Evolutionarily Stable Strategies

Idea:

- If \(s \) is an **evolutionarily stable strategy**, any other strategy \(s^* \) will die off when competing against mixed population.

\[
\text{If } u(s, s) > u(s^*, s) \quad \text{then } s \text{ is stable.}
\]

\[
\text{If } u(s^*, s) > u(s, s) \quad \text{then } s \text{ is not stable.}
\]

\[
\text{If } u(s, s) = u(s^*, s^*) \quad \text{we need to look at } (1 - \epsilon)u(s, s) + \epsilon u(s^*, s^*) > (1 - \epsilon)u(s^*, s^*) + \epsilon u(s^*, s^*)
\]

\[
\text{Then } s \text{ will be evolutionarily stable only if } u(s, s^*) > u(s^*, s^*).
\]

\[
\text{If } s \text{ is evolutionarily stable, } (s, s^*) \text{ is a Nash equilibrium.}
\]

\[
\text{If } (s, s^*) \text{ is a Nash equilibrium, } s \text{ is not necessarily evolutionarily stable.}
\]
Evolutionarily Stable Strategies

Idea:

- If s is an evolutionarily stable strategy, any other strategy s^* will die off when competing against mixed population.
- Population is mostly s.
Evolutionarily Stable Strategies

Idea:

- If s is an **evolutionarily stable strategy**, any other strategy s^* will die off when competing against mixed population
- Population is mostly s
 - If $u(s, s) > u(s^*, s)$,
Evolutionarily Stable Strategies

Idea:

- If s is an **evolutionarily stable strategy**, any other strategy s^* will die off when competing against mixed population

- Population is mostly s
 - If $u(s, s) > u(s^*, s)$, s is stable
Evolutionarily Stable Strategies

Idea:

▶ If \(s \) is an **evolutionarily stable strategy**, any other strategy \(s^* \) will die off when competing against mixed population

▶ Population is mostly \(s \)

 ▶ If \(u(s, s) > u(s^*, s) \), \(s \) is stable

 ▶ If \(u(s^*, s) > u(s, s) \),
Evolutionarily Stable Strategies

Idea:

- If \(s \) is an **evolutionarily stable strategy**, any other strategy \(s^* \) will die off when competing against mixed population
- Population is mostly \(s \)
 - If \(u(s, s) > u(s^*, s) \), \(s \) is stable
 - If \(u(s^*, s) > u(s, s) \), \(s \) is not stable
Evolutionarily Stable Strategies

Idea:
▶ If s is an evolutionarily stable strategy, any other strategy s^* will die off when competing against mixed population
▶ Population is mostly s
 ▶ If $u(s, s) > u(s^*, s)$, s is stable
 ▶ If $u(s^*, s) > u(s, s)$, s is not stable
 ▶ If $u(s, s) = u(s^*, s)$ we need to look at

$$\left(1 - \epsilon\right) u(s, s) + \epsilon u(s, s^*) > \left(1 - \epsilon\right) u(s^*, s) + \epsilon u(s^*, s^*)$$
Evolutionarily Stable Strategies

Idea:

- If s is an **evolutionarily stable strategy**, any other strategy s^* will die off when competing against mixed population
- Population is mostly s

 - If $u(s, s) > u(s^*, s)$, s is stable

 - If $u(s^*, s) > u(s, s)$, s is not stable

 - If $u(s, s) = u(s^*, s)$ we need to look at

\[
(1 - \epsilon) u(s, s) + \epsilon u(s, s^*) > (1 - \epsilon) u(s^*, s) + \epsilon u(s^*, s^*)
\]

- s will be evolutionarily stable only if $u(s, s^*) > u(s^*, s^*)$
Evolutionarily Stable Strategies

Idea:

- If s is an **evolutionarily stable strategy**, any other strategy s^* will die off when competing against mixed population

- Population is mostly s

 - If $u(s, s) > u(s^*, s)$, s is stable

 - If $u(s^*, s) > u(s, s)$, s is not stable

 - If $u(s, s) = u(s^*, s)$ we need to look at

 $$(1 - \epsilon) u(s, s) + \epsilon u(s, s^*) > (1 - \epsilon) u(s^*, s) + \epsilon u(s^*, s^*)$$

 - s will be evolutionarily stable only if $u(s, s^*) > u(s^*, s^*)$

- If s is evolutionarily stable, (s, s) is a Nash equilibrium
Evolutionarily Stable Strategies

Idea:

- If \(s \) is an **evolutionarily stable strategy**, any other strategy \(s^* \) will die off when competing against mixed population
- Population is mostly \(s \)
 - If \(u(s, s) > u(s^*, s) \), \(s \) is stable
 - If \(u(s^*, s) > u(s, s) \), \(s \) is not stable
 - If \(u(s, s) = u(s^*, s) \) we need to look at

\[
(1 - \epsilon) u(s, s) + \epsilon u(s, s^*) > (1 - \epsilon) u(s^*, s) + \epsilon u(s^*, s^*)
\]

- \(s \) will be evolutionarily stable only if \(u(s, s^*) > u(s^*, s^*) \)
- If \(s \) is evolutionarily stable, \((s, s)\) is a Nash equilibrium
- If \((s, s)\) is a Nash equilibrium, \(s \) is not necessarily evolutionarily stable
Another definition for evolutionarily stable strategies:
In a 2-player symmetric game, a strategy \(s \) is **evolutionarily stable** if:

1. \((s, s)\) is a Nash equilibrium, and
2. If \(u(s, s) = u(s^*, s) \) then \(u(s, s^*) > u(s^*, s^*) \)
Definition

Another definition for evolutionarily stable strategies:
In a 2-player symmetric game, a strategy s is **evolutionarily stable** if:

1. (s, s) is a Nash equilibrium, and
2. If $u(s, s) = u(s^*, s)$ then $u(s, s^*) > u(s^*, s^*)$

 - If $u(s, s) > u(s, s^*)$ for all s^*, there is nothing else to check
Definition

Another definition for evolutionarily stable strategies:
In a 2-player symmetric game, a strategy s is **evolutionarily stable** if:

1. (s, s) is a Nash equilibrium, and
2. If $u(s, s) = u(s^*, s)$ then $u(s, s^*) > u(s^*, s^*)$

- If $u(s, s) > u(s, s^*)$ for all s^*, there is nothing else to check
- The second condition says “if a mutation does equally well against the orignal, the original must do better against the mutation than the mutation does against itself”
Another definition for evolutionarily stable strategies:

In a 2-player symmetric game, a strategy s is **evolutionarily stable** if:

1. (s, s) is a Nash equilibrium, and
2. If $u(s, s) = u(s^*, s)$ then $u(s, s^*) > u(s^*, s^*)$

- If $u(s, s) > u(s, s^*)$ for all s^*, there is nothing else to check
- The second condition says “if a mutation does equally well against the original, the original must do better against the mutation than the mutation does against itself”
- This definition is far easier to check
If \(s \) is evolutionarily stable, is \((s, s)\) a Nash equilibrium?

- Yes

If \((s, s)\) is a Nash equilibrium, is \(s \) evolutionarily stable?

- Not necessarily: if \(u(s, s^*) = u(s^*, s^*) \), need to know that
 \[u(s, s^*) > u(s^*, s^*) \]

If \(s \) is evolutionarily stable, is it possible that \(s^* \) strongly dominates \(s \)?

- No

If \(s^* \) strictly dominates \(s \), it will do better against \(s \)(and \((s, s)\) is not a Nash equilibrium)

If \(s \) is evolutionarily stable, is it possible that \(s^* \) is not strongly dominated by \(s \)?

- Yes
Handout #7

- If s is evolutionarily stable, is (s, s) a Nash equilibrium?
 - Yes

- If (s, s) is a Nash equilibrium, is s evolutionarily stable?
 - Not necessarily:
 - if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

- If s is evolutionarily stable, is it possible that s^* strongly dominates s?
 - No

- If s^* strictly dominates s, it will do better against s (and (s, s) is not a Nash equilibrium)

- If s is evolutionarily stable, is it possible that s^* is not strongly dominated by s?
 - Yes
If s is evolutionarily stable, is (s, s) a Nash equilibrium?

- Yes

If (s, s) is a Nash equilibrium, is s evolutionarily stable?

- Not necessarily: if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$.

If s is evolutionarily stable, is it possible that s^* strongly dominates s?

- No

If s^* strictly dominates s, it will do better against s (and (s, s) is not a Nash equilibrium).

If s is evolutionarily stable, is it possible that s^* is not strongly dominated by s?

- Yes
If s is evolutionarily stable, is (s, s) a Nash equilibrium?
- Yes

If (s, s) is a Nash equilibrium, is s evolutionarily stable?
- Not necessarily:
 if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$
If s is evolutionarily stable, is (s, s) a Nash equilibrium?
 - Yes

If (s, s) is a Nash equilibrium, is s evolutionarily stable?
 - Not necessarily: if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

If s is evolutionarily stable, is it possible that s^* strongly dominates s?
 - Yes
If s is evolutionarily stable, is (s, s) a Nash equilibrium?
 - Yes

If (s, s) is a Nash equilibrium, is s evolutionarily stable?
 - Not necessarily:
 - if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

If s is evolutionarily stable, is it possible that s^* strongly dominates s?
 - No
 - If s^* strictly dominates s, it will do better against s
 (and (s, s) is not a Nash equilibrium)
If s is evolutionarily stable, is (s, s) a Nash equilibrium?
 - Yes

If (s, s) is a Nash equilibrium, is s evolutionarily stable?
 - Not necessarily:
 if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

If s is evolutionarily stable, is it possible that s^* strongly dominates s?
 - No
 If s^* strictly dominates s, it will do better against s (and (s, s) is not a Nash equilibrium)

If s is evolutionarily stable, is it possible that s^* is not strongly dominated by s?

If s is evolutionarily stable, is (s, s) a Nash equilibrium?
 - Yes

If (s, s) is a Nash equilibrium, is s evolutionarily stable
 - Not necessarily:
 if $u(s, s^*) = u(s^*, s)$, need to know that $u(s, s^*) > u(s^*, s^*)$

If s is evolutionarily stable, is it possible that s^* strongly dominates s?
 - No
 If s^* strictly dominates s, it will do better against s
 (and (s, s) is not a Nash equilibrium)

If s is evolutionarily stable, is it possible that s^* is not strongly dominated by s?
 - Yes
Evolutionarily Stable Strategies

What pure symmetric Nash equilibria are there?

_What will happen to the population?
- It will be mixed

_The strategy \(p = \left(\frac{2}{3}, \frac{1}{3} \right) \) gives a symmetric Nash equilibrium

_Will it do strictly better against itself than any other strategy?
- No - because it is a mixed strategy

_Need to check how \(p \) does against any other mixed strategy (vs. how that strategy does against itself)

_\(p \) is a mixed evolutionarily stable strategy
Evolutionarily Stable Strategies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What pure symmetric Nash equilibria are there?
 - None

- The strategy \(p = \left(\frac{2}{3}, \frac{1}{3} \right) \) gives a symmetric Nash equilibrium.

- Will it do strictly better against itself than any other strategy?
 - No - because it is a mixed strategy.

- Need to check how \(p \) does against any other mixed strategy (vs. how that strategy does against itself).

- \(p \) is a mixed evolutionarily stable strategy.
Evolutionarily Stable Strategies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
 - The strategy \(p = \left(\frac{2}{3}, \frac{1}{3} \right) \) gives a symmetric Nash equilibria
 - Will it do strictly better against itself than any other strategy?
 - No - because it is a mixed strategy
 - Need to check how \(p \) does against any other mixed strategy (vs. how that strategy does against itself)
 - \(p \) is a mixed evolutionarily stable strategy
Evolutionarily Stable Strategies

What pure symmetric Nash equilibria are there?
- None

What will happen to the population?
- It will be mixed
Evolutionarily Stable Strategies

What pure symmetric Nash equilibria are there?
- None

What will happen to the population?
- It will be mixed

The strategy \(p = (\frac{2}{3}, \frac{1}{3}) \) gives a symmetric Nash equilibria
Evolutionarily Stable Strategies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = \left(\frac{2}{3}, \frac{1}{3}\right)$ gives a symmetric Nash equilibrium.
- Will it do strictly better against itself than any other strategy?
 - No - because it is a mixed strategy
Evolutionarily Stable Strategies

What pure symmetric Nash equilibria are there?
- None

What will happen to the population?
- It will be mixed

The strategy \(p = \left(\frac{2}{3}, \frac{1}{3} \right) \) gives a symmetric Nash equilibria.

Will it do strictly better against itself than any other strategy?
- No - because it is a mixed strategy
Evolutionarily Stable Strategies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = \left(\frac{2}{3}, \frac{1}{3} \right)$ gives a symmetric Nash equilibria
- Will it do strictly better against itself than any other strategy?
 - No - because it is a mixed strategy
- Need to check how p does against any other mixed strategy (vs. how that strategy does against itself)
Evolutionarily Stable Strategies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- What pure symmetric Nash equilibria are there?
 - None
- What will happen to the population?
 - It will be mixed
- The strategy $p = \left(\frac{2}{3}, \frac{1}{3} \right)$ gives a symmetric Nash equilibria
- Will it do strictly better against itself than any other strategy?
 - No - because it is a mixed strategy
- Need to check how p does against any other mixed strategy (vs. how that strategy does against itself)
- p is a mixed evolutionarily stable strategy
Mixed Evolutionarily Stable Strategies

Can mixed evolutionarily stable strategies happen in nature?
Mixed Evolutionarily Stable Strategies

Can mixed evolutionarily stable strategies happen in nature?

Common side-blotched lizard
Mixed Evolutionarily Stable Strategies

Can mixed evolutionarily stable strategies happen in nature?

Common side-blotched lizard
- Males have three possible colorings (orange-blue-yellow)
Mixed Evolutionarily Stable Strategies

Can mixed evolutionarily stable strategies happen in nature?

Common side-blotched lizard
- Males have three possible colorings (orange-blue-yellow)
- Colorings corresponding to mating habits
Common Side-Blotched Lizard

- Blue lizards (dominant) guard small territory and have a single mate
Common Side-Blotched Lizard

- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory

Only evolutionarily stable strategy is Orange
Common Side-Blotched Lizard

- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory
- If there were just these two types, what would happen?
Common Side-Blotched Lizard

- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory
- If there were just these two types, what would happen?
- Game looks something like \((1 < V < 2)\)

\[
\begin{array}{cc}
\text{Orange} & \text{Blue} \\
1, 1 & V, 0 \\
0, V & 1, 1
\end{array}
\]
Common Side-Blotched Lizard

- Blue lizards (dominant) guard small territory and have a single mate
- Orange lizards (ultradominant) have larger territory, and try to claim all females in the territory
- If there were just these two types, what would happen?
- Game looks something like \((1 < V < 2)\)

\[
\begin{array}{c|cc}
& \text{Orange} & \text{Blue} \\
\hline
\text{Orange} & 1, 1 & V, 0 \\
\text{Blue} & 0, V & 1, 1 \\
\end{array}
\]

- Only evolutionarily stable strategy is Orange
Common Side-Blotched Lizard

- Yellow lizards (sneakers) look similar to females
Common Side-Blotched Lizard

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others’ territory
Common Side-Blotched Lizard

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others’ territory
- What happens with these three profiles?
Common Side-Blotched Lizard

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others’ territory
- What happens with these three profiles?
- Game looks something like \((1 < V < 2)\)

<table>
<thead>
<tr>
<th></th>
<th>Orange</th>
<th>Blue</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>1, 1</td>
<td>V, 0</td>
<td>0, V</td>
</tr>
<tr>
<td>Blue</td>
<td>0, V</td>
<td>1, 1</td>
<td>V, 0</td>
</tr>
<tr>
<td>Yellow</td>
<td>V, 0</td>
<td>0, V</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

No pure evolutionarily stable strategies

\((1, 1, 1)\) is evolutionarily stable
Common Side-Blotched Lizard

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others’ territory
- What happens with these three profiles?
- Game looks something like \((1 < V < 2)\)

\[
\begin{array}{ccc}
\text{Orange} & \text{Blue} & \text{Yellow} \\
\hline
\text{Orange} & 1, 1 & V, 0 & 0, V \\
\text{Blue} & 0, V & 1, 1 & V, 0 \\
\text{Yellow} & V, 0 & 0, V & 1, 1 \\
\end{array}
\]

- No pure evolutionarily stable strategies
Common Side-Blotched Lizard

- Yellow lizards (sneakers) look similar to females
- Guard no territory and sneak into others’ territory
- What happens with these three profiles?
- Game looks something like \((1 < V < 2)\)

\[
\begin{array}{ccc}
\text{Orange} & \text{Blue} & \text{Yellow} \\
\text{Orange} & 1, 1 & V, 0 & 0, V \\
\text{Blue} & 0, V & 1, 1 & V, 0 \\
\text{Yellow} & V, 0 & 0, V & 1, 1
\end{array}
\]

- No pure evolutionarily stable strategies
- \((\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\) is evolutionarily stable