) against \((1, 0, 0)\)?

\[u((\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (1, 0, 0)) \]

- 0

Note that the expected payout is weighted average of the payouts of the pure strategies (with positive probabilities)
Weighted Averages

- How can you raise the average batting average of a baseball team?
Weighted Averages

- How can you raise the average batting average of a baseball team?
 - By cutting people with a low batting average
Weighted Averages

- How can you raise the average batting average of a baseball team?
 - By cutting people with a low batting average
 - If the average batting average is maximized, all players must have the same batting average
- If p_i is a best response to the other strategies, all the pure strategies used in p_i are best responses to p_{-i}
Weighted Averages

- How can you raise the average batting average of a baseball team?
 - By cutting people with a low batting average
 - If the average batting average is maximized, all players must have the same batting average
- If p_i is a best response to the other strategies, all the pure strategies used in p_i are best responses to p_{-i}
- Consider this modified Battle of the Sexes game:

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>3, 2</td>
</tr>
<tr>
<td>D</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

You

Is $\left(\frac{1}{2}, \frac{1}{2}\right)$ a best response to $\left(0, 1\right)$?

- No - you should drop C
Weighted Averages

- How can you raise the average batting average of a baseball team?
 - By cutting people with a low batting average
 - If the average batting average is maximized, all players must have the same batting average

- If p_i is a best response to the other strategies, all the pure strategies used in p_i are best responses to p_{-i}

- Consider this modified Battle of the Sexes game:

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3, 2</td>
</tr>
<tr>
<td>D</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- Is $(\frac{1}{2}, \frac{1}{2})$ a best response to $(0, 1)$?
Weighted Averages

- How can you raise the average batting average of a baseball team?
 - By cutting people with a low batting average
 - If the average batting average is maximized, all players must have the same batting average
- If p_i is a best response to the other strategies, all the pure strategies used in p_i are best responses to p_{-i}
- Consider this modified Battle of the Sexes game:

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>You</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 2</td>
<td>1, 1</td>
</tr>
<tr>
<td></td>
<td>0, 0</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

- Is $(\frac{1}{2}, \frac{1}{2})$ a best response to $(0, 1)$?
 - No - you should drop C
Nash Equilibrium

- Mixed strategies \((p_1, \ldots, p_n)\) are a **Nash equilibrium** if \(p_i\) is a best response to \(p_{\neg i}\).
Nash Equilibrium

- Mixed strategies \((p_1, \ldots, p_n)\) are a **Nash equilibrium** if \(p_i\) is a best response to \(p_{-i}\)
 - Each player asks “if the other players stuck with their strategies, am I better off mixing the ratio of strategies?”
Nash Equilibrium

- Mixed strategies \((p_1, \ldots, p_n)\) are a **Nash equilibrium** if \(p_i\) is a best response to \(p_{-i}\)
 - Each player asks “if the other players stuck with their strategies, am I better off mixing the ratio of strategies?”
 - If \(p_i\) is a best response to \(p_{-i}\), the payouts of the pure strategies in \(p_i\) are equal
Nash Equilibrium

- Mixed strategies \((p_1, \ldots, p_n)\) are a **Nash equilibrium** if \(p_i\) is a best response to \(p_{\sim i}\)
 - Each player asks “if the other players stuck with their strategies, am I better off mixing the ratio of strategies?”
 - If \(p_i\) is a best response to \(p_{\sim i}\), the payouts of the pure strategies in \(p_i\) are equal

- Note that pure Nash equilibria are still Nash equilibria